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Two-dimensional classical Heisenberg model with easy-plane anisotropy at low temperatures:
Out-of-plane dynamics
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Correlation functions of the two-dimensional classical Heisenberg model with easy-plane anisotropy
are calculated at low temperatures and compared with simulation data. The out-of-plane static correla-
tion function is found to have an exponential decay with a temperature-independent correlation length.
The normalized out-of-plane spin-wave energy is found to have the same temperature dependence as the
square root of the nearest-neighbor in-plane static correlation function.

I. INTRODUCTION

In the last few years, great effort has been dedicated to
experimental and theoretical study of low-dimensional
magnetism. For one-dimensional (1D) magnetic systems,
the combined theoretical and experimental work has been
extremely successful, and nowadays, there is some agree-
ment that most of the important features required for a
thorough understanding of the problem are known.
Two-dimensional (2D) magnetism appears then as a natu-
ral extension of the work done, a good candidate for the
application of tools and models so carefully elaborated
and tested during the 1D analysis. Also 2D magnetic
systems have been thought as ideal vehicles to test results
obtained from other disciplines as, for example, from
quantum field theories. Besides, there is the rare oppor-
tunity to study dynamical aspects intrinsically associated
with two dimensions such as vortex unbinding, instan-
tons, etc. And, last but not least, the exciting discovery
of high-t, superconductivity in 2D antiferromagnets has
attracted a lot of attention to this area. For all these
reasons, the amount of experimental data (and also nu-
merical simulation data) at our disposal is now large
enough to serve as a test or a guide to the methods and
theories used in the 2D analysis. However, in spite of all
effort that has been done, a consistent understanding of
2D magnetism is far from being achieved, and it is impor-
tant to make a complete discussion of the approximations
done in each theoretical method and/or model.

In this paper we consider the two-dimensional classical
easy-plane Heisenberg model

H =+—g {S,"S,+„+S~S~+U+ASp;+„),
i~U

where S"„S"„andS', are the three spin components local-
ized at site r=a{n„,n ), with n„and n integers, in the
square lattice with lattice parameter a and 0~ A, (1. +J
corresponds to antiferromagnetic (+) and ferromagnetic
( —

) nearest-neighbor couplings. This model admits vor-
texlike configurations that lead to the well-known
Kosterlitz-Thouless transition at some critical tempera-
ture T, (iL). Vortex effects becomes important only near

T, (A, ) and will not be considered here. It is interesting to
note that while static correlation functions for the XY
model [A, =O in Eq. (1)] have been fully studied (for re-
views, see Refs. 3 and 4), the same is not true for the an-
isotropic model (0 ( A, (1). From the dynamical point
of view, there have been only few theoretical studies
of dynamic correlation functions below T, . We report
here both "in-plane" and "out-of-plane" static correla-
tion functions and the out-of-plane dynamical correlation
function at low temperature for 0(A, ( l.

Our approach uses an expansion of spin operators in
boson operators (for convenience, we have worked mostly
within the quantum-mechanical framework and then the
classical limit will be taken as appropriate). For the stat-
ic calculations, the statistical average has been done by
considering only the lowest-order nontrivial term of the
Hamiltonian s expansion. The projection-operator tech-
nique was used for the out-of-plane dynamical correlation
function calculation: Through this formalism spin-wave
interaction effects are considered in a rather simple way.
Previously, Villain proposed a method, the self-
consistent harmonic approximation (SCHA), to address
the same problem, but his approach turned out to be very
difficult to apply. Besides, the method we use here pro-
vides a better agreement with simulation data, and for
these reasons, a critical analysis of the approximations
and details involved in its elaboration deserve attention.

In Sec. II we present a standard method for obtaining a
diagonal form for the lowest-order nontrivial term of
Hamiltonian (1) and calculate the static correlations. The
main results reported there are the following: (a) The in-

plane static correlation function has the same polynomial
decay as the planar model. However, its amplitude is
smaller because of out-of-plane spin fluctuations. (b) The
out-of-plane static correlation function has an exponen-
tia1 decay with a temperature-independent correlation
length at low temperatures. The projection-operator
technique is briefly described in Sec. III where we also
give an asymptotic form for the out-of-plane dynamical
correlation function. We argue that the normalized out-
of-plane spin-wave energy co (T)/co has the same tem-
perature dependence as the square root of the nearest-
neighbor in-plane static correlation function.
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II. STATIC CORRELATIONS

By making use of the polar representation for the spin
at site r,

S,=(S[1—(S;/S) ]' cosy, ,
Ho= +co (ata + —,'),

q

(10)

where a and a are the boson-creation and -annihilation
operators, respectively, Ho becomes

S [1—(S;/S) ]' ~ sing„s; ),
(2)

where

with I tp„s;. ] =5... Hamiltonian (1) becomes

H=+(J/2) g [S [1—(S;/S) ]'~

X[1—(S*, „/S)']'"
xcos(q, —

q&,+„)+AS+;+„].

For the antiferromagnet we redefine y, according to

q&,'=q&, + [1—( —1) ' ']m/2,

(3)

so that the new angular variable q,
' refers to fluctuations

about a fundamental state in which the spins are parallel-
ly aligned along some arbitrary direction in the easy
plane. It is convenient to introduce transformation (4}
because, at low temperatures, y,

' is a smoothly varying
function of r, and then Hamiltonian (1) for the antiferro-
magnetic case can be expanded into the small powers of
(qr,

' —y,'+„), as can be done for the ferromagnetic case.
Henceforth in this section as well as in Sec. III, all results
are valid for both antiferromagnetic and ferromagnetic
couplings. In order to simplify the notation, we shall use
the same symbol y, for both cases and adopt the follow-

ing convention: Whenever the + or W symbol appears,
the upper signal refers to antiferromagnetic and the lower
one refers to ferromagnetic coupling. If only one sign ap-
pears, the same formula is valid for both cases.

Carrying out the expansion into powers of (S;/S) and

(tp, —y, +„),we obtain

H =Eo+Ho+HI

where Eo = —2NJS is the energy of the ground state, HI
represents higher-order terms, and Ho is the harmonic
Hamiltonian, which, after a Fourier transformation, is
given by

coq=4JS [ [1—y(q) ][1+A,y(q) ]] '

rs /4 for r=O,
for lrl &0. (13)

For 0 & A, & 1, by numerically solving the integral in (12),
we can see that S'(r) has an exponential decay" with a
temperature-independent correlation length. This ex-
ponential decay has been found by Kawabata and
Bishop ' through Monte Carlo simulation for all tem-
peratures ( T & T, as well as T & T, ). Their data also sug-
gest a temperature-independent correlation length at low
temperatures. For large distances a good fitting for the
numerical results is

S'(r ) n„+n=(+1) " 'A for r »1,S'(0)
(14)

We remark here that, for the antiferromagnet, two
dispersion relations symmetrically related to each other
by co, (q) =co&(qo), where qo=(m —q„, m. —q„), are expect-
ed. Apparently, then, Eq. (11) fails in giving these two
magnon modes for the antiferromagnet. However, this is
not the case, as can be seen if one calculates the dynami-
cal functions (q (t)lpq) and (S'(t)ls' }.Because of the

n„+n
(
—1) " ~ term in Eq. (4), we shall get coq in the tem-

poral evolution of (yq(t)lyq) and coq for (Sz(t)lsq ).
We can now calculate the static correlations in the har-

monic approximation context. The out-of-plane static
correlation function is obtained from Eq. (9) and is given
by

SS(r)=(SP;)= S ' Jd2k -'"', (12)
4 (2n. )' I+&y(lt) '

where r= T/JS is the reduced temperature. For A, =O it
is easy to see that

Ho =2J g [S'[1—y(q) ]q~q q+ [1+Ay(q) ]Sqs' q ],
q

(6)

where A and g are fitting parameters whose A, depen-
dence is shown in Fig. 1. For A, = 1 we can evaluate the
integral in (12) and then obtain

where

y(q) =
—,'(cosq +cosq~),

-(+1) ' (2 g )'"
S'(0) lng„

'/&A

and we have taken the lattice parameter a=1, for simpli-
city of notation. By introducing the canonical transfor-
mation (setting iii= 1)

where
1/2

for r »g„and A, = 1, (15}

1 1+1,y(q)
(2S)'~' 1 —y(q)

1/4

(atq+a q),
=1

2 1 —
A,

(16)

g„ is also plotted in Fig. 1, where we can see that it com-
pares very well with g in the A, ~ 1 limit.

It is straightforward to calculate the out-of-plane sus-
ceptibility P 'z, = g, lS'(r) l. From Eq. (9) we get

1/2 1/4
1 —y(q)

2 1+Ay(q) (aq —a q),
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5.0
&q,q, &

—&q,')= ——g( ), (20)

where

zk 1 —cos(k r)
(2 )

I 1 —y(k)
(21)

a 25I-

I
I

This integral can be carried out. ' For the special case
n„=n~ =n, w= n we have a particularly simple result:

n —1

& k+k=0 Y
(22)

'0 0.5 I.O

An excellent approximation for g (r), in the general case,
is

FIG. 1. Fitting parameters A (solid curve) and I/g (dashed
curve) of S'(r)/S'(0) for 0&A, &1 and, for comparison with

1/g, the inverse correlation length I/g„(dot-dashed curve) of
S'(r)/S'(0) for A, =1 as a function of the anisotropy A, . Note
that, for A, )0.70, I/g is very close to I/g„.

g ( r ) —= —ln — for r ))1,2 r
7T rp

where

e r
rp= ————0.2,

2t/2

(23)

(24)

1

4J(1—A, )
(17)

where y is Euler's constant. This is a good approxima-
tion even for r &1. Then the in-plane static correlation
function becomes

Therefore we see that there is a temperature-independent
susceptibility associated with the temperature-
independent correlation length of the out-of-plane corre-
lation.

For calculating the in-plane static correlation function,
we use the fact that y, and S', are, in the static case, un-

coupled variables and that the out-of-plane fluctuations
are exponentially decreasing in r with a temperature-
independent correlation length, to obtain

S"(r)—:(Sos", &+ (S~os', )

=(+ 1) " 'S [1—((S'/S)') ]

rpS"(r) =(+I)""+"S'[I—
& (S;/S)' & ]

—' r/27I

(25)

Because of this polynomial decay, the in-plane suscep-
tlbi ityy p Kgp
'b'1', p ' = ~ !S"(r)! diverges at low temperatures

(up to T, ). In order to compare our results with simula-
tion data, we introduce here the short-range order (SRO)
d fi d the square root of the nearest-neighbor in-

lane static correlation function, i.e. [S"(r=
This quantity is specially interesting because, as we shall
see in the following section, it is related to the tempera-
ture dependence of the spin-wave energy. In Fig. 2 we
present our calculations at first order in temperature for

X ( cos(y, —yo) ), (18)

I.00
at first order in temperature. The term (((S'/S) ) is

given by Eq. (12). It describes a decrease in the in-plane
correlation due to out-of-plane fluctuations. The term
(cos(,—po)) can be obtained by calculating the func-
tional integral of exp( pHo) over qr, a—nd S;. as has been

b W er' and Berezinskii. ' Because of strong
aw and a first-fluctuation effects, it falls off as a power law, and a rst-

order expansion in temperature fails in describing its
long-distance behavior. Alternatively, this result can be
obtained from the boson canonical representation o
[Eq. (8)]. In the harmonic approximation, the average o
a certain number of operators g, product decomposes
into a sum of all products of average of separate pair of
operators V7r+r'( ~ ) (Wick's theorem). Thus we obtain

0.75—

0.5$ 0.30
T/JS 2 0.60

(cos(y go) ) =
n =0

From Eq. (8) we get

IG. 2. SRO, defined as [S"(r= I)/S ]', given as a func-
f h duced temperature T/JS for the ferromagnet.

The marks correspond to numerical simulation results e .
d th lines are our first-order calculations: =, so i

curve), X=0.6 (o, dashed curve), and X=0.9 ('7 dot-das- ashed
curve).
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III. OUT-OF-PLANE DYNAMICS

In studying the dynamics of a system, the quantity we
are interested in calculating is the normalized two-spin
relaxation function

R (t)=(s (t)ls; &&s;Is; &-', (26)

where the inner product between two operators A and B
is defined by

& AIB&= ' f—&e"HAe 'HB-t&dg.
0

(27)

For a classical system, the inner product is an ordinary
thermal average, such as (Sq(t)ISq ) = (Sq(t)S q ).

The well-known formalism of Mori' leads us to

(28}
z —(m ) /[z+Xq(z)]

where R (z) is the Laplace transform of Rq(t), (coq) is

the second moment, and X (z) is the memory function
defined as

Rq(z)=

(co2)a=(Lsq ILsq )(s Is I

)-',
X,(z)= —(QL S I(z QLQ) 'I—QL S )

x&Ls;Is;&-'.

(29)

(30)

Here L is the Liouville operator and Q is the projection
operator, which projects on nonsecular variables. Q is
defined by Q = 1 P, where—

the ferromagnet and compare them with the results of
Shirakura, Matsubara, and Inawashiro, ' which have
been obtained by means of numerical simulations based
on Langevin equations. As we expected, the spin-wave
theory is successful in describing the short-distance be-
havior at low temperatures. In fact, there is a good
agreement up to T= T, /2. For higher temperatures vor-

tex effects become important and must be included in or-
der to make an improved description.

two-loop level. Therefore, as far as a first order in the
temperature calculation is concerned, X'(t) =0, and from

Eq. (28), the following low-temperature asymptotical
form of the normalized spectral function is obtained:

Rq(co)=(ilier)[5(co+((coq)')'
)

+&(~—(( ')')' ')] . (34)

Evidently, through this form we cannot say much
about the linewidth, except that it is expected to be very
narrow. But we can obtain, at first order in temperature,
the out-of-plane spin-wave energy as

~'( T) =( & co' &')'" (35)

Here "out-of-plane spin-wave energy" refers to the ener-

gy (or frequency} where the peak of the z component of
the spectral function occurs. Using the identity (33),
(

coq
) ' can be put in a more convenient form:

4JS[1—
( )]

I (Sz Isz )
(36)

toq(T)=co IS"(r =1)/S I'~ (37)

where the last term is given in Sec. II. Therefore the nor-
malized out-of-plane spin-wave energy a2~(T)/e is just
equal to SRO and, consequently, does not depend on q at
low temperatures. In Fig. 3 we compare our calculation
of coq(T) for the antiferromagnet with the molecular-

In order to evaluate this expression, we shall make use of
the static correlations obtained in Sec. II through the
harmonic approximation. This approximation, for
S"(r=1), was discussed there. For (S'IS') we argue
that, since the out-of-plane static correlation function is a
"pulse-shaped" function of r, an improved calculation of
this correlation at large distances should have a small
effect in the reciprocal space at low temperatures. Then,
with this approximation, we obtain

Is &&s I ILS &(Ls I+(s;Is;) (Ls;ILS; &

We have, further,

QL 2sa —L 2sa ( 2 )asa
q q q q

(31)

(32)

(A
5

3

which can be obtained using Eq. (31) and the identity

( AIL IB ) =( I/P)( [ A t,B]) . (33)

Concerning out-of-plane dynamics, it is cumbersome
but straightforward to show, with help of Eqs. (32) and
(33), that Xq(t) ~ T . This should be expected because
easy-plane systems exhibit a very narrow peak associated
with the out-of-plane dynamical correlation function,
and the width of this peak, from analysis of Eq. (28), is
expected to be just proportional to the imaginary part of
Xq(co). In fact, a perturbative quantum calculation'
shows that a finite width of the magnon peak of the z
component of the spectral function appears only at a

%o 02 0.4 08 I.O

FIG. 3. Energy of the out-of-plane spin wave eq( T) as a func-
tion of q = (q, q) for the antiferromagnet with A, =0. The marks
correspond to numerical simulation results (Ref. 19), and the
lines are our first-order calculations: T=0 (solid curve),
T =0.3JS ( X, dashed curve), and T=0.SJS (C), dot-dashed
curve).
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dynamics results of Volkel et al. ' at two values of tern-
perature, namely, ~=0.3 and 0.5. We see that there is an
excellent agreement at ~=0.3 for all values of q. It is in-
teresting to note that even at a temperature as high as
~=0.5, our first-order calculation presents only a small
deviation from the simulation data.

In conclusion, we observe that Eq. (34) is valid for all

q, and then we expect well-defined spin-wave peaks in the
z component of the spectral function for any transferred
momentum. We also remark that spin-wave theory, as
presented here, does not describe as successfully in-plane

dynamics, at least quantitatively, because, since in this
case the long-distance behavior is a determinant factor,
an improved calculation of the static correlations is re-
quired.
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