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We present results of a Monte Carlo renormalization-group study of the three-dimensional Ising mod-
el on 64 and 128 simple-cubic lattices. The eigenvalues of a linearized transformation matrix, con-
structed with the use of 53 even operators and 46 odd operators, are shown to be free of truncation er-
rors. Our estimate of the critical coupling is 0.221 652+0.000003+0.000001 where the first error is sta-
tistical and the second due to the finite number of blocking steps. The results for the relevant exponents
are v=0. 624(2) and q=0.026(3). This estimate for v lies 2—3o below that obtained from other
methods. The correction-to-scaling exponent is found to lie in the range co=0.8-0.85. We also find that
the subleading magnetic exponent is relevant and present evidence that it corresponds to a redundant
eigenvector of the majority-rule blocking transformation.

I. INTRODUCTION

In this paper we present results of extensive simula-
tions of the critical behavior of the three-dimensional
(3D) Ising model using the Monte Carlo
renormalization-group (MCRG) method. The analysis
has been done on 64 and 128 lattices. This allows us to
compare our 64' data with previous results (Pawley
et al. ' and Blote et al. ), while the 128 simulations pro-
vide additional results. Our calculation improves on pre-
vious MCRG estimates for the critical coupling KNN and
for the exponents v, io, and g.

We discuss how to reduce the three major sources of
systematic errors in MCRG calculations. These are (a}
truncation errors, (b) lack of convergence, and (c) finite-
size errors at higher blocking levels. The statistical sam-
ple consists of 100-K (140-K) measurements on 64 (128 )

lattices. Most of the data are generated using the single-
cluster update for which the dynamical critical exponent
has been shown to be z =0.28. Nevertheless, one of the
largest remaining source of errors in this calculation is
the statistics.

We present evidence that the subleading odd operator
is a redundant operator with eigenvalue greater than uni-
ty. This relevant redundant operator associated with the
2 blocking (majority rule) is not responsible for the slow
convergence of MCRG calculations. The rate of conver-
gence is governed by the correction-to-scaling exponent
co, for which our estimate is the range 0.80—0.85.

We make a detailed comparison of results for K~N, v,
and g with those obtained using other methods such as
series expansion, finite-size scaling, etc. Our results for v
lies (2—3)o below non-MCRG estimates. We consider
this difference significant. Based on our data, we conjec-
ture that once the statistical errors are brought under

control, simulations on 64, 128, and 256 lattices will al-
low us to extrapolate reliably to infinite volume and pro-
vide very accurate results.

This paper is organized as follows: In Sec. II we re-
view the essentials of the MCRG method. The details of
implementation of the program on the AMT DAP (Dis-
tributed Array Processor} and of our update and mea-
surement parameters are given in Sec. III. The analysis
leading to an improved estimate of the nearest-neighbor
critical coupling ENN is presented in Sec. IV, for the
thermal exponent v in Sec. V, and for the magnetic ex-
ponent g in Sec. VI. In Sec. VII we analyze Wilson's
method to determine the leading exponents using
renormalization-group flows. A discussion of subleading
(correction-to-scaling) exponents is given in Sec. VIII,
where we also present evidence that the subleading opera-
tor in the odd sector is redundant. Finally, in Sec. IX we
make a comparison of results obtained with different
methods including e expansion, series analysis, finite-size
scaling supplemented with the histogram method, and
the transfer-matrix method. We end with conclusions
and future outlook in Sec. X. Throughout this paper the
quoted errars always refer to the last decimal place unless
explicitly stated.

II. MCRG METHOD

The Monte Carlo renormalization-group (MCRG)
method combines Monte Carlo (MC) simulation tech-
niques with a renormalization-group (RG) analysis of
the critical properties of statistical-mechanics models.
Key conceptual ingredients of the MCRG method were
provided by Ma and Kadanofi and the method was
developed into a calculational tool in 1979 by Wilson
and Swendsen. The basic idea of the renormalization
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&=+K S (2.1)

where the interactions S 's are combinations of the spins
and the K 's are the corresponding coupling constants.
The sum is over all possible interactions that exist on a
lattice of a given size. The RG transformation Az pro-
duces another system corresponding to the renormalized
Hamiltonian

group is that near a critical point the correlation length
diverges and the long-distance properties of a system are
not affected by details at the microscopic level. Thus
short-wavelength fluctuations may be integrated out,
transforming the original system into another one with
fewer degrees of freedom. The effect of integrating out
the short-wavelength fluctuations is to renormalize the
couplings. Critical exponents are derived from analyzing
how the couplings change under such coarse graining.

In practice, the integration cannot be done exactly, and
in numerical simulations the coarse graining is done in
small discrete steps. Such approximate transformations,
called blocking transformations, are designed to preserve
the long-distance physics of the model. There is consid-
erable freedom in how to approximately carry out the in-
tegration over the short-distance fluctuations, and one ex-
pects all sensible transforrnations to give the same results.

Monte Carlo simulations are used to generate
configurations of spin variables with a starting Hamil-
tonian lying as close as possible to the infinite lattice criti-
cal surface. Given these configurations, one implements
the scale transformations numerically by dividing the lat-
tice into "blocks" and averaging the variables in each
block to define the "block variable. " How well a given
blocking scheme approximates integration over a fraction
of the variables is controlled by the precise definition of
the averaging procedure.

Different blocking transformations can be constructed
because of the freedom in defining the size and shape of
the block (usually denoted by the scale factor of the
transformation) and the averaging procedure. For regu-
lar hypercubic lattices, blocking transforrnations by a
scale factor b reduce the volume of a d-dimensional sys-
tem by b, which is also usually equal to the number of
variables in a block. We use the majority-rule transfor-
mation for the 3D Ising model, dividing the simple-cubic
lattice of spins into 2X2X2 blocks (b =2) and assigning
the values + 1 or —1 to the block spin, depending on the
sign of the sum of the spins in the block. When the sum
is zero, the block spin is assigned the value +1 with equal
probability.

To generate the RG flow, one repeats the blocking pro-
cedure a number of times. At each blocking the lattice
volume decreases by a factor b; nevertheless, each
blocked lattice holds the same long-distance physics in-
formation as the original simulated lattice, but is a suc-
cessively coarser representation of it.

To analyze the effect of blocking, it is convenient to
write the starting Hamiltonian (original simulated sys-
tem) in its most general form:

a&s" &

U.",—=
, =&s."s," '& —&s".&&s," '&,'= asc"-'

P

a&s." &„=&s."s.")—&s.")&s."),M"

and hence

7'=D 'U .

(2.4)

(2.5)

(2.6)

From an ensemble of measurements, S",we construct the
correlation functions given in Eqs. (2.4) and (2.5). Then
Eq. (2.6) allows us to calculate properties of the RG fiow
without knowing the renormalized gP. In particular, the
critical exponents are obtained from the eigenvalues of
+a@'

In this study we analyze the systematic errors that
arise in MCRG calculations. To establish notation we
give a brief introduction to these. The blocked Hamil-
tonian consists of all possible couplings that fit on a given
size lattice even when the starting Hamiltonian is just
nearest neighbor:

parametrized in terms of a different set of coupling con-
stants {K' I. The interactions S' are combinations of the
block spins. Thus the RG transformation is a map in the
space of coupling constants, and theories connected by a
RG transformation describe the same long-distance phys-
ics if they lie in the domain of attraction of the critical
fixed point &*=A&%*. For this reason MCRG simula-
tions are most reliable when the starting Hamiltonian lies
on the critical surface since then the RG flow converges
to the relevant fixed point. For more details on these
points, we direct the reader to Refs. 8 and 9.

In numerical simulations the condition for success of
the MCRG method is that the difference between % on a
finite lattice and on an infinite lattice should be negligible

along the RG flow. For this to be satisfied, a prerequisite
is that the fixed point of the blocking transformation be
short ranged. Since this property of the fixed point is to
some extent a function of the RG transformation, it is
possible to improve results by tuning it. For further dis-
cussion on this point, we refer the reader to pp. 570-573
of Ref. 9.

The {K' ) are functions of {K I and are specified by
the RG transformation. Near the fixed point, one can ap-
proximate the functional dependence by the linearized
transformation matrix W&, which is defined as

aK." aK." a& s." &

(2.3)aKp-' —. a&s". & aKp-'

Here &
S" ) is the expectation value of the 0 th spin

operator on the nth renormalized lattice and K" is the
corresponding coupling. Since the change in couplings is
obtained by keeping only the leading linear term, the
method requires that calculations be done close to %"
and that b be small. The two terms on the right-hand
side of Eq. (2.3) are connected two-point correlation ma-
trices

&'= gK'S' =Aq&, (2.2) ~nn Knn Snn (2.7)
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where the interaction

S„„=gs, s (2.8)

is the sum over all distinct nearest-neighbor pairs. A
basic assumption of the renormalization-group method is
that the renormalized couplings [E"] fall off exponen-
tially with distance between the spins and also with the
number of spins in a given interaction term. As men-
tioned earlier, this assumption —that the fixed point is
short ranged —is necessary in order to justify why the
critical behavior extracted from a finite system is a faith-
ful representation of the bulk critical behavior. To test
this assumption in MCRG calculations, the standard
practice is to perform simulations on increasingly larger
lattices and by measuring more and more interactions on
the blocked lattices. In a computer simulation the num-
ber of interactions actually evaluated is a small finite sub-
set of all possible interactions; therefore there exist sys-
tematic errors known as truncation errors. These arise
because (a) the elements of D ' constructed from a trun-
cated version of D are not the same as for the infinite ma-
trix and (b) the eigenvalues of T constructed from a prod-
uct of a truncated D ' and U [Eq. (2.6)] are different
from those obtained from the full matrix. It was shown
in Ref. 10 that to leading order these two errors cancel.
This fortuitous cancellation is one reason why MCRG
works so well. In order to evaluate and control the resid-
ual truncation errors, we have calculated all 53 even and
46 odd interactions that fit in either a 3 X 3 square or a
2X2X2 cube of spins.

The accuracy of the calculation of the exponents im-
proves when the 5'"& are evaluated close to the fixed
point. If the starting % is critical, then this condition
can be satisfied by blocking the lattice a sufficient number
of times, i.e., &"~%' for large n In th.is case the con-
vergence of the eigenvalues is limited by the starting lat-
tice size. On the other hand, if the starting & does not
lie on the critical surface, then the RG flow is initially to-
ward the fixed point along the irrelevant directions, but
away from it along the relevant directions. In the latter
case one does not know, a priori, the number of RG steps
at which the best estimate can be extracted. This lack of
convergence in the eigenvalues of 7 & is the second
source of systematic errors in a MCRG calculation. In
the Appendix we show how this error affects the results
and obtain the leading correction term, using which we
extrapolate our data along the RG flow to %'.

In addition to the systematic errors due to truncating
the number of operators used in the construction of T

&
and the lack of convergence, the third source of systemat-
ic errors is finite-size effects. Even if the fixed point &
of the RG transformation is short ranged, the finite size
of the lattice will effect the blocked &. This effect will be
most significant at the higher levels of blocking, precisely
where we want to measure W& to reduce the second sys-
tematic error described above. Previous calculations
show that for the 3D Ising model this error is significant
only when blocking 8 lattices down to 4 lattices. ' We
verify this result and conclude that when the lattice being
blocked is 16 or larger, finite-size errors are much small-

er than the statistical error.
In 1984 Pawley et al. ' performed a significant MCRG

calculation with high statistics. They ran on four lattice
sizes 8, 16, 32, and 64 and at three values of the cou-
pling KNN =0.221 61, 0.221 66, and 0.221 69. They mea-
sured seven even and six odd operators in order to con-
struct T &. In the analysis they implicitly assumed that
hyperscaling dv=2 —a holds; MCRG calculations do
not test hyperscaling. [Also, in order to determine y, one
has to use the ordinary scaling relation ( 2 —

rl )v =y.]
Their best estimate of the nearest-neighbor critical cou-
pling, using the method described in Sec. IV, was
K NN

=0.221 654(6). In order to take into account
finite-size effects, lack of convergence, and truncation er-
rors, they first made separate extrapolations in each.
Even though the three systematic errors were in-
tertwined, they correctly estimated (in light of the present
work) that the largest error was due to the small number
of operators measured. Using their extrapolated values
of v and g obtained at the three values of the coupling,
they obtained their final estimates by interpolation to
ENN =0.221 654, and these were v =0.629(4) and
r1=0.031(5).

In 1989 Blote et al. repeated the calculation of Pawley
et al. with similar high statistics, on the same size lattices
and at ENN=0. 221654. They calculated 36 even and 21
odd operators and found that this set is sufficient to over-
come truncation errors. They also carried out a sys-
tematic study of finite-size effects and showed that finite-
size errors are significant only at the highest blocking lev-
el, i.e., 83—+4 . Their estimates are KNN =0.221652(6),
v=0. 629(3), and rl=0. 027(5). The results of Blote et al.
supercede those in Ref. 1 since they calculate more
operators and performed runs closer to E~N. Therefore
we will primarily make comparisons using the results
given in Ref. 2.

The principal remaining limitation of MCRG calcula-
tions is the lack of convergence of the eigenvalues of V &.
Even for high-statistics simulations carried out on 64 lat-
tices using a good estimate for ENN, finite-size errors set
in before the eigenvalues of V"& have converged. In this
regard our calculations on 128 lattices (the largest lattice
size we could simulate at the time of starting this calcula-
tion in 1988) extend previous results and allow us to
make more reliable extrapolations.

III. DETAILS OF THE SIMULATIONS

We have carried out simulations on 64 and 128 lat-
tices at each of the two values of coupling:
ENN=0. 221654 (best estimate presented in Ref. 1) and
KNN=0. 221644. Most of our update sequence consists
of the combination of a single-cluster update algorithm
followed by ten Metropolis sweeps. Early runs were per-
formed with 100 Metropolis sweeps only, and a few runs
were done with only the cluster update. Measurements
are made at the end of each update sequence. The update
parameters and statistics accumulated are given in Table
I. For the purpose of error analysis, the data have been
divided into a bin size of 10000 measurements. On both
lattice sizes 64 and 128, the highest blocked lattice is 4,
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+NN

Update characteristics
Lattice Cluster Metropolis Statistics

TABLE I. Description of lattices used, update parameters,
and statistics.

either a 3 X 3 square or a 2 X 2 X2 cube are shown in Figs.
1 and 2, respectively. We also indicate the seven even
operators used by Pawley et al. (labeled Pl P—7 in Fig.
I), and the operators in common with Blote et al. are la-

0.221 654
0.221 654
0.221 654
0.221 654
0.221 644
0.221 644
0.221 644

64
128
128
128
64'

128
128

yes
no
yes
yes
yes
no
yes

10 hits
100 hits

0 hits
10 hits
10 hits

100 hits
10 hits

100 K
25.5 K

1.5 K
113 K
100 K
20 K

120 K

1 (P1,B1)

5 {P7,Q4)

4 E
1F

41
1F

L
'1 F

4 L
1 F

6 (B5)

lE jL

2 (P2,B2)

1

"7 (PS+9)
JL BL
1F 1F

Pr 0 ~

8 (B13)
BL JL
1F ir

4E it
1F '%F

4L 4E

3 (P4,B6) "4 (P3+3)

and so measurement of observables has been made on 5

(6) levels, labeled 0—4 (0—5), respectively.
The entire calculation was done on a SIMD (single-

instruction, multiple-data) parallel computer called the
DAP (Distributed Array Processor). This computer con-
sists of D XD bit-serial processing elements (PE's)
configured as a cyclic two-dimensional grid with nearest-
neighbor connectivity. Originally made by ICL with
D =64, the DAP is currently made by AMT with D =32
and 64, called the DAP 510 and DAP 610, respectively.
The Ising-model computer simulation is very well suited
to such a machine since the spins can be represented as
single-bit (logical) variables. In 3D the system of Ising
spins on a MXMXM simple-cubic lattice is "crinkle
mapped" onto the D XD DAP by storing 1V XXpieces of
each of M planes in each PE: M XM XM
=M X ( N XD ) X ( N XD )1, with N =M /D.

For spin update we use, for two reasons, the single-
cluster variant of the Swendsen-Wang algorithm
developed by Wolff. First, the dynamical critical ex-
ponent for the Wold'algorithm is almost a factor of 2 less
than that for the Swendsen-Wang algorithm: 0.28(2)
versus 0.50(3j in the case of the 3D Ising model. Second,
the Wolff algorithm can be implemented more efficiently
on a SIMD computer such as the DAP. "

The algorithm is implemented as follows: First, we
generate bonds between neighboring spins with probabili-
ty

4E
1F

9 (B12)

13 (B7)
BL

JE
1F

17 (B10)

25 (835)
4 L
1F

l E
1 F

41
1F

BL
1F

29

JE
1F

lL NE
1F iF

33

IL 4L1F 1F

4E 1L 4Eir ir 1F

4E
1F

37

4 E

21 (P6, B15)

4 L
'1 F

10 (B16)
JL JE

BL BL

14
15 (B11)

l L
1 F

1$ (B22)

J L
1 F

A:.:::.".".:.";:.,'::~
19 (B33)

22

lL SL
1F iF

26 27

4 E
'1 F

4 L

J1 BL JZ JP

11 4L
1F 1F

BL 4L
1 F

E 4 E
1F 1F

JL ALir
38

4E 8Eir '1F

35

4L JE JL
1F

4 E
1 F

39

4 E 4 L

30
31 (B34)

4 E
1 F

4E 41 4E
F 1r

l L
1 F

12

BL AE
1 F

20

1 F

E 4 L
1 F

4 L
1 F

'1 F

2$

4 E
1F

J 1
1 F

4E
1 F

4E
1F

4 L
1 F

4 L
1 F

32

1 F

36

lL 4LiF 1F

4 E
1 F

4E BL
1F 1F

40

4 L
1 F

16 (814)

r(~„~,)=5. .(I —e '~) . (3 I)
J

Like the spins, these bonds are represented by logical
variables and their construction is done in parallel. We
then choose a random spin and construct the cluster in
which it is located using the Allen-Toral-Wall algorithm
as discussed by Dewar and Harris. ' At each step of the
fully parallel implementation of this algorithm, a logical
variable i am in the cluster is set to .TRUE. at the
neighboring site if the connecting bond is active and if
the test site is already part of the cluster. This process is
iterated until the entire cluster is populated. Qn the
DAP all the spins in each generation are evolved simul-
taneously, thereby furnishing a wavefrontlike parallelism.
Unfortunately, the maximum number of processors doing
useful work at any time is only of the order of the square
root of the total number of processors (see Ref. 11 for a
detailed comparison of algorithms).

The 53 even and 46 odd couplings that are contained in

BL 4L JLir ir 4L JL
'1F iF 4 L 4 L

1F
4E 4E
1F

41
1F

41

4E
'1 F

4E JEiF 1F

4E BLir
45

BL

4E AL
1 F

42

JL 4E

41 JE1F 1F

46

4L 4Eir 1F

43

4 L
'1 F

JE
1F

4E BL 4Eir ir ir
4L
1F

BL BL JL

JE JE lE1F ir 1F

4E 41
1 F

4$

BL IL 4L1F 'ir iF 4 L
1F IL

1F JE
1F

4E JL BL
1F 1F 1F

I E
1F

BL 41 JE1F 1F 1F

49

IL 4L JL
1F 1r 1F

4E 4L IL1F 1F 1F

50

4E lE JL1F 1F 1F

51

JL BL 4L1F 1r 1F

52

BL 4L 4E1F 1F

53

FIG. 1. Fifty-three even operators are shown in the order in
which they are used in the MCRG analysis. In parenthesis we
show the seven operators used in Ref. 1, marked P1—P7, and
the operators that occur in Ref. 2 labeled with a 8.
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1 (B1) 2 (B2) 3 (B3)
J 1

~l(0$ I@0

4 (B4)

JL
'I F

5 (B6)

JLiF

JLir

6 (B9)

JL

J 1
IF

J L
'I F

JL JLIF
J 1
IF

J 1
IF

J 1.~0NNg' j'
8 (B5)

J 1
IF

J 1
IF

beled with a 8 followed by a number giving their order as
in Ref. 2. The measurement of these interactions is done
as follows: We reduce the state of each template of 3 X 3
spins centered about a given spin to a number between
I0,511]and similarly for the 2 spins to a number between
[0,255]. The sum over the lattice sites and three orienta-
tions for the 3 X 3 template is stored as a histogram and
similarly for the 2 template. A simple lookup table then
provides a map between these two histograms and the 53
even and 46 odd interactions. The calculation of the
state of a 3 X 3 or 2 block is a homogeneous operation
that can be done very efficiently on a vector or a parallel

computer.
JLiF

JL JL

The obvious way to make the required histograms is to
store one histogram per PE and first do a sum over all the
sites resident in its memory. This is very inefficient on
the DAP because the PE's lack the hardware functionali-
ty to index individually different locations in their respec-
tive memories. Also, the memory on a DAP is not
sufficient to allow this. Instead, we store a 512-entry his-
tograrn in D pieces along rows of the DAP. Each of
these histograms is thus compared as D columns and H
memory locations, with DXH=512. During the mea-
surernent, the D partial histograms are updated in paral-
lel. The Anal sum to get the complete histogram is done
at the end.

The current implementation of the code requires
roughly the same time to do blocking and histogram
measurement or one cluster update or 100 Metropolis up-
dates. On a DAP 510, our hybrid update consisting of
ten Metropolis plus one cluster update plus blocking and
histogram measurement takes on average 127 sec (13.5
sec) for the 128 (64 ) lattices. The DAP 610 is 4 times
faster. We estimate that the total time used for this cal-
culation is approximately 11 000 DAP 510 h.

JLir
9 (B7)

r

13 (B18)
JL JL
%F iF

JLiF

17

JL JL JL

JL

21

JLiF

10 (B13)
JL JLIF
JL JL
IF

JLiF

14

J1
1F iF
JLiF

JL JLiF iF

18

J L

JL J1 JLir 'Ir ir
JLIF

22

J 1 1.ARAN: J"
15 (B19)

J LIr
JL JL JL

JLIF

19

JLir
JL JLir ir
JL JLIF IF

23

JLIF

16

JL
'I F

JL J1iF 'Ir

JL JL

JLiF

20

JL

J1 JL JL

JL

JLiF

12 (B17) IV. NEAREST-NEIGHBOR
CRITICAL COUPLING It. NN

To calculate K~N consider two MCRG simulations
with the same starting couplings ENN, but on lattice sizes
L =b"=128 and S=b" '=64. If ENN is critical, then
under blocking H~H' and all correlation functions at-
tain their fixed-point values after a sufficient number of
blocking steps. For a noncritical starting H, we can ex-

pand about the critical Bow in the linear approximation

(L m ) (Sm —1 )

JLir

JL JLiF

JLiF

J 1IF
JL JL ~ 1
IF ir iF J 1iF

((L m ) (Sm —1 ) gita
NN

.P.::..':.:;:':..:::.:.":.:Y"
25 (B20)

JLir
JL JL

IF

JL JLIF IF

29

JL

26

JLir
JL JLI r

30

JLir
JLir

J 1I F

27

JL JL'Ir ir

JL JLIF

31

J 1
'I F

JL

JL

JLir

28

J 1
I F

32

J 1IF

J 1IF

=((L L ),—(S 'S ), )bK (4.1)

to determine AENN for each interaction a. Note that the
expectation values on the left-hand side are calculated on
the same size lattices; thus most of the finite-size effects
should cancel. The new estimate for the critical coupling
is given by

JL JL J1 JLIF iF JL JL

.A:.:i:'.:".:.'":.':.:.:;."y'
33 (B21)

JL JLir iF
JL JL JLir ir IF

JL JL J1
1F ir ir
JL JL JL
%F ir ir

35

JL JLir
JL J1 JLir IF ir

JLiF

36

JL JLIr ir
37

JL

38

JL JLir
39

JL JL JLIF IF

40

J 1IF JL JL JL JLiF ir 'IF
JL JL JLIF pr %F

JL

JL JL JLir ir 'IF

JL JL
'I r

41

JL JLir
4Z

JL JL J1IF ir iF

43

J1iF

JLir
JL JL

I F

JLiF JL J1 JLiF IF IF

JL JL JLIF

45

JL JL J1IF iF

FIG. 2. Forty-six odd operators are shown in the order in
which they are used in the MCRG analysis. In parenthesis we

show the operators in common with Ref. 2.

+NN +NN ~+NN (4.2)

The reliability of this estimate is expected to improve as
the starting ENN is tuned closer to KNN.

We have determined the mean AENN using the com-
plete data set for the two lattices. To determine errors
we carried out a single-elimination jackknife procedure
with the 128 data divided into 14 bins, each with 10000
measurements, and the 64 data used as one bin of 100 K.
Estimates using different interactions a are not statisti-
cally independent. So the final values and error estimates
given in Table II are a simple average over the 53 even in-
teractions since they all provide a consistent estimate.
Note that at levels 3—4 and 4—5 the variance over the 53
operators is much smaller than the statistical errors. The
errors in data starting from KNN =0.221 644 are consid-
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TABLE II. Estimates of E» as a function of the blocking
level for the two simulations. The quoted errors are in the last

two decimal places. The first error is statistical, determined us-

ing a single-elimination jackknife procedure with the 128 data
divided into 14 bins of 10-K measurements. (The 64 data was

used as one bin of 100 K.) The second error, which represents a
systematic error, is the standard deviation computed from the
53 even interactions.

Levels

1—2
2—3
3 4
4—5

KNN =0.221 6540

0.221 607 0+16+121
0.221 640 6+18+27
0.221 650 0+21+05
0.221 651 4+26+02

KNN =0.221 6440

0.221 604 6+23+127
0.221 6394+27+31
0.221 650 1+31+07
0.221 651 6+37+11

erably larger, even though the two runs have the same
statistics. We believe that this is because the starting
point lies farther from ENN.

We use a weighted mean of the results for the two
starting couplings to obtain our present best estimate:

ENN =0.221 652+0.000 003+0.000 001 (4.3)

S=S*+ct+du .

After n blocking steps, %—+&", and S is given by

S"=S*+cA,,"t+dA, "„u .
Therefore

S"—S" '=ctA, ,
" '(A, , —I)+duA, "„'(A,„—1),

(4.4)

(4.5)

=ctA," '(A, , —1,)
du X"„'(X„—1)1+
ctA, ,

" '(A. ,
—1)

gn —1

1+A
gn —1

=t (S" S" ')——
at (4.6)

where the first error is statistical and the second is our es-
tirnate of the lack of convergence error obtained by look-
ing at the difference between results on levels 3-4 and
4—5, as given in Table II. Since the convergence is from
below, we have rounded up in the last digit.

We now derive the leading corrections to Eq. (4.1). To
simplify the discussion we assume that the calculations
are done on infinite lattices and that only two scaling
fields contribute. Let t be the deviation of the starting
Hamiltonian from &' along the direction of the relevant
field and u along the irrelevant direction. Then we can
write the expectation value for a given interaction S at &
as

This leading analysis shows that the estimates of ENN
will converge by the geometric factor A,„/k,as a function
of the blocking level n. For the 3D Ising model we find

that A, „/A,, =6, and data for ENN (see Table II) do rough-

ly show convergence by this factor. Consequently, we
conclude that the result on level 4—5 has essentially con-
verged and that no extrapolation is necessary.

The numbers given in Table II are in excellent agree-
ment with the results of both Pawley et al. ' and Blote
et al. for the case L =64 and S=32, provided that the
comparison is made after the same number of blocking
steps. This agreement between three independent calcu-
lations is a confirmation of the stability of the MCRG
method. Note that these calculations used different up-
date algorithms, different random number generators,
and were done on different types of computers.

We find that the two couplings ENN=0. 221644 and
0.221 654 lie too close together to make sensible interpo-
lation of the results to ENN=0. 221652. So, in the
remainder of the paper, we will quote all final estimates
from ENN=0. 221654 runs since these lie closer to our
estimate of ENN. The results from KNN =0.221 644 runs
provide a consistency check.

V. CQRRELATION-LENGTH EXPONENT v

For the 3D Ising model in zero magnetic field, W& fac-
tors into two parts according to whether the interactions
are even or odd under s;~ —s;. The correlation-length
exponent v is determined from the leading even eigenval-
ue A, , of W&.

ink. ,
lnb

(5.1)

where b =2 is the scale factor of the transformation used.
The errors are calculated using the single-elimination
jackknife method with data divided into bins of 10000
measurements.

We show our final results for y, determined using all 53
operators on the various blocking levels for the two lat-
tice sizes and for the two values of the coupling in Table
III. To facilitate comparison we also display the final re-
sults from Blote et al. on the largest lattice simulated by
them. We find that up to levels 2 —3 all results for y,
agree within the statistical errors. At level 3-4 we find
evidence for finite-size effects by comparing our 128 and
64 lattices results. Thus we confirm, within our statisti-
cal accuracy, that finite-size effects lead to systematic er-

TABLE III. Final results for the thermal exponent y, . In column 4 we have included results ob-
tained by Blote et al. (Ref. 2) for comparison. In column 5 we give estimates of finite-size corrections
when blocking 8 lattices down to 4 as explained in the text.

Level

0—1

1 —2
2—3
3—4
4—5

0.221 654
128

1.4262(27)
1.5087( 11 )

1.5500(22)
1.5742(29)
1.5760(73 )

0.221 654
64

1.4249(26)
1.5087( 15 )

1.5471(16)
1.5633(92)

0.221 654
64' (Ref. Z)

1.4240(6)
1.5068( 5 )

1 ~ 5507(14)
1.5603(28 )

Finite-size
corrections

0.0082( 8 )

0.0082(9)
0.0093( 17)
0.0109(76)
0.0114

0.221 644
128

1.4239(22)
1.5080( 18)
1.5497( 15)
1.5607(40)
1.5611(94)

0.221 644
64

1.4219(28)
1.5103(26)
1.5554(28 )

1.5742( 85 )
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2.9

2.8

I I I I where co is the leading correction-to-scaling exponent.
The calculation of co is discussed in Sec. VIII and our best
estimate is co=0.8—0.85. To show the dependence of k,
on co, we plot the data in Fig. 3 using co=0.8, 0.85, and
1.0 and make a linear extrapolation for each. We find
that (a) for co=0.85 the fit goes through all the data
points, (b) for co=0.80 we can fit points with n = 1,2, 3,4,
and (c) co=1.0 fit is not good. The final results are shown
in Table IV. We find that the spread due to the uncer-
tainty in the value of co used for the extrapolation is com-
parable to the statistical errors. We take co=0.85 as our
preferred value based on the quality of the fit. With this
choice the final result is

2.6
y,
' =1.603(1) v=0. 624+0.001+0.002, (5.3)

rors only on the highest blocking levels (4—5 for 128 and
3 —4 for 64 ), which corresponds to blocking step 8 ~4 .

In order to correct for the finite-size effects in our data
on 128 lattices at level 4—5, we make use of the data of
Blote et al. on smaller lattices (8, 16, and 32 ) as given
in Table II of Ref. 2. For example, the correction at level
0—1 is the difference between results after one blocking
step on 64 and 8 starting lattices. The resulting final es-

timates for finite-size corrections at KNN =0.221654 and

at each of the levels 0—1 to 3—4 are also given in Table
III. We use a linear extrapolation of these corrections to
estimate the correction at level'4 —5. This changes the es-
timate of y, to 1.5874(73). Note that we do not give an

error in the correction term as we do not have a very reli-
able estimate for it. For the error estimate we simply use
the original statistical error.

The final result we are interested in is the value of y, at
the fixed point. To obtain this we extrapolate k, versus

the blocking level n using the relation derived in the Ap-
pendix:

A, , ( n ) = A. ,*+a, b (5.2)

0.5
2

—cd Il

FIG. 3. Extrapolation of A. , to n= ~ for three di6'erent

values of co. Fits with co= 1.0 and 0.8 are made using n = 1, 2, 3,
and 4 points and all five points for co=0.85. We use di8'erent

symbols for the same data to help distinguish between the three
fits.

where the second error is our estimate of the systematic
error coming from the uncertainty in co. On comparing
this result with the value on 128 lattices
[1.5874(73) v=0. 630(3)], it is clear that the change
due to the extrapolation is much larger than the statisti-
cal errors.

In Table IV we also give the results obtained with the
extrapolation method used in Refs. 1 and 2 [see Eq. (A9)
in the Appendix]. The final central values from the two
methods are indistinguishable. We do find that the quali-

ty of the fit using Eq. (5.2) i.e., using the eigenvalue data)
is slightly better. This is reflected by the smaller error es-
timates.

To investigate the truncation errors we show, in Fig. 4,
the convergence of y, as a function of the number of
operators included in Y"I3. We find that the largest
change occurs on adding the two-spin diagonal operator.
Thereafter, the convergence is essentially monotonic and
from above. In general, the number of operators neces-
sary in order to get a converged value depends on the
precise operator order used, as does the rate of conver-
gence. To our knowledge no well-defined method for or-
dering operators by importance exists, and so we have
used an ad hoc recipe based on minimizing the number of
spins in an interaction and the sum of the distance be-
tween them. This is shown in Fig. 1. For this operator
order we find that approximately 17 leading operators on
level 0—1 and about 27 operators on level 4—5 are neces-
sary. Thereafter, as more operators are added, the varia-
tion in the eigenvalue is only about 10% of the statistical

TABLE IV. Final results for the exponents after extrapolation to n = ~ using Eq. (5.2). The data
are from the KNN =0.221654 run on 128 lattices. Our preferred values are ones with co=0.85. For
comparison we also give results (marked with an asterisk) obtained using the extrapolation

y(n) =y*+b "",as used in Refs. 1 and 2.

1.0
0.85
0.8
1.00*
0.85*
0.80

Vr

1.594(2)
1.603( 1)
1.605(2)
1.595(3)
1.606(2)
1.606(3)

0.627(1)
0.624(1)
0.623( 1)
0.627( 1)
0.623(1)
0.622(1)

2.4842( 1 )

2.4868( 1 )

2.4879( 1 )

2.4843( 3 )

2.4869( 3 }
2.4880( 3 )

0.0316(2)
0.0262(2 }
0.0242( 3 )

0.0314(6)
0.0262(6 }
0.0240( 6)
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1.4

20 40
Number of Operators

FIG. 4. Convergence of y, as the number of operators is in-

creased in the order shown in Fig. 1. Even though the errors
overlap, the data at level 4-5 consistently lies above that at lev-

el 3—4.

VI. CORRELATION-FUNCTION EXPONENT g

The correlation-function exponent g is given by

ink, ~g=d+2 —2:—d+2 —2y
lnb h (6.1)

where b =2, d =3, and A, & is the largest eigenvalue of
7

& constructed from odd interactions. In Table V we
show our final results for yh =1nA,

& /inb and, for compar-
ison, include the results from Blote et al. in column 4.
There is very good agreement between results from
different calculations on the 64 lattices at all blocking
levels except level 3—4 where the result from Ref. 2 lies
-3o higher. We believe, given the consistency of all the
other eigenvalues, that this is most likely due to an un-
derestimate of the statistical errors.

As in the case of y„finite-size effects show up only
when blocking 8 lattices down to 4 . The finite-size
corrections for the first four levels are shown in column 5

errors. It is important to note that our final results are
obtained using all the operators, and so the precise order
plays no role. We plan to investigate in a future calcula-
tion the effect of the two leading interactions not mea-
sured here, the two-spin operator separated by three sites
along an axis and the four-spin operator consisting of
four adjoining spins along an axis.

0.5
p

—
Ca) Il

FIG. 5. Extrapolation of A, I, to n= ~ for three different
values of co. The fits are based on blocking levels n = 1, 2, 3, and
4.

y* =2.4868(1)«q=0. 0262+0.0002+0.0030, (6.2)

where the second error is an estimate of the systematic
error due to the uncertainty in the value of co used in the
extrapolation.

of Table V. We use the mean value at the first three lev-

els, 0.00037, as an estimate of the correction on level
4—5. (We exclude the result at level 3—4 in constructing
the average because of the large difference between our
results on 64 starting lattices and those given in Ref. 2.)
Including this correction shifts our estimate at level 4—5
from 2.47890(107) to 2.47927(107). Just as in the case
of y„wecannot reliably estimate the error in the correc-
tion, and so we quote only the statistical error.

In Fig. 5 we show fits to A.I, versus 2 ""using n =1—4
data. There is no significant difference in the quality of
the fit for different values of co, and the value at n =4 is
much lower than the fit in all three cases. We believe
that this is due to an underestimation of the statistical er-
rors and finite-size corrections. The final results are given
in Table IV along with those obtained using the extrapo-
lation procedure of Ref. 1 for comparison. Note that the
spread in y&* due to the uncertainty in co is larger than the
statistical errors. For our final estimate we quote results
with co=0.85:

TABLE V. Final results for the magnetic exponent yI, . The rest is the same as in Table III.

Level

0—1

1 —2
2—3
3—4
4—5

0.221 654
128

2.458 06( 34)
2.460 68( 10)
2.472 51( 13)
2.478 50(45 )
2.478 90( 107)

0.221 654
64

2.457 80(48 )

2.460 28( 19)
2.472 10(39)
2.475 92( 105 )

0.221 654
64 (Ref. 2)

2.457 94( 11)
2.460 68(4)
2.472 43( 12)
2.479 07(64)

Finite-size
corrections

Q.QQQ 22( 13)

0.000 62(9)
0.000 28(22)
0.002 58( 114)
0.000 37

0.221 644
128

2.457 72( 30)
2.460 32(8)
2.471 95( 16)
2.476 71(41)

2.47400(145)

0.221 644
64

2.457 81(28 )

2.460 77(26)
2.471 56(33)
2.475 25( 180)



10 446 BAILLIE, GUPTA, HAWICK, AND PAWLEY 45

2.49

=O.F21654 (120 )
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Wilson's method (Ref. 1:3)
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2 45
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50 1.5

FIG. 6. Convergence of yz as the number of operators is in-
creased in the order shown in Fig. 2. Even though the errors
overlap, the data at level 4—5 consistently lies above that at lev-
el 3—4.

%e show the behavior of yI, as a function of the num-
ber of operators included in the construction of Y"& in

Fig. 6. The convergence is faster than that for y„and we
find no significant change after including the first 20
operators. Both Figs. 4 and 6 make it clear why it is
necessary to concentrate on reducing the statistical errors
at the higher blocking levels.

VII. WILSON'S METHOD
FOR EXTRACTING THE LEADING EXPONENTS

Wilson proposed a method to calculate the leading ei-
genvalues using the flow away from the critical surface. '

This method does not require the starting coupling to lie
on the critical surface and uses the correlation functions
directly. Consider the two-point connected correlation
function (S'S&), with the blocking level j)i We can.
expand S' in terms of the eigenoperators 0' of the RG
transformation. Then, to leading order,

I I I I I I I I I

20 40
Number of operators

60

FIG. 7. Behavior of y, extracted using Wilson's method as a
function of the number of operators used in the analysis. The
data are for i =3 and j =4 on the 128' lattices run at
KNN =0.221 654.

2, 5 I I I I

f

I I I I

f

I I I I

f

I I I I

f

I ~ t

where X=c„(OJ S~& ) Ic, ( O~s~& ). Thus the method
should improve as j —i is made large. Also, it should be
reliable for models where A, „/A,, is small and for interac-
tions for which L is small. Needless to say, one should
try to choose the starting H to lie close to the fixed point.

%'e show typical results for y, and yI, as a function of
the number of operators at levels i = 3 and j =4 in Figs. 7
and 8. The data is from 128 lattices at KNN=0. 221654.
The statistical error on each data point is obtained by do-
ing a single-elimination jackknife calculation over the 14
bins. It is clear from these figures that the data do not
show any stability with respect to the number of opera-
tors. Also, the problem is more severe for the odd sector.
Thus a straightforward application of this method does

(7.1)

where A, , is the leading relevant eigenvalue. We assume
that close to H* the level dependence in 0„'and in the
expansion coefficients c' „canbe neglected. Then, for
each a and 13, the ratio (S' S~& ) I(S'+ 'S~& ) gives an esti-
mate for the leading eigenvalue k, . Corrections to this
behavior are suppressed geometrically, as can be seen by
assuming that only two scaling fields 0, and O„contrib-
ute to the sum. Then

(7.2)

10 20 30 40
Number of operators

FIG. 8. Same as in Fig. 7, except that the data are for yh.
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TABLE VI. Results for the thermal exponent y, obtained using Wilson's method. We average over

the first 20 operators and quote the variance as the error estimate.

Level

0
0
0
0
0
1

1

1

1

2
2
2
3
3

Level

J
1

2
3
4
5
2
3
4
5

3
4
5
4
5

0.221 654
128

1.445(068)
1.442(047)
1.437(043)
1.436(042)
1.435(042)
1.506(054)
1.503(026)
1.498(019)
1.497(018)
1.553(060)
1.550(024)
1.544(014)
1.567(090)
1.569(039)

0.221 654
64

1.446(076)
1.443(050)
1.437(044)
1.435(043 )

1.504(069)
1.502(032)
1.496(022)

1.539(096)
1.541(045)

1.522(209)

0.221 644
128

1.443(069)
1.441(047)
1.437(043)
1.435(042)
1.435(042)
1.504(055 )

1.501(027)
1.495(020)
1.492(020)
1.552(059)
1.550(022)
1.544(011)
1.559(088)
1.559(038)

0.221 644
643

1.444(077)
1.441(050)
1.436(044)
1.435(042)

1.505(070)
1.503(033)
1.498(023)

1.545(096)
1.546(044)

1.526(206)

not give reliable results. This is very different from the
situation in the 2D model where Wilson's method gives
results comparable to those from V'

& (see pp. 564—565 in
Ref. 9).

Since we get a similar behavior for all blocking levels,
we give in Table VI the value of y„keeping the leading
20 operators in the analysis. The error quoted is the vari-
ance over the 20X20 correlation functions. We deduce
the following qualitative features from the data: The
value of y, does increase with level i, and finite-size effects
are observable only for i =3. Also, the errors decrease as

j is increased for fixed i. Overall, because of the lack of
convergence as a function of the number of interactions
included, we do not pursue this method any further in
this study.

calculation this correction-to-scaling exponent is deter-
mined from the subleading eigenvalue k, 2 in the even sec-
tor: co—= —y, 2=ink, , 2/1nb. Once co is known, the ex-
ponents v and g calculated along a critical RG flow can
be extrapolated to the fixed point using Eq. (5.2).

We find that while the statistical errors in leading even
eigenvalue A, , are small, the same is not true of A, , 2. Also,
the eigenvalue analysis is not very stable; often the second
and third eigenvalues merge into a complex pair when
the number of operators is ~ 15, and in some cases the
value fails to converge as more operators are included.
For this reason we do not present a detailed analysis of
the data and caution the reader that a higher-statistics
study is required. The final results are given in Table
VII. Our present best estimate is the interval

co=0.80—0.85 0=0.5 —0.53 . (8.3)
VIII. SUBLEADING EXPONENTS
AND REDUNDANT OPERATORS

The scaling behavior of the free energy, written as a
function of two relevant scaling fields t and h and one ir-
relevant field u, is

f(t, h, u)

We use co=0.85 as our preferred value for the purpose of
extrapolation since it gives a good fit to A, , data for a11 n,
as shown in Fig. 3.

In the odd sector the MCRG analysis is very stable.
We find that the third eigenvalue is ~0.3 and does not
mix with the second to form a complex pair. Also, the

77
1

h,

h, (8.1)

where ~ is some reference value of t. The exponent that
characterizes scaling violations in thermodynamic func-
tions is y„/y, :—y, 2/y, = —8. For examp1e, the asymptot-
ic expansion for the specific heat is

Level
0.221 654

128
0.221 654

64
0.221 644

128
0.221 644

64

TABLE VII. Final results for the correction-to-scaling ex-
ponent co. These results have been obtained with the first 20
operators, and the errors were estimated using a single-
elimination jackknife method as explained in the text. Entries
marked with an asterisk correspond to cases where the eigenval-
ue analysis was not very stable, as explained in the text.

C„=Ct (1+cat +c t+ . . ) . (8.2)

The nonanalytical correction c&t is significant when cal-
culations are done away from the fixed point and for
u&0, and so it is important to evaluate it. In a MCRG

0—1

1 —2
2—3
-3 —4
4—5

0.95(7)*
0.85(9)
0.84(7)
0.83(7)*
0.60(5)*

0.94(9)
0.80(6)
0.66(7)*
0.45(6)*

0.90(8)
0.79(5)
0.80(5)
0.79(7)*
0.42(6)*

0.86(5)
0.80(8)
0.85(8)
0.53(8)
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TABLE VIII. Results for the subleading magnetic exponent. These results have been obtained with
all 46 odd operators, and the errors are calculated using a single-elimination jackknife method as ex-
plained in the text.

Level

0—I

1 —2
2 —3
3—4
4—5

0.221 654
128

0.091(23)

0.283( 16)
0.332( 11 )

0.398( 17)
0.401{23 )

0.221 654
64'

0.060(33 )

0.278(9)
0.343( 15 )

0.380(20)

0.221 644
128'

0.060( 33 )

0.255( 19)
0.324( 17)
0.359( 18 )

0.380{24)

0.221 644
64'

0.091(17)
0.253( 14)
0.364( 19)
0.415(21 )

second eigenvalue converges on all levels once the first 20
operators are included and the statistical errors are small.
The final results for the subleading exponent
y&2=ink, & z/ln2 are given in Table VIII. Even though
the convergence of yI, 2 as a function of the blocking level
is, as shown in Fig. 9, slow, there can be little doubt that
it is relevant. We estimate that

y» =0.42+0.02+0.02 . (8.4)

0.5 I I I I

0.4

0.1—

0.8
0.85
1.0

I I I I I I I g I I I

0.5
~

—~ n

This result is consistent with the value quoted in Ref. 2.
Theoretically, there is no motivation for two relevant
operators in the odd sector of the 3D Ising model, and
this surprising MCRG result needs to be explained.

In Ref. 1 it was conjectured that this subleading eigen-
value corresponds to a redundant operator and therefore
does not contribute to measurable thermodynamic quan-
tities. Pawley et al. pointed out that the P operator in
the A, P theory is redundant; however, they did not have a
way of relating it to the Ising interactions. This problem
was overcome by Murthy and Shankar who developed a
systematic method for calculating redundant operators
for Ising models' and wrote down a number of redun-
dant operators for both the 2D and 3D Ising models.
Unfortunately, these are not derived as a consequence of

a RG transformation, and so they are not eigenvectors
and are therefore not obviously related to the possible
redundant eigenvectors obtained in a MCRG analysis.
Using as example the 2D Ising model, Shankar and Gup-
ta' were able to develop a strategy to identify redundant
operators by making use of the analytical results of Ref.
14. In the following we first review the method and then
apply it to show that the subleading odd eigenvector is
redundant in 3D.

Consider the situation in which the analytical calcula-
tion predicts a redundant operator 0 in a subspace of two
interactions 8, and 82. In this subspace MCRG analysis
will give two eigenvectors: one associated with the
relevant exponent, thereby forcing the second to be
redundant and identical to 0, . Thus, in this special cir-
cumstance where 0 lies in a two-dimensional subspace, it
is guaranteed to be an eigenvector. If Q lies in a space of
three or more operators, then it is not a priori an eigen-
vector and the method loses its predictive power.

We first illustrate this method for the 2D Ising model
where it works perfectly. %'e use the same notation for
operator labeling as given in Fig. 2 and replace 0; by 0, ;
in order to distinguish from the 3D case. The analytic
calculation predicts a redundant operator 0, in the two-
dimensional subspace of 8& and 62. The subleading
MCRG eigenvector in the same subspace, obtained using
the 2 X 2 majority-rule transformation, agrees, within sta-
tistical errors, with 0& and was therefore identified as
redundant. In an enlarged space of three interactions,
i.e., including 03, Murthy and Shankar had predicted a
second redundant operator Qz. Again, in this restricted
subspace, the second and third MCRG eigenvectors have
to be redundant; however, now they are only required to
be a linear combination of 0& and Q2 since the 0; are no
longer eigenvectors. Data show that the second MCRG
eigenvector is very close to A, , as expected by continuity,
and that both eigenvectors ean be expressed as a 1inear
combination of 0& and Qz and a negligible leftover piece.
It should not come as a big surprise that the method
works so well for the 2D model.

Now we extend the analysis to the 3D model. The
redundant operators in the subspace of the first few dom-
inant interactions are predicted to be' '

FIG. 9. Extrapolation of yz ~ to n= ~ for three diFerent
values of co. The fits are based on blocking levels n =1,2, 3, and
4. and

0,=0,—0. 1746 +0.0366 (8.5)
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Q~=8, —0. 1168~—0.23283+0.02489 . (8.6)

Since the contribution of 8s to Qi is very small, we ex-
pect 0, to almost be a redundant eigenvector in the space
spanned by 8, and 8z. Denoting the MCRG eigenvec-
tors by ~ R; ),, where the subscript i denotes that it corre-
sponds to the ith largest eigenvalue and j is the dimension
of T

&
used in the MCRG analysis, we get

iR ~ )~
=8, —0. 156(4)8~, (8.7)

which is indeed very close to 0,. The difference is of
similar magnitude as the neglected coefficient of 8s. This
is the best that can be expected of the method in this
case. The error quoted in the coefficient of 8z includes
the variation over levels 0—1 to 4—5 and between the two
runs on 128 lattices. As a technical aside, we point out
that even though the redundant eigenoperator does not
change significantly along the RG fiow, there could be a
large effect at the first blocking step which we have no
way of evaluating. This could also contribute to the
difference between ~R~ )z and Qi since the Q; are calcu-
lated at the nearest-neighbor coupling KNN =0.221 654.

Having identified the redundant operator in the two-
dimensional space, we can trace how it changes as we ex-
tend the MCRG analysis to include the five interactions
present in 0& and Qz. The eigenvector corresponding to
the same subleading eigenvalue is

i R ~ ) 3
=8i —0. 128~—0.068s,

~Rq )~=8i —0. 128~—0.0383—0.068s,

~Rq )~=8,—0. 138~—0.0883—0.0389,

IR~ ~,=8,—0. 128~—0.0283 —0.058s
—0.0189,

(8.8)

where we have rounded all coefficients to two decimal
places. In this expanded space of interactions, we cannot
make an identification between analytic and numerical re-
sults since the 0; are neither eigenvectors nor linearly in-
dependent. Said in a different way, even though the
dimensionality of the space of redundant operators is
constant near &', their explicit form depends on the
method used to generate them.

To summarize, the method we use to confirm that an
eigenvector ~R ) is redundant works well only when the
corresponding 0 is an eigenvector. This condition is au-
tomatically satisfied if the 0 lies in a two-dimensional
subspace of interactions. %'e show that this is almost the
case for the 3D model. In a larger space of interactions
the method, in general, fails because the Q; are no longer
eigenvectors. So, unless there is a fortuitous agreement
between the ~R, ) and the QJ, as in the case of the 2D Is-
ing model where we could identify two redundant opera-
tors in the subspace of three short range interactions, it is
difficult to identify redundant operators by requiring an
agreement between numerical and analytical results. One
simple procedure that will further confirm that ~Rz) is
redundant is to repeat the calculation with a different
blocking transformation and check whether the corre-

sponding subleading eigenvalue changes in magnitude.
Redundant operators can obscure MCRG results in

two ways: (a) If they are relevant, then &"does not con-
verge under repeated RG transformations (the expecta-
tion values (S ) continue to change subject to the con-
straints imposed by the redundant operators), and (b)
they can interfere with the identification of the universal
scaling exponents. Fortunately, neither possibility is a
problem in the 3D Ising model. First, the presence of a
relevant redundant operator in the odd sector is benign
because the fixed point is at zero odd couplings, and this
property is preserved under MCRG. Second, Murthy
and Shankar did not find a redundant operator in the
even sector which could be written in terms of the first
few interactions given in Fig. 1. Redundant operators, if
present in the even sector, are therefore expected to be
suppressed as they would be associated with very small
eigenvalues. Thus we believe that the subleading eigen-
vector in the even sector is physical and is responsible for
corrections to scaling; i.e., it is sensible to identify it with
the exponent co. (We have no way of testing whether the
poor signal seen when extracting A, , z is due to interfer-
ence with a redundant operator. ) Finally, the large
difference between the leading and subleading eigenvalues
in both the even and odd sectors suggests that the
analysis given in the Appendix for extrapolation of the
relevant eigenvalues to &* is reliable.

IX. COMPARISON OF MCRG RESULTS
WITH THOSE FROM OTHER METHODS

Since its inception in 1920, the Ising model has been a
test bed for most analytical and numerical techniques in
statistical mechanics. To facilitate comparison with our
results, we list the popular methods and their predictions
for the critical properties EzN, g, y, and v.

Le Guillou and Zinn-Justin' have carried out a series
analysis using the fifth-order e expansion for the critical
exponents. They find stable results for 2~D ~4 dirnen-
sions, and their results are within errors equal to the ex-
act values at D =2. So they modify their analysis to in-
corporate the exact results for the 2D Ising model. With
this correction their present estimates are y = 1.2390(25),
v=0.6310(15),P=0.3270(15), and rj=0.0375(25).

A great deal of work has been done to extract ex-
ponents using series analysis of thermodynamic quantities
such as the specific heat, magnetization, magnetic suscep-
tibility, etc., and their derivatives. Recently, this tech-
nique has been improved by incorporating nonanalytic
confluent corrections to the leading scaling behavior [for
example, see Eq. (8.2)] and by the use of biased inhomo-
geneous differential approximants. Including nonanalytic
corrections changed the estimate of exponents to the
point where there is no obvious evidence of hyperscaling
violations. Thus, in the analysis reviewed below, it is ta-
citly assumed that there are no hyperscaling violations.

Adler' has analyzed the series for susceptibility on lat-
tices with different coordination numbers. For the
simple-cubic lattice, she finds that the critical coupling
lies in the range 0.22165 (ENN (0.22166. The estimate
of systematic error grows to approximately 3 in the last
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TABLE IX. Comparison of critical properties determined from various methods. Values marked
with an asterisk were used as an input to calculations. Column 6 gives the values of g obtained using
the scaling relation g=2 —y/v. The labels used to denote the different calculations are the following:
M&, this work; M2, Blote et al. (Ref. 2); M3, Pawley et al. (Ref. 1); E, Le Guillou and Zinn-Justin (Ref.
16); S&, Adler (Ref. 17);S2, Guttmann (Ref. 18);S3, Guttmann {Ref. 19);S4,S5,S6, Liu and Fisher {Ref.
20); S„Nickeland Rehr (Ref. 21); F, Ferrenberg and Landau (Ref. 26); Z„Bhanot et al. (Ref. 28); Z2,
Alves, Berg, and Villanova (Ref. 29); A, Alves, Berg, and Villanova (Ref. 29); T, Novotny, (Ref. 30).

Method

MCRG (M, )

MCRG (M2)
MCRG (M3)

expansion (E}
Series analysis (S& )

Series analysis {S2)
Series analysis (S3)
Series analysis (S4)
Series analysis (S, )

Series analysis (S6)
Series analysis (S7)
Finite-size scaling {F)
Zeros of partition function (Z& )

Zeros of partition function (Z2)
Scaling of mass gap (A)
Transfer matrix (T)

+NN

0.221 652(3 )

0.221 652(6)
0.221 654(6)
0.221 530*
0.221 655(5)
0.221 6S2
0.221 657(7)
0.221 630(9)
0.221 692(9}
0.221 620( 19)
0.221 615*
0.221 6595(26)
0.221 654*
0.221 654
0.221 57(3)
0.220 570

0.624(2) 0.026(3)
0.629(3) 0.027(5)
0.629(4) 0.031(5)
0.6310(15) 0.0375(25 }
0.631(4)
0.630{2}
0.632(3)
0.6335( 10)
0.6390( 10)
0.6325( 5 )

0.6300( 15)
0.6289( 8)
0.6295(10)
0.6285(19)
0.6321( 19)
0.6302

1.2390(25)
1.239(3)
1.240(6)
1.239(3)
1.2395
1.250
1.237
1.237(2}
1.239(7)

g=2 —y/v

0.036(13)
0.032( 11)
0.040(10)
0.043(3)
0.044(3)
0.044(2)
0.037(6)
0.030( 11)

place at the ends of the interval. The estimate for ex-
ponents is y=1.239(3) and v=0. 631(4).

Guttmann' initially estimated y = 1.240(6) and
v =0.630(2) from series analysis for the zero-field suscep-
tibility and its second derivative with respect to the mag-
netic field. He used as an input ENN =0.221 652. Later,
he reexamined the series using the method of integral ap-
proximants' to obtain ENN =0.221657(7), y=1.239(3),
and v=O. 632(3).

Liu and Fisher have reanalyzed the available series
using modern extrapolation techniques and exponent esti-
mates. While their main goal was to calculate amplitudes
and amplitude ratios, they also provide results for ENN
and v. Using as input their favored value y=1.2395,
they find ENN =0.221 630(9) and v=0. 633S(10).

Nickel and Rehr ' analyzed the 21-term high-
temperature series for the magnetic susceptibility and
correlation length on a bcc lattice. They estimate
y=1.237(2) and v=0. 6300(15).

A detailed finite-size scaling study was performed by
Barber et al. Their results, ENN=0. 2216SO(5) and
y/v=1. 98(2), have been cast into doubt by Parisi and
Rapuano, by Hoogland, Compagner, and Blote, and
by Bhanot, Duke, and Salvador. The presumed culprit
is the random-number generator in their specially con-
structed "Ising-model processor. " The calculation by
Bhanot, Duke, and Salvador on up to 44 lattices pro-
vides an estimate y/v=1. 964(3).

Recently, Ferrenberg and Landau carried out a
high-resolution finite-size scaling analysis using up to 96
lattices. They incorporated the histogram techniques of
Ferrenberg and Swendsen to obtain Ezz=0.2216595(26), v=0. 6289(8), and y=1.239(7) [from
y /v = l.970(11)].

Another method for analyzing the critical behavior is

to determine numerically the partition function and in-
vestigate the finite-size scaling of the complex zeros
closest to the real temperature axis. This was first done
by Bhanot et a/. , yielding the estimate v=0. 6295(10).
Alves, Berg, and Villanova repeated this calculation,
giving v=0. 6285(19); they also carried out a finite-size
scaling analysis of the mass gap in order to extract a
second estimate of v=O. 6321(19) as well as
ENN =0.221 57(3}. Combining their two estimates for v
yields 0.6303(14).

Finally, Novotny has used a numerical transfer-
matrix method to calculate KNN and v. His best estimate
is obtained by comparing a 4 X4 with a 5 X 5 system. His
data show that the convergence of ECN& is slow and the
present value K&N=0. 220570 is far from our results.
The value of v converges from below as the system size is
increased (in agreement with the behavior of the 2D mod-
el}; however, it is not yet clear whether the system size is
large enough to guarantee monotonic convergence. Oth-
erwise, his estimate, v=0. 6302, would provide a lower
bound and rule out our result. Unfortunately, it does not
seem possible to simulate a 6X6 system on present com-
puters.

These results are summarized in Table IX and
displayed graphically in Figs. 10 and 11. The notation
used to label different calculations is given in the caption
of Table IX. There is a considerable spread in estimates
from different methods. In order to evaluate which
method is most reliable and wi11 provide the best answers
in the future, it is useful to understand the strengths and
weaknesses of the different methods.

The MCRG method has the advantage that each of the
four quantities E~N, v, g, and co is calculated indepen-
dently, albeit using the same data. The three sources of
systematic errors we have discussed can be reduced
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significantly by brute-force computer power. The disad-
vantage of the method is that it is statistical and that the
simulations, done using an estimate for the critical cou-
pling, suffer from critical slowing down. Even though a
statistical analysis of 7 & shows a remarkable cancella-
tion of errors for the leading even and odd eigenvalues,
the largest uncertainty now comes from the extrapolation
to %'. In order to do this reliably, we certainly need to
improve the estimates for co and ENN.

The advantage of the series analysis is that there are no
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FIG. 11. Spread of results from different methods in the
K», g plane. The key to labels is given in Table IX. The data
point S2 is plotted using the symbol X as defined in the lower
left corner.

FIG. 10. Spread of results from different methods in the

ENN, v plane. The key used to label results from different calcu-
lations is given in Table IX. The symbols used for data points Z
(which is the mean of Z1 and Zz) and S& are defined in the
lower left corner. The result from Ref. 30 is indicated by an ar-
row at ENN =0.221 52.

statistical or finite-size errors. However, to extract the
four quantities KNN, v, y, and 0 from series expansions
for the susceptibility and correlation length ideally re-
quires a simultaneous fit to two equations similar to Eq.
(8.2). Such fits involve at least eight free parameters as
there are the four additional unknown amplitudes. The
present series are not long enough to allow such a fit
without getting very large error estimates. Furthermore,
as these parameters are highly correlated, a realistic error
estimate is near impossible. Even in the existing analysis
(where fits are made to a single thermodynamic quantity),
the error estimates do not fully take into account the
correlations. In addition to the question of estimating er-
rors reliably due to correlations in the parameters,
different methods of series analysis give results with a
spread that is larger than the quoted errors as is evident
from Table IX. Thus it is not obvious to us that our
MCRG result v=0. 624(2), which lies about (2—3)o
below results from other methods, is incompatible.

X. CONCLUSIONS AND FUTURE OUTLOOK

A basic input in numerical and analytical studies is the
value of the critical coupling. Our estimate
ENN =0.221 652(3) is in perfect agreement with previous
MCRG studies (we have reduced the error estimate by a
factor of 2). The spread in J NN, determined from or
used in methods such as series analysis, is very large com-
pared with our errors. The largest clumping of data is
around the MCRG values, i.e., between 0.22165 and
0.22166. It would be interesting to repeat the various
series analysis fixing ENN =0.221652 to see if the esti-
mates for exponents come closer together.

We find that the subleading odd eigenvalue is redun-
dant. Since Monte Carlo simulation are done at zero
magnetic field and MCRG does not generate odd cou-
plings, this redundant but relevant operator does not give
rise to any complications. On the other hand, the sub-
leading even eigenvector is physical and controls scaling
violations.

An accurate measurement of the correction-to-scaling
exponent co is essential in order to extract the values of v
and g at the fixed point. We find that the statistical qual-
ity of the results for co is far less reliable than for y„and
our best estimate consists of the interval 0.8—0.85. The
corresponding value 6=0.5 —0.53 is in good agreement
with series and RG analysis. ' ' '

The difference between our result ( v =0.624
+0.001+0.002) and previous MCRG studies (Refs. 1 and
2) is due to the extrapolation. We have an additional
point from the 128 lattices, and we extrapolate data us-
ing our preferred value co=0.85. Our result is (2—3)o
lower than most series, e expansion, and finite-size scaling
analyses. We believe that this difference is statistically
significant.

There is very good agreement in the result for g be-
tween our calculation and the value given in Ref. 2. The
small difference is due to our use of co=0.85 in the extra-
polation. In most other methods g is not measured
directly, but evaluated using the ordinary scaling relation
g=2 —y/v. Because the value of g is so small, the seem-
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ing large difference between results can arise from
(1—2)o errors in y and v. Using the same scaling rela-
tion we get y=1.232(4), which is considerably smaller
than other estimates.

MCRG calculations give us very accurate values for
the three critical parameters E~~, q, and v and a reason-
able estimate for co. Each parameter is extracted in-
dependently and directly from the data. We have shown
that the three sources of systematic errors inherent in
MCRG calculations can be systematically reduced, and
in fact the truncation and finite size errors at all but the
highest blocking level have been reduced to far below sta-
tistical errors. Future high-statistics simulations on 256
lattices will significantly reduce the remaining errors and
allow us to determine the exponents very accurately.

One serious limitation of the MCRG method is the im-
plicit assumption of hyperscaling. To overcome it re-
quires that we directly measure the renormalized cou-
pling g~ using thermodynamic functions as proposed by
Freedman and Baker and study its scaling properties.
We propose to do this calculation as part of a further
MCRG study using lattices of size 64, 128, and 256 ~
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Ez =k„u,and the S' are

Si =Si +cia, , t+diA. „u,
S~ —Sz +c2A, , t+d2ku" .

(A2)

From these relations we can construct the matrix T'& us-

ing Eq. (2.3):

A. , Lk„
YA, ,

(A3)

where the explicit form of L and Y is not important other
than that they vanish for u~0. The nondiagonal ele-
ments of 7 & modify the leading eigenvalue to

A, , + AX„. (A4)

This simplified analysis shows how a correction to A, ,
arises due to a nonzero value of the irrelevant field u.
Note that this result applies to T'& calculated some dis-
tance u away from &'. To take into account the RG
flow under blocking, we now use the simplest form for A
consistent with the requirement that A ~0 as u —+0, i.e.,
A—:A (u) —au + . With this ansatz the leading ei-
genvalue of

W&+
' after ( n + 1) blocking steps is approxi-

mately

A, , +(aA, „"u)A,„. (A5)

This leading-order estimate allows us to extrapolate the
eigenvalue measured along a RG flow to %*. If the mea-
sured value at the nth blocking step is A, (n), t,hen it relat-
ed to A, ,

* as

A, , (n)=A, ,*+a,A,
"„. (A6)

In a MCRG calculation, A,„=b ", where cu is the
correction-to-scaling exponent.

A similar analysis for the odd sector shows that the ei-
genvalue at the (n + 1)th blocking level is

A, h+(aA, "„u)kt, 2 . (A7)

Note that along the RG flow only A,„enters because, in
the odd sector, all odd-spin couplings are explicitly set to
zero in the simulation and thereafter not generated by the
RG procedure. So, once again, we can extrapolate the
data using

„(n)=A. , +ta„A,"„. (AS)

y, (n) =y,*+c,b (A9)

We discuss the difference between using Eq. (A6) versus
Eq. (A9) in the text.

We find that the data point at blocking step 0—1 does not
conform to this proposed behavior, presumably as a re-
sult of the transients.

In Sec. V and VI we extrapolated the data using Eqs.
(A6) and (A8). We showed that the data a posteriori justi-
fy the leading-order analysis. Note that in Refs. 1 and 2
similar expressions were used for the extrapolation, but
with, for example, A, , substituted by y, :
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