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The spin-wave spectrum of infinite, semi-infinite, and finite ferromagnetic superlattices with arbitrary
elementary units is analyzed theoretically in the exchange-dominated region. The general dispersion

equations for spin-wave modes are derived in the framework of the transfer-matrix formalism. Infinite

structures with layered defects are also analyzed. Some numerical results are presented for structures

with N= 1, 2, and 6 atomic planes in the elementary unit. The considerations are restricted to simple cu-

bic structures with the exchange coupling between nearest neighbors.

I. INTRODUCTION

Recent advances in epitaxial growth techniques have
made possible the preparation of a large variety of mag-
netic layered structures as, for example, alternating
magnetic-nonmagnetic and magnetic-magnetic superlat-
tices with the magnetic materials being either ferromag-
netic or antiferromagnetic. The quality of magnetic su-

perlattices is presently approaching the quality of layered
structures formed from nonmagnetic semiconducting ma-
terials, which are known to have almost perfect inter-
faces. Macroscopic properties of magnetic layered struc-
tures are subject to design and control on atomic scale by
varying the thickness and composition of the constituent
films. In addition, the existence of collective excitations
in magnetic superlattices, which have properties distinct-
ly different from those of their bulk counterparts, has
opened up the possibility of fabricating new materials
with controllable magnetic and electromagnetic proper-
ties.

The simplest structures consist of magnetic (ferromag-
netic or antiferromagnetic) films alternating with non-
magnetic ones. For the nonmagnetic layers thick
enough, the magnetic films are exchange decoupled and
interact only via long-range dipolar stray fields. The cor-
responding spin-wave spectrum in the exchange-
dorninated region is then composed of spin waves
confined to a particular magnetic film, contrary to the
dipolar-dominated region, where the normal modes are
collective excitations of the whole system and form a
characteristic subband structure. The dipolar-dominated
region was analyzed theoretically in the rnagnetostatic
limit' as well as with retardation effects included.
If the intralayer exchange and dipolar contributions to
the spin-wave energy are comparable, one obtains collec-
tive exchange-dipolar modes. '

If the thickness of the nonmagnetic films is small
enough or if the magnetic films are in direct contact, a
ferromagnetic or antiferromagnetic exchange coupling
between the magnetic films can occur. In that case the
single-film modes interact also in the exchange-
dominated region. ' The mixed exchange-dipolar
modes of exchange-coupled multilayers have also been

the subject of intensive theoretical studies.
Theoretical analyses of spin-wave excitations in mag-

netic superlattices are usually restricted to the low-
temperature limit, although some temperature depen-
dences have also been discussed. ' To find the ap-
propriate spectrum, one usually proceeds by considering
the nature of the solution for the relevant wave field in
each layer of the elementary unit. The general solution
inside each film is written as a linear combination of a
few terms (usually two, four, or six terms) which describe
waves with opposite wave-vector component (real, imagi-
nary, or complex) along the superlattice direction. The
allowed spin-wave energies are then determined by the
appropriate boundary conditions at the interfaces. This
method is commonly used for the continuum models of
the superlattices. It is also applicable to discrete sys-
tems. ' In the latter case, however, one may also use
the approach based on the transfer-matrix formalism in
the site representation. This method is applied in this pa-
per to spin-wave modes in the exchange-dominated re-
gion of ferromagnetic superlattices with an arbitrary ele-
mentary unit. A similar method has been recently ap-
plied to the spin-wave spectrum in sandwich structures.
Applying the transfer-matrix formalism, we derive the
general dispersion equations for bulk and surface waves
in semi-infinite layered structures. Apart from this, we
analyze the modes in structures with finite thickness.
Two different cases are here distinguished: (i) the case of
complete units and (ii) the case with one incomplete unit
at a surface. The modes in infinite structures with some
layered defects are also discussed. Such defects break the
translational symmetry and, in the general case, can lo-
calize some of spin-wave modes at the defect. The con-
siderations are restricted to the case of the exchange cou-
pling between nearest neighbors.

The model and transfer-matrix method are described in
Sec. II. The eigenvalue problem for the transfer matrix is
discussed in Sec. III. In Secs. IV and V the general
dispersion equations, respectively, for bulk and surface
modes are derived. The modes localized at layered de-
fects in infinite structures are analyzed in Sec. VI. In Sec.
VII the spin-wave spectrum of finite structures is con-
sidered. In subsequent sections we apply the derived
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dispersion equations to particular layered systems. The
case of one atomic plane in the elementary unit (uniform
system) is briefiy discussed in Sec. VIII. Some numerical
and analytical results for structures with N=2 atomic
planes in the elementary unit are given in Sec. IX,
whereas some results for structures with higher N are
presented in Sec. X. Finally, concluding remarks are
given in Sec. XI.
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where SI is the spin number for magnetic atoms in the lth
atomic plane and EI is defined as
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II. MODEL AND TRANSFER-MATRIX METHOD y
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Consider a layered structure in which an elementary
unit is repeated periodically along the stacking direction
which is parallel to the x axis of the coordinate system.
Let the elementary unit consist of (V (100}atomic planes
of the simple cubic lattice with the lattice constant a. In
a general case all N atomic planes of the elementary unit
can be occupied by different magnetic atoms. However,
the translational symmetry in the atomic planes is as-
sumed. We restrict considerations to the ferromagnetic-
type exchange interaction between all nearest neighbors
(NN's). Apart from this we assume that an external stat-
ic magnetic field H0 is applied along one of the in-plane
crystallographic axes (parallel to the axis z), which are
also easy directions for the static magnetization. We will

neglect any out-of-plane magnetic anisotropy which may
occur if two adjacent atomic planes are occupied by
different magnetic atoms. Consequently, we assume that
the magnetic anisotropy is described approximately by a
uniaxial-type term with the easy direction along the axis
z. The system can be then described by the Hamiltonian

H= —
—,'gg+J(S( S(

I p 5ij

g g ~l, l+( (,p (+1,p
I p
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To obtain Eq. (2) we used the random-phase approxima-
tion for all terms arising from the exchange and Zeeman
parts of the Hamiltonian (1). In the expressions which
follow from the single-ion anisotropy term, we used the
approximation

S+Sz+SzS+ 2((Sz) + ] )S+

which is consistent with the Lines approximation in the
zero-temperature limit. Restricting considerations to low
T, we finally replaced the thermal average (S') by its
zero-temperature value (S') = —S.

It is worth noting that the model discussed here applies
also to ferromagnetic multilayers with the easy axis and
external magnetic field along the stacking direction. The
macroscopic demagnetization field, if necessary, can be
simply taken into account by replacing Eq. (5) by a simi-
lar one with an additional term HI ' .
H eH' H +H an+ H den

I I

Equation (2) is a recurrence equation for the spin-wave
amplitudes uI. For further purposes we write this equa-
tion in the matrix form

and q being the two-dimensional in-plane wave vector.
The effective field H(' which occurs in Eq. (3}consists of
the external field H0 and anisotropy contribution HI'".

(E E, )u, +S(J(,+,u, +, +S—,J.. .u, , =0, (2)

where l is the atomic plane index, p determines the posi-
tion of a spin in the atomic plane, 5~~ is the position vector
to the in-plane nearest neighbors, JI is the exchange cou-
pling constant for both NN's lying in the lth atomic
plane, and JI I+, is the exchange integral for NN's lying
in the adjacent, Ith, and (I +1)st atomic planes. The pa-
rameters DI and gI are, respectively, the anisotropy con-
stant (assumed positive, D() 0) and the Lande factor for
magnetic ions lying in the lth atomic plane. Finally, p0
and p~ are the magnetic permeability of the vacuum and
Bohr magneton, respectively. The index I runs over all
atomic planes. The N atomic planes of the elementary
unit will be indexed by n (n =1,2, . . . , A'), whereas the
elementary units will be indexed in the following by m.

Applying the equation of motion for the spin operators
and performing the two-dimensional in-plane Fourier
transformation, one obtains the following linearized
equation for the spin-wave amplitudes uI, which is valid
in the low-temperature limit:

u1+ i u1

Iu —' u
=M

I —
1

where

E}~S(J(,(+ (

The transfer matrix MI obeys the condition

detMI =JI, I —i /JI, I+

Because of translational symmetry along the stacking
direction, the material parameters fulfill the conditions
D ~+„=D„,S ~+„=S„,g ~+„=g„,and J ~+„=J„
for n = 1,2, . . . , N. Apart from this one has

J~&+„&+„+,=J„„+,for n =1,2, . . . , N —1. The ex-
change coupling across the interface between two adja-
cent elementary units will be denoted as J, z.

Consider now the mth elementary unit. Applying Eq.
(7) progressively to all X atomic planes in the elementary
unit, one finds
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umN+1 u(m —1)N+1

where

=M
umN u(m —1)N

(10)

detM=1 . (12)

In the following sections we will use the matrix M to
describe the spin-wave modes in infinite, semi-infinite,
and finite layered systems, as well as in structures which
contain some layered defects. Before this, however, we
will analyze the eigenvalues and eigenvectors of the ma-
trix M.

M —MNMN 1. . . M2M1 .

We have made use here of the fact that M N+„=M„
(n =1,2, . . . , N) due to the periodicity along the stack-
ing direction. From Eq. (9) it follows that

Region (i) corresponds to the bands of bulk waves,
whereas regions (ii) and (iii) are the regions where the sur-
face acoustic and optic modes can propagate. It is worth
noting that the eigenvalues of the matrix M are degen-
erate only at the boundary of region (i), i.e., for
M11+M22 —+2.

The parameter Q or v can be found from the following
explicit expression for A, +..

A,~= —,
' [M, |+Mzz+g(M„+Mzz )

X [(M„+Mzz) —4]' ], (18)

where g'(z) = 1 for /z/
& 2 and g(z) =sgn(z) for /z/ )2.

If M is nondiagonal, then the eigenvectors u+ corre-
sponding to A,+ can be taken in the form

r

III. EIGENVALUE PROBLEM
FOR THE MATRIX M

Mu =Au . (13)

Consider now the eigenvalue equation for the matrix
M:

1

—+ (A~ —M„)/M, z

if M, z%0, or

(A,~ —Mzz )/Mz,
uq—

(19a)

(19b)

Taking into account Eq. (12), one obtains the following
equation for the eigenvalues A, :

if Mzl%0. The case of diagonal M is a trivial one. For
M»+Mzz/+2 the eigenvectors span the space in which
the matrix M is defined.

A.
—A(M„+Mzz )+ 1 =0 . (14)

If A, obeys Eq. (14), then I, ' fulfills it, too. Consequent-
ly, both eigenvalues of the matrix M, denoted in the fol-
lowing as k+ and A, , fulfill the conditions

=1,
A. ~+A, =M11+M22 .

(lsa)

(15b)

Since the elements of the matrix M are real, one can
distinguish the following three possibilities.

(i) If —2 & M&&+Mzz &2, then the eigenvalues A, + and
are complex and A, =I,+ (with A, +PA, ), except for

M„+M2~ =2 when A, + =k =1 and for M11+Mz2 = —2
when A, +=A, = —1. Both eigenvalues can be written in
the form

A, + =exp(+iQL), (16)

with Q real and with L =Na being the thickness of the
elementary unit. The upper limit M11+M22=2 corre-
sponds to Q =0, whereas the lower one M&|+Mzz = —2
corresponds to QL =+m..

(ii) For M»+Mzz) 2 the eigenvalues A, + and A, are
real and positive with A, +PA, . One may write them as

IV. BULK MODES

The normal modes which can propagate in the infinite
layered structures under consideration are described by
the eigenvalues A+=exp(kiQL) [region (i)]. To find the
appropriate dispersion equation, one can use Eq. (15b),
which gives

cos(QL) =
—,'(M»+Mzz) =

—,'TrM . (20)

The above relation is the general dispersion equation for
the bulk modes propagating in the layered structures un-
der consideration. The bulk waves are simply Bloch-type
waves with the wave-vector component along the stack-
ing direction in the range of the first Brillouin zone of the
superlattice, n/L &Q &n/L. —In other words, the en-
velope function of a bulk solution in superlattices varies
oscillatorylike along the superlattice direction. However,
the corresponding solutions inside constituting materials
do not necessarily have to behave oscillatorylike. For ex-
ample, the bulk modes in a two-component layered struc-
ture can be composed of bulk-type (oscillatorylike) solu-
tions in one material and surface-type (exponentially de-
caying) solutions in the other one.

A.+ =exp(+ aL ), (17a) V. SURFACE MODES

A, ~ =exp[+(i m+ ~L )],
with v real and ~)0 by definition.

(17b)

with sc real and a )0 by definition.
(iii) For M»+Mzz & —2 the eigenvalues are real and

negative with X+%A, . One may write them in the form

Consider now the semi-infinite structure which occu-
pies the half-space x )0. Let the surface atomic plane
correspond to I =n =1 and the elementary unit at the
surface to m =1. The parameters at the surface differ, in
general, from the appropriate ones in the bulk. We as-
sume that the exchange constant for NN's lying in the
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=M
uN up

(21)

where up is the amplitude at the fictitious layer.
Inside the regions where the surface modes can propa-

gate, the eigenvectors u+ and u span the space, and so
one can write the general solutions as a linear combina-
tion of u+ and u . It is clear that only u can enter
into the solutions which are exponentially localized at the
surface. Thus one can write

u1
=Au

up
(22)

where A is a constant. To consider both acoustic and op-

tic surface modes simultaneously, we rewrite the eigenval-

ues in the regions (ii) and (iii) (see Sec. III) in the form

k+ =exp(+PL ),
where real and positive P,

—K

(23)

(24a)

surface atomic plane is J,WJ, . Apart from this we as-
sume that the anisotropy constant D, for the surface
atoms differs from the corresponding bulk value.

To describe surface solutions of Eq. (2), we will make
use of Eq. (10). For semi-infinite structures this equation,
however, does not apply directly to the case of m =1.
To make it applicable also to m =1, we replace all sur-
face parameters by the corresponding bulk ones and in-
troduce a fictitious atomic layer at the surface, which
corresponds to I =0 and n =N (i.e. , described by the pa-
rameters corresponding to the ¹hatomic plane in the
elementary unit). The l =1 atomic plane of the fictitious
system is then described by the same parameters as the
corresponding atomic planes inside the structure. The
equivalence of the systems with and without the fictitious
layer will be set up by appropriate boundary conditions
as described later.

Applying now Eq. (10) to the system with the fictitious
atomic plane, one can write

uN+1

E, =g, PcPaH; +4S&J,(1—
Xll +S2J12

where H,' is the effective field for the surface atomic
plane, given by Eq. (5) for 1 =1, but with D& replaced by
D, .

On the other hand, Eq. (2) applied to the 1=1 atomic
plane of the system with the fictitious atomic layer leads
to the relation

(27)

(E E, )u—, +S,J, zuz+S, J, ~uo =0, (28)

where E, is given by Eq. (5) for 1 = l.
Equations (26) and (28) are equivalent, provided the

following condition is imposed on the amplitudes u, and
u p'.

S,J& xuo=[J& @ST gipop—&AH,'

—4S, b J, (1 —
y~~)]u, , (29)

where hH, ' and AJ, describe the deviations of the sur-

face parameters from the corresponding bulk ones:

g~eff jef jef
s s 1

AJ, =J, —J1 .

It is convenient to rewrite the condition (29) as

(30)

(31)

u1 =C:—CP,
up p

(32)

where C is a constant and

J, w Stt g, P oP, tt b H,—' 4S, 6J, ( 1 ——y
~~

)

p J1 NS1
(33)

Equations (22) and (32) have to be satisfied simultane-
ously. The condition for the existence of a nontrivial
solution gives then the dispersion equation

system without the fictitious atomic plane gives

(E Es )u1+S1J1 pu2 —0 .

According to Eq. (3), E, in the above equation is given by
the formula

corresponds to the region where acoustic surface modes
can exist [region (ii)], whereas P of the form =pM12 +M11 (34a)

PL =ivr+ttL, (24b) This equation can also be written in an equivalent form as

with t~ real and positive, describes region (iii) where optic
surface modes can propagate.

Applying Eq. (10) to Eq. (22), one obtains

umN+1 = A exp( PLm)u—
umN

1=—M~1+M22 .
p

(34b)

These equations can be expressed in terms of the
transfer-matrix elements only by eliminating A, from
them. Finally, one can write the general dispersion equa-
tion for surface modes in the form

= A (+1) exp( aLm )u—(25) p M}~—M~1+p(M, 1
—M22) —0 . (35)

with the upper (lower) sign corresponding to the acoustic
(optic) surface solutions. To be a solution of the problem,
expression (25) has to fulfill appropriate boundary condi-
tions. In other words, it has to obey the equation of
motion for the surface atomic plane.

Equation (2) applied to the surface atomic plane of the

From Eq. (35) one obtains a set of its solutions E =E'.
However, not all of them, in general, describe the surface
modes. To find true surface solutions, one has to verify
the localization conditions [or equivalently Eq. (34a) or
(34b)]. For each E' one can calculate the corresponding
eigenvalue k =k' from one of the relations
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=1V=PM, ~ ™11 =—M21+ M22E=Es P E=Es
(36)

(md —1)N+ Nd +1

—1)N+Nd
=Md

u(md —1)N+1

u(m —1)Nd

(40)

If the condition

/A, '[(1 (37a)

is fulfilled, then, according to Eqs. (23) and (24), the cor-
responding solution describes a surface mode —acoustic
for positive V and optic for negative A.'. If the above con-
dition is not fulfilled, the corresponding solution does not
describe a surface wave. Taking into account Eqs. (23)
and (24), one can rewrite the condition (37a) in the
equivalent form

where M is the transfer matrix for the defected unit,

Md Md Md ' MdMd—Nd —Nd
—1 —2—1 (41)

and the matrices M„(n = 1,2, . . . , Nd ) correspond to the

Nd atomic planes in the mdth (defected) unit.
Equations (38)—(40), together with the condition for

the existence of a nontrivial solution, lead to the follow-
ing simple dispersion equation for the modes localized at
the layered defect:

Relj') 0, (37b) M22 M22 (~+™22M 11 ™1221

where P' is defined by the relation A,'=exp( —P'L). If this
condition is fulfilled, then the case with ImP'=0 de-
scribes the acoustic surface wave, whereas with
ImP'= n./L corresponds to the optic surface mode

The surface solutions discussed above are the solutions
for which the envelope function vanishes exponentially
toward the interior of the structure. However, the corre-
sponding solution inside a particular material does not
have to be of surface type. For example, the surface
waves in a semi-infinite two-component superlattice can
be composed of bulk-type solutions in one material and
surface-type solutions in the other.

—M21M, 2
—0 . (42)

The above dispersion equation for the spin-wave modes
in structures containing layered defects is a counterpart
to Eq. (34a) [or (34b)j, which was derived for surface
waves. As previously, one can eliminate A. and A, + from
Eq. (42) and rewrite it in a form which is analogous to
Eq. (35). In other words, one can express the dispersion
equation (42) in terms of the transfer matrix only. This
form, however, is not so simple as Eq. (42), and so it will

not be given here explicitly. In further numerical calcu-
lations, we will use Eq. (42).

VI. SUPERLATTICES WITH DEFECTS VII. FINITE STRUCTURES

In this section we will consider infinite structures in
which one elementary unit differs from the remaining
ones, breaking this way the translational symmetry along
the stacking direction. Let the complete elementary units
which are adjacent to the layered defect correspond to
the index md —1 (on the left side) and md+1 (on the
right side). By a complete unit we mean here the one for
which the transfer matrix acquires the same form as in-
side the structure. The modes which are localized at the
layered defect can propagate region (ii) or (iii), where the
eigen values of the matrix M are of the form
A, +=exp(+PL) with P=z or P=im/L+~ (a real). For
the localized solutions one may then write

u(md —1)N+1

u(m —1)Nd

(38)

and, similarly,

—1)N+Nd +

d 1 )N+Nd
=Bu (39)

where Nd is the number of atomic planes in the mdth unit
(i.e., the defected one) and A and 8 are constants. One
can easily verify that the wave functions decay exponen-
tially away from the defect if Eqs. (38) and (39) are
fulfilled.

Taking into account Eq. (7), one may write

Consider now structures which contain a finite number
mo of the complete elementary units. In a general case
we assume an additional incomplete unit at one of the
surfaces, say, the (ma+1)st unit at the right surface,
which consists of N, atomic planes with X, &X. The
method we used for surface modes can be easily adapted
to the present problem. For the same reasons as in Sec.
V, we introduce two fictitious atomic planes —one at the
left and the other one at the right surface of the
system —replacing simultaneously all the surface param-
eters by the corresponding ones inside the structure. The
parameters which we assign to the fictitious planes are
those which follow from the periodicity of the structure
along the superlattice direction. As in Sec. V, the
equivalence of the systems with and without the fictitious
atomic planes will be set up by appropriate boundary
conditions. Such a condition for the left surface of both
complete and incomplete structures is given by Eq. (32),
in which we replace (to distinguish both surfaces) C, p,
and P by CL, pL, and PL, respectively. The parameter

pt is given by Eq. (33) with hH; and h,J, (and, conse-
quently, H,', J„and D, ) replaced by b,HL and b,JI
(HL, JL, and DL ). In further consideration we will dis-
tinguish the complete and incomplete cases explicitly.
Let us consider first the complete case.

A. Complete finite structures

The boundary condition for the right surface can be
written in the form



10 432 J. BARNAS 45

um0N+1

um N0

PR
=CR

1
——CRPR, (43)

PLPR[(A, +) ' —(A, )
' ]+[(A,+) ' —(A, )

'
]

+ [PL M12 PR M21 ( 1 +PLPR )M22 1

where CR is a constant and

1, N 1 gNPOPB~HR N~ R (
PR=

Ji,NSN

with

(44)

~JR =JR —JN

AH'~= H' —H'
R R N

(45)

(46)

and JR and HR the exchange constant and effective field
for the atomic plane at the right surface.

For arbitrary energy, except those particular values at
which the eigenvalues of the matrix M are degenerate
(i.e., with the exception of the values corresponding to
the band edges of the bulk modes in infinite structures),
one can write

X[(l,+) ' —(A, ) ']=0 . (49)

The above expression is the general dispersion equation
for spin-wave modes in finite structures and will be em-
ployed in the further numerical calculations. An
equivalent form of the dispersion equation can be ob-
tained by eliminating the eigenvalues A, + and A, from
Eq. (49). Instead of this, however, we rewrite it in anoth-
er form which allows direct comparison with some results
available for uniform systems. To do this we write the ei-
genvalues of the matrix M in the form A+=exp(+ikiL),
where kz is real (k~ =Q) for region (i), ki = iver

—for re-
gion (ii), and kz =sr/L —iz for region (iii). Equation (49)
can be then rewritten in the equivalent form

pI PR [sin[kLL (mp —1)]—M22sin(kLLmp ) }

+(PLM, 2
—PRM» )sin(k1Lmp)

+ Au +Bu+,
uo

(47)
+sin[kiL (mp+1)] —M22sin(k1Lmp) =0 . (50)

um0N+1

um N0

= A (A, ) 'u +B(A, )+'u+ . (48)

where A and B are constants. Applying now Eq. (10) to
the above relation, one obtains

B. Structures with an incomplete unit at one surface

Consider now structures with the incomplete elementa-
ry unit at the right surface. Let this unit consist of N,
atomic planes with 0(N, &N. The boundary condition
at the right surface leads now to the equation

Equations (32), (43), (47), and (48) have to be satisfied
simultaneously. The condition for a nontrivial solution
gives then the following equation for the allowed spin-
wave modes:

um0N+1

um N0

=CR (M') =CR (M') 'PR,

where the parameter pR is now equal,

(51)

JN N +1SN +1 gN PpPBbHR —4SN EJR(l —
) ~~)

PR
JN N +&S

(52)

with

(53)

He =H'—
R

(54)

and JR and H„' the exchange constant and effective field for the atomic plane at the right surface. The matrix M' in

Eq. (51) is defined as

M'=MN MN )
. - - M2M, . {55)

Equation (51) describes the boundary condition for the incomplete structure. It has the same form as for the com-
plete case, but with PR replaced by (M') 'PR. In other words, one may say that the incomplete case has been replaced

by a complete one with some effective boundary condition which includes the dynamical properties of the atomic planes
in the incomplete unit.

Instead of Eq. {49),one obtains now the following dispersion equation for the spin-wave modes:
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mo —1 mo —1 mo+1 mo+1
pL (p~M22 —M)[(A+) —(A, ) ]+( p—~M~, +M„)[(A,+) —(A, ) ]

+ tpL( —pgMq)+M)) )M)2 —(p~M2q —M)q)M~) —[( —p~M2)+M)) )+pL(p~Mq2 —M)2}]M2q]

X[(A, )
' —(A, ) ']=0,

which can also be written in the equivalent form

(pzMz2 —M&2)(pI [sin[kjL(mo —1)]—Mzzsin(kjLmo)] —M2, sin(k~Lmo)}

(56)

+(—paMz&+M&& )Isin[kjL(ms+1)] —M2zsin(k~Lmo)+pLM&2sin(k&Lmo)] =0 . (57}

In this and preceding sections, we have derived some gen-
eral analytical expressions which determine the spin-wave
spectrum in infinite, semi-infinite, finite, and defected lay-
ered periodical structures. They are valid for a large
class of systems. In the following sections we will consid-
er explicitly some of them. The simplest case the derived
formulas apply to is the uniform system, which in our no-
tation corresponds to N =1. Let us begin with this sim-
ple case.

VIII. UNIFORM SYSTEM

E=E/JS, (58)

There is a rich literature on the spin-wave spectrum in
uniform systems. It seems, however, to be advisable to
discuss this particular case briefly and generalize some of
known results.

It is convenient now to introduce dimensionless units
for the spin-wave energy and effective fields according to
the definitions

h elf —gp~ ~CF/JS (59)

The atomic plane index at all material parameters is now
meaningless and has been dropped in the above formulas.
Apart from this we define the parameters

equi,
=J, /J, (60)

(61)

In this notation the transfer matrix M has the form

2+4A+h' —E —1
(62)

Equation (20) gives the well-known expression for the
spectrum of bulk waves. Following Sec. V, one can also
easily determine the spectrum of surface modes. The ap-
propriate formula for the spin-wave energy E' acquires
now the form

4A[l+4Ae~), (1—
e~~, }+Eh,' (1—2@i, )]—(hh; )E'=h «+

1+4(1—e„,)A —hh
(63)

4(1—
eii, )A —b,h,'~& 0 (64)

whereas the existence condition for the surface optic
modes takes the form

4(1—e„, )A —hh;~ & —2 (65)

The dispersion equation (50) for the spin-wave spec-
trum of finite structures takes now the form

pzpzsin[k~(mo 1)a ]—(pL +pz—)sin(k~moa)

+sin[kj(mo+1)a] . (66)

In this simple case mo is the number of atomic planes in
the system. Solutions of the above equation for symme-

where hh,' =h; —h' . For h,' =h' =0, Eq. (63)
reduces to the one derived by Wolfram and DeWames
[their Eq. (2.21)]. The surface acoustic waves exist if the
following condition is fulfilled:

trical and asymmetrical boundary conditions have been
intensively studied by Puszkarski. '

Let us pay now a little more attention to spin-wave
modes in an infinite ferromagnet in which a number of
impurity atomic planes is embedded. A similar problem
has been recently studied by Chen and Cottam, who an-
alyzed the spin-wave spectrum of a semi-infinite fer-
romagnet in which a single atomic plane of impurity
spins is embedded close to the surface. Here we consider
an infinite system, but with a few atomic planes of impur-
ity spins, which are in direct contact or are separated by
a few atomic planes of the host spins. To apply the for-
mulas derived in Sec. VI, we treat the whole block of
atomic planes, which includes all impurity planes, as a
single layered defect embedded in the uniform system.

For convenience we change now a little the notation
for all parameters which describe the uniform system:
S~Sz, J~J~, h' ~h~, and g ~g„. To describe the
impurity planes, we define the parameters
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g —S~ /S~

e=J~/Jq,
a ——J„/J, ,

(68)

(69)

25

20

where S~ is the spin number for impurities, J~ is the ex-
change constant between two impurities, and J~~ denotes
the exchange constant between the impurity and host
spins. Consequently, Eqs. (58) and (59) will be replaced
by

PUJ 15

E=E/JqSq,
eff eff

h~(~) =g„(~)p~&H„(&)/J~S~ .

(70)

(71)

25

20

0

, ~
' r.~

' r
~ ~ r

The spin-wave modes are described by Eq. (42) with
the transfer matrix M for the layered defect given by Eq.
(41). In Fig. 1 some numerical results are presented for
the spin-wave spectrum of a single impurity plane (solid
line), two adjacent impurity planes (dashed lines), and
three adjacent atomic planes of impurity spins (dotted
lines). The spin-wave energy is plotted there against the
parameter A for vanishing external and anisotropy fields.
For the parameters assumed there, one finds, respective-
ly, one, two, and three branches of the localized modes,
which split off from the top of the band of bulk modes of
the host system (hatched region in Fig. 1).

In Fig. 2 the spin-wave spectrum for two impurity
atomic planes in direct contact (dashed lines) and separat-
ed by a single atomic plane of the host spins (solid lines)
is shown for the same parameters as in Fig. 1. As one
could expect, the splitting of both localized modes is
smaller in the case of separated impurity planes than in
the case of adjacent ones. Generally, one can find that
the modes localized at well-separated similar impurity
planes do not couple and are degenerate.

0.0 0.5 1.5 2.0

FIG. 2. Spin-wave modes localized at two adjacent impurity
planes (dashed line) and two impurity planes separated by a sin-

gle plane of host spins (solid line) in an infinite uniform system.
The other parameters are the same as in Fig. 1.

IX. TWO ATOMIC PLANES
IN THE ELEMENTARY UNIT

Consider now layered structures with two different
atomic planes in the elementary unit, which correspond
to two different materials A and B (n =1~2 and
n =2~B ). As in the preceding section, we introduce the
dimensionless units for energy and effective fields accord-
ing to the definitions (70) and (71) and the dimensionless
parameters given by Eqs. (67)—(69) with J„z being the
exchange constant between spins of kind A and B. The
corresponding transfer matrix M takes now the form

(E —E )(E—E ) (E —E )
ga ga

(72)
1 (E E)——
a 1

15

L

~ 10

with

E, =h~ +4A+2ag,

Eq =h~ +4egA+2a .

(73a)

(73b)

According to Eq. (20), the spectrum of bulk modes is

given by the equation

(E E, )(E Ez ) =2g—a (1+co—sQL), (74)

0.0 0.5 1.5 2.0 for ~/L ~ Q ~ ~iL w—ith L =2a.
Equation (35) for the surface modes takes now the ex-

plicit form
FIG. 1. Dispersion curves of the spin-wave modes localized

at the single impurity plane (solid line), two adjacent impurity
planes {dashed line), and three impurity planes in direct contact
(dotted line) in an infinite uniform system. The other parame-
ters assumed here are g=1, @=2,a=1.4, and h& =h~ =0.

p (E Ez )a+(E E& )ga—+p(E E, )—(E Ez) =0, ——

where

(75)



45 EXCHANGE MODES IN FERROMAGNETIC SUPERLATTICES 10 435

20

15

=. 10

0.0 0.5 1.0 1.5 2.0

FIG. 3. Spectrum of bulk (hatched regions) and surface
(dashed line) modes in a semi-infinite structure containing two
different atomic planes in the elementary unit. The solid lines

describe the localized modes which occur when a sequence of
two adjacent atomic planes of spins A appears in the structure.
The other parameters are g = 1, e= 2, a = 1.4,
h' =h' =h' =0, and e, =1.5.B s ~ its

p =g —b,h; /a —
4A(E~~,

—I )/a, (76)

with bh; =h; —h„' and e~~, =J, /J„. Only those solu-

tions of Eq. (75), which fulfill appropriate localization
conditions as described in Sec. V, correspond to surface
modes.

An exemplary spin-wave spectrum of bulk and surface
modes is shown in Fig. 3, where the hatched regions cor-
respond to the two bands of the bulk modes and the
dashed line represents the surface modes. For the param-
eters assumed in Fig. 3, the surface mode is of the optic
type.

Modes in structures with one defected unit are deter-
mined by Eq. (42) with the transfer matrix M corre-
sponding to the layered defect. The solid lines in Fig. 3
represent the localized modes for the case when two adja-
cent planes of A spins occur once in the structure.

If the structure consists of a finite number of atomic
planes, the appropriate spin-wave spectrum is determined

by Eqs. (49) and (56), respectively, for complete and in-

complete cases. In Fig. 4(a) the spectrum is shown for
structures containing three complete units (structure
ABABAB). The corresponding spectrum in the incom-
plete case is shown in Fig. 4(b) for the system containing
an additional A atomic plane (structure ABABABA). In
the first case there are six different modes, whereas in the
second one seven different spin-wave modes are obtained.

X. STRUCTURES WITH SIX ATOMIC PLANES
IN THE ELEMENTARY UNIT

15

10

For small N one can derive some more or less explicit
analytical expressions which describe the appropriate
spin-wave spectrum. For large N, however, these expres-
sions become cumbersome and the problem is well fitted

25

20

20
15

10

0.0 0.5 1.0 2.0

0.0 0.5 1.0 2.0

FIG. 4. Spectrum of spin-wave modes in a structure com-
posed of (a) three complete elementary units and (b) three com-
plete elementary units followed by the first atomic plane of the
fourth unit. The parameters assumed here are g=1, a=2,
a=1.4, hz =hz =hL, =hz =0, and 5JL =~J

FIG. 5. Bulk (shaded regions) and surface (dashed line) spin-
wave modes of the semi-infinite structures with N=6 atomic
planes in the elementary unit (elementary units of the type
A A ABBB). The dot-dashed lines describe the localized modes
in infinite structures in which one elementary unit contains four
atomic planes of spins B. The other parameters are g=1, a=2,
a= 1.4, h A =h~ =h, =0, and all
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25

10

whereas the incomplete one consists of one elementary
unit and the first three atomic planes of the next unit.
Thus the incomplete case is equivalent to a symmetrical
sandwich structure. For large values of A, some of the
modes are degenerate for the parameters assumed for nu-

merical calculations. This is consistent with Fig. 5,
where the bands become very narrow for increasing A.

XI. CONCLUDING REMARKS

0
25

20

10

The transfer-matrix approach to layered structures
seems to be very effective one. Apart from the applica-
tions described in this paper, it can also be used in many
other situations such as, for instance, for the description
of interface modes between two bulk materials or for the
description of excitations in disordered layered struc-
tures.

One may also look at the transfer-matrix approach
from another point of view. It is easy to note that Eq.
(10) gives the relation

u(m +1)x+) ~™)1™22)u~)v+)+u(rn 1)N+) =0 . (77)

This equation has a similar form to that for a uniform
system:

0.0 Q.5 1.0 2.Q
u, +, +(E Eo)—u(+ u, , =0, (78)

FIG. 6. Spin-wave modes in finite structures of the types (a)
A A ABBB and (b) A A ABBBA A A for the parameters g = 1,
a=2, a=1.4, hz =hz =hL =hz =0, and AJL, =hJR =0.

for numerical calculations. Results of such calculations
for structures with N =6 atomic planes in the elementary
unit are shown in Figs. 5 and 6. The elementary unit is
assumed there to consist of three atomic planes of the
material A followed by three atomic planes of the materi-
al B. The shaded areas in Fig. 5 (limited by the solid

lines) correspond to the bands of bulk modes, whereas the
dashed lines represent the surface modes. For the param-
eters assumed there, one finds three different surface
modes. The lower and upper branches are of acoustic

type, whereas the one in between is of optic type. The
remaining curves in Fig. 5 represent the modes localized
at a defected unit which contains a sequence of four
atomic planes (instead of three) of the material 8.

The spin-wave spectrum in finite complete and incom-
plete structures is shown in Fig. 6. The complete struc-
ture consists of one elementary unit (six atomic planes),

where Eo=2+4A+h' . Comparison of the above two

equations leads to the conclusion that the layered struc-
ture with X atomic planes in the elementary unit has been
effectively replaced by a uniform system with one
"effective atomic plane" in the elementary unit and with
E Eo replace—d by (M) ) +Mzz ) =TrM. The transfer
matrix M then allows one to consider layered structures
as uniform systems which are described by Eq. (78), but
with E —Eo replaced by TrM. The dynamical properties
of the atomic planes in the elementary unit are contained
in the transfer matrix M. This is very similar to the prob-
lem we mentioned while considering the modes in incom-

plete finite structures, where the system with an incom-

plete last unit was replaced by a complete structure and
the influence of the remaining atomic planes was included
into some effective boundary conditions.
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