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An experimental and theoretical study of bifurcations leading to self-oscillations in spin-wave instabil-
ities pumped by microwave fields is presented. The experiments were done with spheres of yttrium iron
garnet of various diameters pumped by X-band microwave radiation in the parallel pumping and subsidi-

ary resonance configurations. The results reveal a variety of bifurcations and chaos depending on the ex-
perimental parameters. Generally the frequency and threshold of the self-oscillations show a definite

dependence on sample size not predicted by the existing models. On the theoretical side we show that
the usual equations describing two interacting spin-wave modes predict various types of bifurcations, de-

pending on the set of parameters. In particular we investigate Hopf bifurcations and homoclinic phe-
nomena. We also show that the introduction of boundary conditions and momentum symmetry break-
ing in the spin-wave pumping in finite samples accounts for important quantitative features of the experi-
mental observations not explained by the existing models.

I. INTRODUCTION

In a magnetic material subjected to microwave radia-
tion, the rf magnetic field can drive spin waves by means
of several parametric processes. ' Nonlinear spin-wave
excitation occurs when the microwave power exceeds the
so-called Suhl instability (SI) threshold, which depends
on the pumping configuration, material parameters, and
the value of the static applied field. Since the early days
of spin-wave pumping experiments, it has been known
that as the rf field is increased beyond the SI threshold,
the radiation absorbed by the sample spontaneously de-
velops low-frequency (10 kHz —1 MHz) oscillations.
Only recently, the mechanisms responsible for these so-
called auto-oscillations have been better understood in
the light of the theory of bifurcations in nonlinear dy-
namics. However, despite the recent progress, major
quantitative discrepancies remain between theory and ex-
periment. The aim of the present paper is to resolve
these discrepancies.

Nonlinear behavior in ferromagnets was first observed
in microwave magnetic-resonance experiments in the ear-
ly 1950s. Damon' and Bloembergen and Wang observed
a premature saturation of the main resonance absorption
and the appearance of a subsidiary absorption when the
microwave power exceeded certain threshold levels. A
few years later, Suhl produced a theory to explain those
intriguing observations based on the parametric genera-
tion of spin waves. Later, it was predicted ' that spin
~aves could also be parametrically pumped by a mi-
crowave field parallel to the dc magnetic field h~~H&. This
was called the parallel-pumping process to distinguish
from the perpendicular-pumping Suhl processes observed
in the magnetic-resonance configuration (hlH&). In all
three parametric processes, the SI threshold h, for pump-
ing a given spin-wave mode is determined by the rate at
which energy must be pumped into that mode to over-
come the power dissipated to the lattice. Since both the

coupling to the microwave field and the relaxation rate
depend on the wave vector k, there is a certain mode for
which the threshold attains a minimum value h, '". In-
creasing the microwave field beyond this value results in
the excitation of many other modes, but initially the sys-
tern remains in steady state. Only when the field exceeds
a second threshold h,

' do the auto-oscillations break in.
The frequencies of these oscillations are in the range 10
kHz —1 MHz and bear no relation to the microwave
pumping frequency 1-10GHz.

The threshold, frequency, and wave shape of the auto-
oscillations depend on the pumping configuration, dc-
field value Ho, crystal-axis orientation with respect to Ho,
and also on sample shape, dimensions, surface polishing,
and temperature. Over the years, several explanations
were proposed for the origin of the auto-oscillations. The
most noticeable prenonlinear dynamics model was pro-
posed by Thomas and co-workers. ' According to their
model, because of the finite linewidth of the spin waves,
several modes with spread hk in wave number and hook
in frequency are excited above the SI threshold. The beat
between these modes would produce an auto-oscillation
with frequency Aco= vghk, so that it is determined by the
boundary conditions via b,k =m. /d (d is the sample di-
mension along the propagation direction) and by the
group velocity vs =Bcok/Bk. This model explained some
features of the experimental data, such as the dependence
of the frequency on Ho and on sample dimensions. How-
ever, it completely failed in explaining the nature of the
auto-oscillation threshold and the dependence of the fre-
quency on the pump power, above h,'. This was noted by
L'vov and co-workers and others, who were the first to
recognize the nonlinear nature of the phenomenon. They
established that the auto-oscillations arise from the
back-and-forth dynamic power exchange between para-
metric modes caused by their nonlinear coupling, but the
quantitative results of their model were unsatisfactory.

In recent years the interest in spin-wave chaotic phe-

45 10 387 1992 The American Physical Society



10 388 S. M. REZENDE AND A. AZEVEDO

nomena has revived the investigations on the auto-
oscillations, both theoretically and experimentally. '

Most theoretical treatments have relied on computer nu-
merical solutions of the nonlinear spin-wave equations
derived from the model Hamiltonian introduced by Za-
kharov, L'vov, and Starobinets. The numerical ap-
proach' ' ' ' requires the model to be restricted to a
few spin-wave modes, ignoring the fact that in general a
whole manifold of modes is excited above the threshold
h, . Experimentally, this problem has been circumvented
by McMichael and Wigen by using a very thin magnetic
garnet film conveniently oriented in the static field. In
this case only a few spin-wave modes are excited and
good quantitative agreement is obtained between the pre-
dictions of the model and the measured auto-oscillation
frequencies and threshold fields. In bulk samples the sit-
uation is much more complex because an almost continu-
um of modes is excited. However, recently, Suhl and
Zhang' have shown that the dynamics is effectively
governed by two modes, the one with strongest coupling
to the pump and a normal mode resulting from the col-
lective rearrangement of all the other modes. This result
provides a formal justification for the use of the two-
mode model successfully' ' ' ' ' employed to interpret
qualitatively the experimental data in bulk samples.
Despite the continuing progress, the numerical treat-
ments as well as the theory of Suhl and Zhang invariably
predict auto-oscillation thresholds and frequencies quite
larger than the experimentally observed ones. Moreover,
none of the nonlinear-dynamics calculations explains the
sample-size dependence of the frequency observed in
some experiments. "'

In this paper we present an experimental and theoreti-
cal investigation of the auto-oscillations in spin-wave in-
stabilities generated either in parallel-pumping or
subsidiary-resonance configurations. The experiments
were done with yttrium iron garnet (YIG) spheres of vari-
ous diameters to obtain a large set of data to compare
with theory.

In Sec. II we describe the experiments and give some
background information about spin-wave pumping. Sec-
tion III presents details for the bifurcations leading to
self-oscillations and data for the dependence of the fre-
quency and threshold on the wave number k and sample
size. Section IV is devoted to the theoretical model,
which is restricted to plane spin waves with wavelength
much shorter than the sample size. We show how the
finite size of the sample gives rise to a momentum sym-
metry breaking in the spin-wave pumping, which adds
another term in the equations governing the dynamics.
The numerical solutions of the nonlinear equations for
two modes and comparison with the data are explored in
Secs. V and VI. Section VII presents the conclusions. A
preliminary account of this work has been published else-
where. 28

II. EXPERIMENTAL EXCITATION
OF SPIN-WA VE INSTABILITIES

A. Experimental setup

The experiments were performed at room temperature
with polished single-crystal YIG spheres of various diam-

eters. The sample is located at the center of a critically
coupled rectangular TE,oz microwave cavity with

Q =2000, placed between the poles of an electromagnet
that provides the static field Ho. The cavity can be
oriented so that the microwave magnetic field h is either
parallel or perpendicular (subsidiary resonance) to H~.
The microwave radiation is generated by a X-band
backward-wave oscillator (BWO) and amplified to 1.8 W
by a traveling-wave tube (TWT). The BWO frequency is
stabilized by an external crystal oscillator and manually
adjusted to the center of the cavity resonance. The radia-
tion power is then controlled with a variable precision at-
tenuator and directed by a circulator to the resonant cav-
ity, where it drives spin waves in the sample. The
reflected microwave signal is detected with a sensitive
Schottky-barrier diode at the output port of the circula-
tor and recorded in a digital storage oscilloscope. In or-
der to avoid sample heating, the microwave radiation is
pulsed (duration 100 @sec at 100 pulses/sec) with a p-i-n
modulator placed before the TWT amplifier. This causes
no difficulty for recording the steady-state regime of the
sample response because the transient time is normally
much shorter than the pulse length.

B. Spin-wave parametric processes

At low-power levels the pulse reflected from the cavity
has essentially the same shape as the incoming mi-
crowave pulse. As the power is increased, an abrupt
change in the pulse shape occurs when the driving field h

reaches the minimum threshold h, '" for spin-wave para-
metric excitation. Spin waves are excited in pairs with
wave vectors +k and nearly half the microwave pumping
frequency, cok ——co /2. The spin-wave pair establishes a
standing-wave mode, and because of the boundary condi-
tions, only discrete resonating modes are excited. So, in
general, the spin-wave frequency differs slightly from the
half-pumping frequency by a detuning parameter
Amok =coj, —co /2. As we shall see later, although the de-
tuning is small (b,cok/co„—10 ), it plays a very impor-
tant role in the connection between the auto-oscillation
frequency and sample size. The wave vectors +k of the
pair are determined by the frequency cok, the field Ho,
and the condition for minimum threshold. If Ho is ap-
plied along a crystal direction of high symmetry, the
spin-wave dispersion relation for k «10 cm ' is

~q=y(H, +H~+Dk )'

X(H, +H +Dk +4~M sin t9 )'

where H, =Ho —4~MN„N, is the demagnetizing factor
in the (z) direction of the external dc field Ho, y =gps /A

is the gyromagnetic ratio, M is the saturation magnetiza-
tion, Ok is the angle between k and Ho, D is the exchange
stiffness, and Hz is the effective magnetic anisotropy
field. In pure YIG, [111] is the easy axis, H„=60Oe,
D =5.4 X 10 Oe cm, 4~M = 1760 Oe at room tempera-
ture, and y =2.8 GHz/kOe or 17.6X 10 sec '/Oe.

The spin-wave threshold field is given by ' '
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(2)

where yk is the relaxation rate and pk represents the cou-
pling between the pumping field and spin-wave mode.
The relaxation rate varies linearly with k (yk- yo—+bk)
and is of the order of 10 sec ' in YIG in the frequency
range of our experiments.

In the parallel-pumping process, ' the k =0 mi-
crowave field h couples directly to a +k magnon pair
with frequency cok =co /2, as illustrated in Fig. 1(a). This
is due to the ellipticity in the spin precession arising from
the dipolar interaction, giving a coupling factor in the
form4, 5, 26

~ 2 '+k
pk y~Msin ~ke /4~k (3)

Parallel pumping Subsidiary resonance

Q)p, k-0 cop, k "-0

GOp- Q)p-

Mp/2 GDp/2

a)0

)Hz

FIG. 1. Illustrations of spin-wave parametric pumping pro-
cesses. (a) Parallel pumping. (b) Perpendicular pumping, subsi-
diary resonance (first-order Suhl process).

where 8k and yk are the polar and azymuthal angles of k
with respect to Ho and coM =y4~M. Note that the cou-

pling is strongest for spin waves propagating perpendicu-
larly to Ho. Hence this is the mode with minimum

threshold in the range Ho & H„where H, is the field for
which the dispersion relation (1) gives cok =co~/2 for

Ok =~/2, k =0. In YIG, AM -cok for X-band pumping,
so that the minimum threshold from (2) is

h, '"-4yk/y —10 ' Oe.
In the perpendicular-pumping configuration, the mi-

crowave field couples linearly to the uniform mode
(k =0) and one observes a ferromagnetic resonance
(FMR) absorption at Ho=co~/y. Although spin waves

with k+0 do not couple directly to the radiation, they
can be excited via magnon-magnon interactions. In the
first-order Suhl process, spin waves with cok -—co /2 in a
+k pair can be driven parametrically by the uniform
mode by means of a three-magnon interaction, as shown
in Fig. 1(b). Since the uniform mode couples very strong-
ly to the pumping field, it can be driven far off resonance
with frequency co = co /2 and excite spin waves. So, when

the pumping exceeds the threshold h, '", one observes a

subsidiary resonance at a field Ho roughly half the value

for the main resonance. In this case the threshold is also
given by Eq. (2) with a coupling factor

pk ——ycoMsin20ke /4uk . (4)

Hence, at the end, the subsidiary resonance process is

very similar' ' to parallel pumping and the minimum
threshold is also h, '"-4yk/y —10 ' Oe in YIG. The
main difference to parallel pumping is that the mode with
minimum threshold for Ho &H, has Ok =~/4 instead of
m. /2, as illustrated in Fig. 1(b).

A third parametric process, which will not be studied
here, is the premature saturation of the main resonance.
In the perpendicular geometry, as the microwave power
is increased, the absorption at the ferromagnetic reso-
nance field Ho=coo/y=co /y stops increasing when a
threshold is reached. This results from the parametric
pumping of a spin-wave pair by two uniform-mode mag-
nons with frequency coo=co =cok, through the four-

magnon interaction in the so-called second-order Suhl
process. The threshold field in this case is —10 Oe in

YIG, and no resonant cavity is needed to observe it in
bulk samples.

III. ONSET OF AUTO-OSCILLATIONS

A. Phase boundaries

As the microwave power is increased beyond the Suhl
threshold, the signal rejected from the cavity-sample sys-
tern spontaneously develops a low-frequency amplitude
modulation. This occurs at a threshold h,

'
& h, and is as-

sociated with a bifurcation in the response of the non-
linear spin-wave system. A bifurcation is the analog of a
phase transition in equilibrium thermodynamics and cor-
responds to a qualitative change in the dynamic state of
the system as some relevant parameter is varied. Figure
2 shows the phase boundaries measured with parallel
pumping at fz =

co& /2' =9 5GHz .in a 1-mm YIG
sphere aligned with the

I 111] axis along Ho. The lower
boundary characterizes the bifurcation leading to the
spin-wave instability (h, ). It is the familiar "butterfly
curve, " featuring a sharp minimum at the field Ho
=H, = 1540 Oe for which the Ok =~/2 mode has
minimum damping at k =0. The upper boundary corre-
sponds to the auto-oscillation bifurcation ( h,

' ).
Throughout the whole field range, the self-oscillation sets
in with a finite frequency fo =50—1000 kHz and vanish-

ing amplitude. This is a characteristic feature of a Hopf
bifurcation. Beyond the threshold h,', the oscillation am-
plitude grows rapidly while the frequency increases
smoothly with pumping field. The inset of Fig. 2 shows
the variation of fo with h for HO=H, =1540 Oe. Note
that at the onset the auto-oscillation frequency is of order
fp 10 pk and the threshold h,

' is only a few db above
h, . This is in contradiction with the theory of Suhl
and Zhang' and the results of computer simulations
(Refs. 10, 13, 14, 19, 24, and 26), which predict fo —yk
and h,

' in excess of h, by as much as 10 db.
The gross features of the spin-wave instabilities driven
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FIG. 3. Threshold fields for spin-wave instability h, {0)and
for auto-oscillation h,

'
(solid lines) in a 1-mm YIG sphere under

subsidiary-resonance pumping at f~ =8.87 GHz. The sample is

oriented with the [110]axis along Ho.

FIG. 2. Threshold field for spin-wave instability h, (~ ) and

for auto-oscillation h,
' (0 ) in a 1-mrn YIG sphere under parallel

pumping at f~=9.5 GHz. The sample is oriented with the

[111]axis along Ho. The inset shows the auto-oscillation fre-

quency vs pumping field at Ho = 1540 Oe.

in subsidiary resonance are similar to those in parallel
pumping. Figure 3 shows the phase boundaries for spin-
wave excitation and auto-oscillation measured in the
same 1-mm YIG sphere of Fig. 2, with Hp along the
[110] axis and microwave frequency 8.87 GHz. Instead
of a sharp minimum, the butterfly curve for subsidiary
resonance has a broad minimum and three characteristic
regions in field Hp. Fol Hp(H, =1580 Oe, the modes
with lowest threshold are plane waves with k )0 propa-
gating at an angle 8k =sr/4 with Ho (or 8k ——35' depend-
ing on the effect of the relaxation rate ). For
H, (Hp & H,

' =2190 Oe, the modes with minimum
threshold are magnetostatic waves with k =0. For
Hp &H,' the threshold rises sharply with Hp as Ok~0.
Since in the various field regions the modes excited have
different nonlinear coupling parameters, a variety of bi-
furcations leading to self-oscillations can be observed at
different field values, as indicated on the boundary lines
for self-oscillation in Fig. 3.

A —r~, where a=0 and 13=0.5. These exponents are
characteristic features of a Hopf bifurcation. This type
of bifurcation is the most commonly observed in spin-
wave instabilities, but contrary to the usual assertion, ' '
it is not the only one. In fact, in subsidiary-resonance
pumping with Ho along the [110]axis of the YIG sphere,
as indicated in Fig. 3, it is more common to find another
type of bifurcation, which we have identified as a homo-
clinic one. This is illustrated in Fig. 6, which shows the
auto-osci. llation for several values of h ~ h,

' with

Hp=1950 Oe. In this case the auto-oscillation sets in

with vanishing frequency and finite amplitude. Near the
threshold the oscillation is somewhat aperiodic, but as
the field increases, it becomes periodic with increasing
frequency and constant amplitude, just the opposite of
the scenario in the Hopf case.

B. Critical behavior

The behavior of the frequency and amplitude of the
self-oscillations near the threshold depends strongly on
the type of bifurcation. Analogously to what happens in
phase transitions in equilibrium thermodynamics, the
critical behavior of these quantities can be characterized
by scaling laws and critical exponents. Figure 4 shows
the growth of the auto-oscillation with increasing pump-
ing in the parallel configuration of Fig. 2 at Hp=1570
Oe. The detailed data for the amplitude A and frequency
fo as a function of the reduced driving field r =h /h, ' —1

in the critical region is shown in Fig. 5 ~ The data reveal
the scaling behavior in the critical region fo —r and

FIG. 4. Oscilloscope traces showing the behavior of the

auto-oscillation with increasing microwave field R =h/h, in

parallel pumping with a YIG sphere oriented along [111],
HO=1570 0e, f =9.5 GHz. The time scale is 5 ps per division,

and R =1.224, 1.255, 1.293, 1.321, and 1.342 from top to bot-

tom. The constant frequency and rapid growth in the amplitude

characterize a Hopf bifurcation.
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C. Sample-size dependence

In the early investigations of auto-oscillations, it was
observed that the frequency presented a marked depen-
dence on sample size. ' In one of the first papers on non-
linear dynamics in the recent upsurge of interest on spin-
wave instabilities, Gibson and Jeffreys" noted the ex-
istence of two auto-oscillation frequencies in perpendicu-

0.00 0.05 0.10 0.15 0.20 0.25

h/h', —1

FIG. 5. Data for the auto-oscillation amplitude A and fre-
quency f0 vs reduced pumping r =h /h,

' —1 near the bifurcation
for the same condition of Fig. 4, with H0=1620 Oe. The solid
line is a fit to A ~ r '

lar pumping in a I-mm sphere of Ga-YIG, f„,=250 kHz
and f„&=16kHz. They did call attention for the size
dependence of f„„butperhaps because the interesting
chaotic dynamics occurred in the f„2mode, not much
attention was paid to f&&. We have investigated this
point in detail. Depending on the pumping configuration
and sample shape, the auto-oscillation frequency and
threshold may present a clear dependence on sample size.
Figure 7 shows the data for parallel pumping in YIG
spheres with diameters d=0. 52 and 1.0 mm aligned
along the [111] axis. Figures 7(a) and 7(b) show the
threshold fields for spin-wave instability (h, ) and auto-
oscillation (h,'), while Figs. 7(c) and 7(d) display the cor-
responding threshold frequencies versus Ho. Clearly,
both the frequency and threshold difference h,

' —h, scale
with the diameter roughly as 1/d.

In order to compare the data of Fig. 7 with the theory
to be developed in the next sections, we express the fre-
quency as a function of the wave number k of the modes
involved. For this we consider only the field range
Ho & H, since the mode excited first has the same angle
8k =~/2 and varying k. Since h,

' ~ h„weassume further
that the modes involved in the auto-oscillation also have
81, ——m. /2. So the measurement of the threshold frequen-
cy fp as a function of H p can be expressed in terms of k
using Eq. (1). The relaxation rate yk versus k can also be
determined from the h, data of Fig. 7 with Eqs. (2) and
(3). Figure 8 shows the measured ratio fply k (fp in Hz
and yk in sec ) at the bifurcation as a function of k for
the ~/2 mode for three spheres with diameters 0.52, 1.00,
and 2.00 mm. The data show clearly that the frequency
is not given by the simple theoretical prediction'
fp 2yk. In fact, the ratio fp/yk varies with wave num-
ber k in a linear fashion in the field range of the data.
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FICx. 6. Oscilloscope traces of the auto-oscillation obtained

with subsidiary-resonance pumping with increasing microwave

field R = h/h, in a YIG sphere oriented along [110],Ho= 1950

Oe, f~ =9.4 GHz. The time scale is 10 ps per division

R =1.862, 1.872, 1.883, 1.894, 1.905, and 1.916 from top to bot-

tom. Note that the auto-oscillation sets in with a finite ampli-

tude and rapidly increasing frequency, quite differently from the

Hopf scenario of Fig. 4.

0
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0
0.9 l.l 1.3 1.5 1.7

Hp(koe)

FIG. 7. Data for the auto-oscillation frequency fo and
threshold fields for two YIG spheres with diameters 1.0 mm
(left) and 0.52 mm (right) obtained with parallel pumping at
f =9.5 GHz. Both results were obtained with the [111]axis
along Ho.
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/y (Skk'c k'ck +2Tkk'~ck'~ ck }
k'

(12)

where yk is the relaxation rate of mode k,
b,cok =cok co~ l2 is—its detuning, and pkk. =qk qk is the-
phase difference between modes k and k'. Note that in
an infinite medium aak =0 and Eq. (12) reduces to the
same equation used in previous works. ' ' ' In this coIl-
dition we can multiply both sides of Eq. (12) by c k, and
using the symmetry k, —k, we obtain the S equations '
for the Cooper-pair variables O. k.

dO'k = —(yk+/ ~~k )ak ih pknk—

tg (S- ak n.—+2Tk'n'ak»
k'

where ok =ckc =kn ekpx(ip )k, nk being the number of
magnons in mode k and pk the phase of the processing
magnetization. The S equations have quadratic non-
linearities and in the polar form are very convenient for
stability analysis. They have been used by many authors
to study spin-wave turbulence and nonlinear dynamics.
However, they are not suitable for finite samples because
of the additional coupling between the spin-wave equa-
tions introduced by the u~k term.

The spin-wave equations (12) represent 2M (M is the
number of nearly degenerate modes excited by the pump
field} nonlinear differential equations of the form
dxldt =F(x,p), where x is the dynamical variable vector
and p represents the (time-independent) parameters. The
linearization of the equations around the fixed points xo
given by F(xo,p)=0 yields x(t)=xo+5x exp(At), where

represents the eigenvalues of the Jacobian matrix

so that Eq. (10) reduces to the expression used in all treat-
ments of spin-wave parametric pumping. Because of the
presence of the symmetry-breaking term in a finite sam-

ple, the microwave field can drive directly two neighbor-
ing standing-wave modes with wave numbers k& and

kz =k, +6k, satisfying the energy-conservation relation
cok, +cok2=co~. This introduces an additional pumping
term in the spin-wave equations for two neighboring
modes.

When the pumping field exceeds the SI threshold,
many k modes are excited. The equations of motion for
the interacting spin waves are obtained from the Heisen-
berg equation for the magnon operator ck using the Harn-
iltonian (5) and introducing dissipation phenomenologi-
cally. Since the spin waves are excited in pairs forming
standing waves, one can assume' that c k=exp(iqk)ck,
where qk is a real phase. Taking the expectation value of
the magnon operator and introducing the slowly varying
amplitude

iqI, /2 I(co l2)t
cj =(ck )e e

we obtain the following equation of motion for the vari-
able ck that characterizes the spin-wave pair mode:

dc

dt
(yk—+i ~~k)ck thpk(c k—+aakck'e

J,"=BF, /Bx . Physically, there are infinitely many
modes involved as soon as the pumping exceeds the Suhl
threshold, so that the problem of determining the eigen-
values is in principle immensely difficult. However, as
Suhl and Zhang' have shown, the linearized equations
have collective, normal-mode solutions, formed by linear
superpositions of the spin-wave variables 6x, each with
an associated pair of complex eigenvalues A, . The charac-
ter of the bifurcation is determined by the eigenvalues
whose real part turns positive at the critical field h,', all
others representing uninteresting damped solutions. In
general, at not too intense driving, the dynamics is
governed by essentially two modes, each resulting from
the collective coupling of many spin-wave pair modes in a
certain region of k space. It appears that each normal
mode is described by an equation similar to that of indivi-
dual k modes with parameters that are suitable averages
of the values for the intervenient spin waves. This is
justified by the fact that numerical calculations with only
two modes have shown quite good qualitative agreement
with the experimental observations. ' ' ' '

Our analysis of the auto-oscillations is based on the
equations for two modes derived from Eq. (12):

c, = —(y, +idea, )c, ihp, (—c', +ae'~~ cz )

—/2(S, cfc;+S,2c", c2+2T,2c2c~c, ),
c~= (ye+id—co2)c~ ihp2(c—2 +ae '~ c f )

—i2(S2c2c2 +S12c2c2+2T12c 1c 1 c2 }

(14)

(15)

where the subscripts 1 and 2 denote the two collective
modes, Sk —=Skk+2Tkk, a:—azk, p:—13&2, and the tilde in

ck was dropped to simplify the notation. Since ck is com-
plex, the set (14) and (15) represents four coupled equa-
tions. In the next section we show the results of numeri-
cal solutions of Eqs. (14) and (15) and of the diagonaliza-
tion of the Jacobian matrix.

V. BIFURCATIONS OF THE SPIN-WAVE EQUATIONS

Although Eqs. (14} and (15) represent an enormous
simplification of the original problem, they are still
mathematically very complex. They have 12 independent
parameters, so that a multitude of bifurcation phenomena
can be encountered depending on the parameter values.
In order to fully explore these phenomena, it is necessary
to make use of numerical methods and integrate the
equations in a computer. In the numerical studies with
an arbitrary set of parameters, one usually finds that the
solutions are attracted to stable fixed points. However, in
certain regions of the parameter space, some fixed points
become unstable and the solutions may exhibit a variety
of dynamic behavior. Because of the complex nature of
the modes involved in the dynamics, it is difficult to relate
the parameters with the microscopic ones. However, we
have found some sets of parameters that yield results very
similar to those observed experimentally. This is done by
solving Eqs. (14) and (15) numerically in a VAX 750 com-
puter using a Runge-Kutta subroutine to obtain the
steady-state time evolution of c„c2,and the correspond-
ing magnon occupation number nk =ck ck. We also cal-
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culate numerically the four eigenvalues A, of the Jacobian
matrix of Eqs. (14) and (15) in order to investigate the na-
ture of the auto-oscillation bifurcation. Since we want to
work with quantities of order 1, the magnon number and
interaction parameters are rescaled as nj, ~Fn k,
Skk ~F 'Skk, and Tkk. ~F 'Tl,~., where F=co~ /
4SXyk. In YIG at room temperature, y& -2 X 10
sec ', coM—-3X10' sec ', so that F-10' in a sample
with volume —1 mm .

A. Hopf bifurcation

0

111ocl p 1 ~

i

R=1.6 ~

P

0

0
0

I(

~ e

We consider initially a case of Hopf bifurcation ob-
tained with the following parameters: Ace& =Ace&=0,
p&/P2 0 7 y2~y1 5'0 S1/y1 1'0 S2/r &

=0 5

Sz, /y, =2.5, Tzi /y, = 1.125, and a =0. These are the
same parameters that give a chaotic dynamics qualita-
tively similar to one observed in experiments. ' ' ' Note
that the parameters are quite different for the two modes,
indicating that they are degenerate modes far in k space.
This justifies making a=0. In this case identical results
were obtained with the two-mode equations derived from
Eq. (13). Figure 9 shows the behavior of the trajectories
projected on the n, X n 2 plane, with increasing mi-
crowave pumping, represented by the control parameter
R =h /h, . Figure 10 shows the behavior of the four cor-

1

responding Jacobian matrix eigenvalues in the complex
plane with increasing R. Note that since mode 1 has
lower relaxation rate y& and higher coupling p& to the
pumping, it has a lower Suhl threshold h, and is excited

I

first; so it is called the "strong mode. " As the control pa-
rameter R increases in the range 1.0 (R ~ 2.4, mode 1 is
alone and the fixed point moves uniformly along the n,
axis. In this range the eigenvalues corresponding to
mode 1 are complex conjugate and move away from the
real axis along the line Rek, = —

y&. The negative real

0.5-

0.4-
I

0.3

0. I-

L ~

—:3.0
I

—1.0 0.0

FIG. 10. Trajectories of the eigenvalues of the Jacobian ma-

trix in the complex plane for the same parameters as in Fig. 9
with increasing pumping in steps of 0.1 in the range
1.6~R ~3.1.

B. Homoclinic bifurcation

part of the complex eigenvalues characterizes the fixed
point n, AO, nz =0 as a focus attractor. In this range of
R, mode 2 has two real and negative eigenvalues moving
toward the origin.

At R *=2.4 (actually 2.394 566 according to the
theoretical prediction '), there is a zero-eigenvalue bifur-
cation. At this point the eigenvalue for mode 2 moving
on the real axis in the positive direction reaches zero,
turning the direction of motion to negative values with
further increase in R. At this point a center manifold
with nz&0 is born (Fig. 9), and the complex eigenvalues
initially moving on the line Rek, = —

y& sharply turn
direction and begin to move toward the imaginary axis
(Fig. 10) as R exceeds R'. In the range R*&R &R,',
both weak and strong modes are excited at steady-state
values. As R increases, the fixed point n, AO, nzAO
moves along the stable-mode line shown in Fig. 9. At
R =R,' =3. 17 a pair of complex conjugate eigenvalues
crosses the imaginary axis, the fixed point becomes unsta-
ble, and a Hopf bifurcation into a limit cycle occurs.
This corresponds to the onset of the auto-oscillations
with a finite frequency f~/y, =1m' /2my, =0.87 and

vanishing amplitude. As R increases beyond R,', the arn-

plitude follows the scaling law A -(R —R,')', as in the
experimental observations of Fig. 5.

R=1.6

0.4 0.8 1.2 1.6 2.0

FIG. 9. Phase-space trajectories n, Xn2 for the two-mode
model, with increasing pumping R =h/h, in steps of 0.1. For
1.6~R 2.4, the "strong mode" n, is alone. %'hen R exceeds
2.4, a center manifold with nz&0 ("weak mode") is born and
the fixed point moves along the stable mode line. At R =3. 17, a
Hopf bifurcation into a limit cycle occurs. The parameters used
are the following: A~i =6~2=0 pi r'p2 =0 7 @2~$1
(Sil +2T, I )/pl ——1.0, (S22+2T~2)/y, =0.5, SIP/yi =S2i /yi
=2.5, and T,2/y, =

T2l /y1=1. 125.

Quite different bifurcation may occur in the spin-wave
equations with other sets of parameters. Let us examine
numerically two modes with the same parameters used in

Ref. 19: b,co, = (
—2m. )0.3, b,coz =(2~)0.2 (in units of

y, =10 sec '), S„=Szz=S,z =4.078, T„=Tzz
= —1.896, Ti2 0, pi pz y&=y2, and a=0. In this
case, in the absence of spin-wave interaction, the Suhl
thresholds are R ) =p]h /y, =2. 133 and R,2

= l.604, so
l

that 1 is the weak mode and 2 is the strong mode. Mode
2 has a one-dimensional unstable manifold for R ) 1.604,
a value for which it becomes a saddle point, while mode 1

at the origin is a spiral focus. This at first sight suggests a
Silnikov homoclinic recurrence. Since the recurrent be-
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havior is found as soon as one of the modes becomes un-
stable, we have a situation of homoclinic bifurcation with
nonhyperbolic equilibria instead of a Hopf bifurcation.

The results of the numerical study are presented in
Figs. 11—13. Figure 11 shows that as the pumping in-
creases beyond R =1.64, very-low-frequency aperiodic
spiking behavior develops in the amplitude n, of the
weak mode. The (average) frequency increases rapidly
with R, contrasting with the lack of variation in the Hopf
bifurcation. Moreover, in striking similarity with the ex-
perimental observation of Fig. 6, the "oscillation" sets in
with finite amplitude, as in a first-order phase transition.
Figure 12 shows the trajectory in phase space projected
on the Re(c, )XIm(c, ) plane for R =1.685. The strobos-
copic sampling at —

4~ of the period indicates that c& de-
scribes a slow spiral motion around the origin before es-
caping for a fast journey away from the origin, giving rise
to the spiking behavior. Finally, Fig. 13 shows the trajec-
tories of the four eigenvalues of the Jacobian matrix with
increasing R. Note that the bifurcation occurs when the
imaginary axis is crossed by a real eigenvalue, quite
differently from the Hopf scenario of Fig. 10. This is
consistent with the very low frequency of the spiking os-
cillation observed in Fig. 11 near the bifurcation. Note
also that only at higher pumping levels R &1.8 do the
auto-oscillations behave as described in Figs. 3 and 9 of
Ref. 19. In closing this section, we mention that other
types of bifurcation phenomena have been found in the
spin-wave equations, such as one zero-two imaginary ei-
genvalue codimension-two bifurcations and transverse
and tangent homoclinic phenomena near the Hamiltoni-
an limit. '

VI. NON-MOMENTUM-CONSERVING PUMPING
IN FINITE-SIZE SAMPLES

In the numerical examples of last section, we con-
sidered a=0, which reduces Eqs. (14) and (15) to the
same as those for an infinite medium. In this section we

1.5

1.0—
aos

0.04

0.5—
0.00

E
0.0- ~ ~

~ ~ ~ ~

-0.05 -0.03 -0.01 0.01

-0.5—

- t.o I

-0.2

~ ~
V

0.0
R8 C)

0.2 04

FIG. 12. Phase space trajectories Re(c&)XIm(c&) with the
same parameters of Fig. 11 and R =1.685. The stroboscopic
sampling indicates the slow spiral motion around the origin and
a fast journey away from the origin. The inset shows the
magnified region around the origin.

show that with a@0 our model accounts for some impor-
tant quantitative features of the auto-oscillations ob-
served experimentally not obtained with a=0; namely,
the threshold for bifurcation h,

' is only slightly higher
than the SI threshold h„'the frequency can be quite lower
than the spin-wave relaxation rate; and for some
configurations the frequency and threshold difference
h,

' —h, vary approximately inversely proportional to the
sample diameter and linearly with the wave number k.

In order to demonstrate the effect of the momentum
symmetry-breaking term in the spin-wave pumping, let us
consider initially the same parameters used by Nakamu-
ra, Ohta, and Kawasaki' in one of the earliest
numerical applications of the two-mode model:
~~l~yl ~~2~y& = —10, y, =y, P, =P, S,4 i

=S2/y&=1. 0, S&eely, = —0.4, and T&2ly, = —0.75.
With a =0 the threshold for auto-oscillation is R,' =3.6S.
Figures 14(a) and 14(b) show, respectively, the trajectory

1.5

1.0- mode 1

0.5-
R =1.5+O.OP,n

0.0 ======

—0.5-

mode 2

lL R k k It. . k. . k. R

FIG. 11. Numerical solutions of the two-mode model with
parameters A~, = —2m x 0.3, Atop =2m x0.2, Sl 1 =S22 =SI2
=4.078, Tl l

= T22 = —1.896, T12 =0 pl =p2 pl =72, and
R =1.66, 1.67, 1.68, 1.69, and 1.70 from top to bottom. Note
that the frequency grows rapidly with increasing pumping level
and the amplitude sets in with a finite value, similar to the ex-
perimental observation of Fig. 6.

1-5—2.0 —1.6 —1.2 —0.8 —0.4 0.0
Re (X/V)

FIG. 13. Trajectories of the eigenvalues of the Jacobian ma-
trix for the same parameters of Fig. 11, with 1.5 ~ R ~ 1.6. The
bifurcation occurs when the real eigenvalue crosses the imagi-
nary axis. This is consistent with very low frequency of the
spikes observed in Fig. 11 and in the experimental traces in Fig.
6.
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FIG. 14. Comparison of the trajectories in phase space
n2 Xn& and the corresponding spectra for n& for pumping (a)
and (b) in an infinite medium and (c) and (d) in a finite-size sam-
ple. The parameters are the same as in Ref. 10,
ha)) =he@2= —1.0s S) =Sp =1.0s S)2 = —0.4& T)q =—0.75&

y &

=y2, and p&
=pz.

2.5

in phase space n2Xn&, for R =4.0, and the correspond-
ing Fourier spectrum of n, (t). With these parameters the
threshold is much higher than the experimental ones,
normally in the range R,' —1.1-2.0, as in Figs. 2 and 3.
The auto-oscillation frequency is fo =y „which corre-
sponds to at least 1 MHz in YIG. This is 2-10 times
higher than the typical experimental values, as seen in
Figs. 2—6. If we now make a=0.64 ( =2/n ) and P=O,
the bifurcation threshold is reduced to R,'=1.45 and the
frequency decreases to fo =y /2, as shown in Fig. 14(d),
approaching the experimental values.

In the example above we chose for a the largest possi-
ble value, 2/m=0. 64, because it minimizes the auto-
oscillation threshold. This value is appropriate for the
pumping of two neighboring standing waves along the
[100] crystal direction. In the case of p, it is not possible
to know a priori which value it should have. If the two
modes were pumped independently, i.e., a=0, the value
of p would be immaterial. However, with a+0, p be-
comes a relevant parameter. This is demonstrated in Fig.
15, which shows the complex eigenvalues A, for several
values of p at two pumping intensities R = 1.18 and 1.24,
a=0.64, the other parameters being the same as in Fig.
14. The value of P for which a pair of complex eigenval-
ues crosses the imaginary axis first is p=60'. This occurs
at the threshold R,'=1.25, a value smaller than with
p=O. At this threshold there is a Hopf bifurcation lead-
ing to self-oscillation with frequency fo /y &

= Imk, /
2n.y, =0.5. Hence the phase difference p between the
two neighboring modes in k space adjusts itself in order
to minimize the self-oscillation threshold. The numerical
study has shown that this value depends on the set of pa-
rameters, and it usually leads to a low threshold value R,'.

Finally, let us demonstrate how the model accounts for

A.O —1.6 —1.2 —0.8 -0..1 p.p
Re A/-g,

1.0

0.6-

~ BCd o 3
~1

0.2- —~=o.9
~1

~ ~ e ~
e

—0.2-

—0.6-

e
e e e ~

1.2
& h

~ '-'4

1.5H ~g
1.68—1-O.zo -O. O -O. &0 O.OO

Rv A/y,

FIG. 16. Trajectories of the eigenvalues with increasing
pumping in steps of 0.01 for several values of the frequency
spacing hco between the two modes. The parameters are
Leo)= 26co/3 Aco2, =ka)/3 S]=S2=0.8 S&2=0.35
T&2= —0.01, y&=y2, p, =p2, a=0.64 and p=m. Note that the
auto-oscillation frequency and threshold for bifurcation in-
crease approximately linearly with b co.

FIG. 15. Behavior of the eigenvalues of the Jacobian matrix
with the phase difference P varying from 0' to 90' in steps of 10',
for two pumping intensities R =1.18 and 1.24. The parameters
are the same as in Fig. 14 with a =0.64.

the dependence of the auto-oscillation frequency and
threshold on the wave number k and sample diameter d.
These quantities enter Eqs. (14) and (15) through the de-
tunings hcok of the two neighboring modes involved in
the dynamics. In order to conserve energy within an un-
certainty of the order of the relaxation rate, we take hco&
and hco2 with opposite signs and magnitudes smaller than
y, . Equations (14} and (15} were solved for several pa-
rameter sets with a%0 and varying frequency spacing
bco= ~bto, —

Ecole~. The results reveal that with a%0 the
auto-oscillation frequency and threshold normally de-
pend on Leo. This is illustrated in Fig. 16 for the follow-
ing parameters: b,co, = —2 b,co /3, b tot =hco/3,
S, jy, =S2 jy, =0.8, S,2 jy, =0.35, T,2/y, = —0.01,
y &

=y2, p, =p2, a=0.64, and p=n. (which is the value
that minimizes R,'}. The auto-oscillation frequency at
the Hopf bifurcation as well as the threshold R,' clearly
depends on the frequency spacing. The computed fre-
quency for values of b, to in the range 0~ hto/y, & 1.0 is
found to follow approximately a linear dependence,
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f /y)=a +bum/y), where the coefficients a and b de-
pend on the parameter values. For some sets of parame-
ters, the results give b =0; hence the frequency does not
depend on Acu. This explains why in the experiments
some modes display a size dependence in the frequency
while others do not. It all depends on the parameters of
the modes involved in the dynamics.

The relation between fo and d is based on the fact that
the frequency spacing between neighboring modes is
b,co=a.vgld. For values of k in the range of our experi-
rnents, both U and yk vary linearly with k. Therefore
the prediction of our model for the auto-oscillation fre-
quency is

fo/yk —a +b k/d (16)

The solid curves in Fig. 8 are fits to this expression using
for all spheres the same values for b' but different values
for a, as indicated in the caption. Although outside the
range of k in Fig. 8 the data points depart from this fit,
the agreement between the model and data is impressive.
A result similar to (16) is obtained for the threshold
difference R,'=R„in agreement with the data of Fig. 7.

VII. CONCLUSIONS

In this paper we presented a detailed experimental and
theoretical investigation of the self-oscillations generated
by the microwave pumping of spin-wave instabilities in
YIG spheres. The experiments reveal interesting
features; namely, the self-oscillations originate in a
variety of bifurcations, two commonly observed types be-
ing Hopf and homoclinic, and the threshold field and on-
set frequency of the self-oscillations originating in a Hopf
bifurcation depend on the pumping configuration, wave
number, and relaxation rate of the spin-wave modes in-
volved and on the sample diameter.

These observations have been explained quantitatively
with a theoretical model for interacting plane spin waves.
The model is based mostly on results obtained by previ-
ous authors, but it contains an additional non-
momentum-conserving pumping term due to the finite-
ness of the sample size. This term reduces considerably
the self-oscillation threshold field h,

' and frequency fo
consistent with experiments. In addition, it introduces a
dependence of these quantities on wave number k and
sample diameter d in quite good agreement with data.

Finally, let us summarize our understanding of the ori-
gin of the self-oscillations. As the microwave pumping
field exceeds the threshold for parametric spin-wave exci-
tation h„many modes are pumped with population
(10' ) much higher than the thermal values ( —10 ). If
the field is not much higher than h„these modes are de-
generate with frequency cok ——m /2 and propagate at an
angle close to that of the SI threshold, 0& = + /2 in paral-
lel pumping and Ok =~/4 in subsidiary resonance for
fields Ho (H, . Initially, all the modes are at steady-state
values, corresponding to fixed-point solutions of the
spin-wave equations. However, at such high populations,
the effective microwave field that each mode exerts on the
others due to the magnon-magnon interaction competes
in intensity with the direct microwave pumping of those

modes and tends to create an instability. Although all
the modes are standing waves, the phase differences be-
tween the traveling waves in each pair assume a random
value, so that the spatial distribution of the rnagnetiza-
tion is uniform throughout the sample.

As the pumping field is increased further beyond a
second threshold h,', an instability develops, now between
the parametric spin-wave modes. This corresponds to the
crossing of the imaginary axis by one or more eigenvalues
of the Jacobian matrix describing the spin-wave system.
Above this threshold there is a collective mode of the sys-
tem, oscillating with a small frequency that has no direct
connection with the microwave pumping frequency. This
picture is essentially the same as the one presented by
Suhl and Zhang. ' The contribution of this paper comes
next.

Not all of the nearly degenerate modes with cok

=co~/2, or even those pumped above threshold, become
involved in the dynamics of the self-oscillation. This is so
because the spin-wave interaction parameters vary con-
siderably in magnitude and sign in the spin-wave mani-
fold, especially with the propagation angle Ok. Thus only
the modes in some small regions in k space will have the
nonlinear parameters appropriate for the lowest auto-
oscillation threshold. As we showed in Sec. VI, the
threshold for auto-oscillation is reduced considerably
when one considers the pumping of spin-wave pairs with
opposite wave vectors differing by m. /d, in addition to the
usual pumping of pairs with equal wave vectors. There-
fore the modes involved in the dynamics of the auto-
oscillation are comprised of groups of spin waves, each
two individual waves with wave vectors differing by ~/d.
The presence of each wave in the pumping term of the
other represents a modulation with frequency proportion-
al to the frequency difference bc'. As a result, a self-
oscillation regime is established. with frequency propor-
tional to A co and spatial distribution of the type
cos(n.x/d). The results of the numerical solutions of the
modified spin-wave equations for two neighboring modes
agree very well with the experimental observations. In
particular, we call attention to the following features: (1)
The auto-oscillation frequency at the threshold h,

' varies
approximately linearly with the wave number k and in-
versely with the sample diameter. (2) A similar depen-
dence is obtained for the threshold difference h,

' —h, . (3)
The frequency depends not only on k and d, but also on
the nonlinear parameters. This is clear in the comparison
of Figs. 15 and 16, which show that by changing the pa-
rameters, the frequency can vary by an order of magni-
tude, 10 ' —10 in units of the relaxation rate yk.
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