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Numerical measurements of the shape and dispersion relation
for moving one-dimensional anharmonic localized modes
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Computer simulations show that in a one-dimensional lattice both even and odd anharmonic localized
modes can move with constant velocity. For nearest-neighbor forces described by a harmonic plus hard

quartic potential, the dispersion relation cu(k) has been calculated for both types of modes. Numerical

experiments show that, in general, moving modes with a near-Gaussian excitation envelope occur in

parts of co(k) space, with this region becoming more restricted as the local-mode frequency increases.

Recent studies with analytical' and simulation'
methods on the dynamical properties of perfect lattices
with quadratic and hard quartic anharmonicity have
shown the existence of stationary localized modes above
the top of the harmonic frequency band of a pure crystal
lattice. The characteristic feature of the stationary
anharmonic localized mode is that it can appear in a lat-
tice of any dimensionality, ' provided that the condi-
tion for its existence is satisfied. Simulations of moving
even localized modes have been mentioned briefly in the
literature. ' ' Using the continuum approximation,
which cannot be extended to two and three dimensions,
Burlakov et al. ' presented a few preliminary numerical
experiments.

In this paper, the dispersion curve for moving even and
odd anharmonic localized modes in a one-dimensional
(1D) lattice is explored with simulations and detailed nu-

merical tests. The results are that for both types of
modes uniform translational motion can be produced
over part of co(k) space with the k range becoming more
restricted as the local-mode frequence is increased. A
Gaussian-like envelope function provides a good fit to the
simulated vibrational soliton. When such an analytical
form is used to characterize the motion, the vibrational
frequency, wave vector, and group velocity can be
identified.

A perfect lD crystal lattice is considered in which each
particle with mass m interacts only with its nearest neigh-
bors with the harmonic force constant Kz and the anhar-
monic constant K4 derived from the positive quartic
anharmonic potential. The equation of motion for the
displacement u„ofthe nth atom from its equilibrium po-
sition is

Q~
m =K2(u„+,+u„,—2u„}

dt2

+K4[(u„+,—u„)—(u„—u„,)'] . (1}

To describe the properties of an even localized mode of
the type shown at the top of Fig. 1(a), it is helpful to
change to a different lattice by the transformation
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FIG. 1. Initial conditions for the generation of moving

modes. (a) Top: Initial longitudinal displacements for an even

mode in u space. Bottom: the corresponding odd mode in m

space. The vectors are drawn in the transverse direction for
clarity. These two spaces are related by Eq. (2) in the text. (b)

Top: Initial longitudinal displacements for an odd mode in u

space. Bottom: Initial velocities for an odd mode in u space.
Again, transverse vectors are used for clarity. The wave vector
for this moving excitation is ka =0.1 and the anharmonicity pa-

rameter A=0.9, so that co/co =1.48, where co is the max-

imum frequency of the harmonic plane-wave spectrum.

WIt Q~+ ) Q~

so that the symmetry type is changed to an odd mode us-

ing this transformed displacement-field variable, as
shown at the bottom of Fig. 1(a). Equation (1) now be-
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comes

d w
J2( W» +1+W» —1 2w„)

dt

+J4(w„+,+w„,—2w„), (3)

where Jz=Kz/m and J~=K4/m T.he maximum fre-
quency of the plane-wave spectrum is co =4J2 since the
anharmonic terms are negligible for the small amplitude
limit appropriate to a plane-wave spectrum. '

An analytic solution to Eq. (3), giving a moving anhar-
monic mode, is sought by setting

where a is the maximum amplitude of the moving local-
ized mode in a lattice with spacing a, P„(t)is an envelope
function, cos(kna+cot} is a left-moving carrier wave
function, and k and co are the wave vector and frequency,
respectively, of the carrier wave describing the localized
mode. Inserting Eq. (4) into Eq. (3) and using the
rotating-wave approximation (RWA), ' we get a pair of
equations. Equating the sine terms gives

dP„
v~(p»+I p» —i }dt

x [I+(3&/4)(4'+i+0. +i(().-I+(('.-i)]
w„=aP„(t }cos(kna +cot ), (4) and the cosine terms,

d2

z
=Jz [ [2(()„—(P„+I+/» I )cos(ka) ]+(3A/4}[2P„—(P„+I+/„ I)cos(ka) ]],dt'

where vt, =(Jz/2')sin(ka) and A= J4a /Jz =K4a /Kz. We assume that the time variation of the envelope function is
small compared with that of the carrier wave, i.e., co (()„)&d(()„/dt;then'~

(co/co ) P„=—,'[[2$„—(P„+&+P„&)cos(ka)]+(3A/4)[2(()„—(P„+I~+/„,)cos(ka)]] . (7)

This set of time-independent equations can be used to identify the initial displacement pattern of the mode, and then
Eq. (5) can be used to find the initial velocity pattern. Note that for k =0, Eq. (7) reduces to the previously determined
eigenvalue equation, giving the eigenfrequency and eigenfunction of the stationary even mode. ' ' '

To find the corresponding displacements and velocities for the odd mode with a particular wave vector, shown in Fig.
1(b), it is easier to work directly in u space. Assuming a form of the solution similar to Eq. (4), the differential equation
corresponding to Eq. (5) is

=vt, (P„+,—P„,) [1+(3A/4)[P„+,+P„+,P„,+P„&+P„—2(P„+,+(()„,)P„cos(ka)]].

Once again, for relatively slow time variation of the envelope function, the analog of Eq. (7) is

2
N 1 2P„—(P„+,+P„,)cos(ka)

~m

+ [2/3 —(P„+,+P„,)cos(ka)+(P„+,+P„,)P„[l+2cos(ka)]

—3(P„+,+P„,)P„cos(ka)]

These two sets of equations [Eqs. (5) and (7} or (8} and
(9)] determine the initial amplitudes and velocities neces-
sary to produce a localized mode with frequency co and
wave vector k. To truncate the series of equations in ei-
ther w or u space, we assume that the mode is localized
and introduce the following trial solution for t =0:

go=a, P„=P„P=( —1) "'aAe " ', (10)

for E positive. For a given value of k and A, the time-
independent equations for sites n =0, 1, and 2 are numer-
ically solved for co(k}/co, A, and K. Hence co(k) is
found and the latter two quantities give the initial ampli-
tudes. When all three quantities are substituted into ei-
ther Eq. (5} or (8}, the initial velocities are determined.
These values are used as initial conditions for the moving

even and odd modes in the simulations.
To determine if these modes actually do move, we nu-

merically integrate the equations of motion [either Eq. (3)
or (1} using a fifth-order Gear predictor-corrector algo-
rithm for a chain of 100 particles with periodic-
boundary conditions. A small time step b, t = I/(200co )
is used in order to approximately conserve energy over
the time interval of the measurement.

Figure 2 presents the trajectory of the moving odd lo-
calized mode produced with the same initial amplitudes
and velocities as given in Fig. 1(b}. Plots of the displace-
ment versus time at three different sites are overlaid to il-
lustrate how the particle responds as the excitation passes
and also to demonstrate that the velocity of the excitation
packet is a constant. The farthest that we have tracked
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FIG. 5. Displacement vs time as the vibrational excitation
passes through site 10. The solid curve gives the simulated re-
sults for the same parameter values as described in Fig. 1(b).
The dashed curve represents the best fit of the excitation en-

velope to a Gaussian function line shape as given by Eq. (11).
For comparison the dotted curve represents a hyperbolic-
secant-function envelope.

hence the dashed curves.
The moving anharmonic localized mode in the 1D

anharmonic lattice obtained from these simulations is the
first systematic study of a moving vibrational soliton in a
discrete lattice; the shape is different from the hyperbolic
secant function previously found for continuous systems
treated in plasma physics and nonlinear optics. ' ' Our
result is also basically different from the Toda discrete
lattice solitan, ' which exhibits a sech envelope and
contains no high-frequency oscillatory behavior, and
from the soliton solution of the discrete Ablowitz-Ladik
equation, which is of the form C sech[K(na
—Vt) ]exp[i (kna cot)] —An . additional important
difference is that Eq. (1) is a typical nonlinear lattice-field
equation in solid-state physics, while the Ablowitz-Ladik
equation was originally motivated mathematically by the
inverse-scattering formalism in soliton theory' and is not
derivable from a Hamiltonian. Finally, the approach
used here to examine the odd vibrational modes may also
be applied to two- or three-dimensiona1 lattices; hence it
may identify a way to study solitons in higher dimen-
sions, in contrast with conventional methods where the
general existence of solitons has only been established in
one dimension.

well over the entire time interval. "
The resultant measured dispersion curve obtained with

the specific functional form given by Eq. (11) is

represented by the open circles in Figs. 3 and 4 for the
even and odd modes, respectively. For the lowest-
frequency modes, there is good agreement between the
dashed line and open circles. Even at the largest anhar-
monicity value, the difference between the two curves is
less than 3%, and most of this discrepancy is associated
with the first-order correction to the rotating-wave ap-
proximation, missing from Eq. (5), (6), (8), and (9), and
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