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The low-voltage electron field-emission "point" projection images of Fink, Stocker, and Schmid are
analyzed for the case of thin crystalline samples, based on the theory of scanning-transmission-electron-

microscopy lattice imaging and Fourier imaging. The formation, by this method, of atomic-resolution

images of crystal lattices without lenses or scanning are discussed, as originally proposed by Cowley and

Moodie. The existence of high-order Fourier images is established under general multiple-scattering
conditions, when a transmission function cannot be used. Computed images are analyzed, and it is

found that, because of the rapid change of scattering phase with thickness and angle due to multiple

scattering, no simple relationship between image and crystal potential can be established. Resolution is

limited by the angular range a over which the wave field striking the crystal is coherent —a large angle

being desirable for high resolution. The number of lattice fringes within the Bragg angle (subtended by
the detector at the sample) is found to equal the order of the Fourier image, and axial high-order images

(corresponding to a large tip-to-sample distance and a large region of periodic averaging) are found to
show least image distortion due to multiple scattering. The optimum experimental conditions for
atomic-resolution Fourier lattice imaging at low voltages are analyzed, and their uses discussed.

I. INTRODUCTION

With the commercial availability of field-emission elec-
tron sources for scanning transmission-electron micros-
copy (STEM), the possibility arose of forming a point-
projection image of a crystal lattice without scanning.
Such experimental lattice images have been reported by
Cowley' using 100-kV electrons. These have been called
Ronchigrams, after similar patterns used in optics. A fo-
cused electron probe of near-atomic dimensions is used,
situated a small (defocus) distance from a thin crystal.

In a recent paper, point-projection transmission sha-
dow images of thin carbon films have been published, us-
ing a few-atom low-voltage field-emission tip. In these
experiments, a field-emission tip is placed a distance z,
from a grounded transmission sample, and the transmit-
ted pattern is observed on a distant screen. The sample
acts as the anode, and no lenses or scanning are used. A
shadow image with magnification I=(z, +z2)/z, is
formed, with z& about 100 nm and M=10. An ac-
celerating potential of about 200 V (0.05 (A, (0.1 nm) is
used between tip and sample, just above the field-emission
threshold for the particular tip used. Apart from the
difference in electron energy, the geometry is the same as
that used in STEM. The arrangement is also identical to
that used for the formation of in-line Gabor electron
holograms, if the sample is weakly scattering.

It has been known for many years that perfect
(aberration-free) image formation is possible by simp1e
projection from an ideal point source only for the special
case of periodic transmission objects. No lenses or scan-
ning techniques need be used; however, all non-periodic-
object detail is suppressed. The purpose of this paper is

to review the application of this theory to the experi-
ments of Fink, Stocker, and Schmid for thin crystalline
samples, and to extend it for the transmission-low-
energy-electron-diffraction (TLEED) case, for which the
"transmission function approximation" used by Cowley
and Moodie cannot be used. Simulated images are given
which include the effects of multiple scattering, and for
which two regimes of approximation are established.
The issues of coherence and tip size are discussed. The
three-dimensional information in these images is em-
phasized, and the optimum conditions for imaging ana-
lyzed. Uses for the method are suggested.

The discovery of the "self-imaging" properties of
periodic objects in optics has itself an interesting history.
Early in the last century, the British spectroscopist and
photography pioneer Fox-Talbot noted difficulties in ob-
taining a unique focus condition for his images of an ear-
ly spectroscopic grating. A correct explanation of this
phenomenon was subsequently provided by Rayleigh.
Independently, Cowley and Moodie in 1957 proposed the
use of point projection as a method for the electron imag-
ing of crystal lattices and, in a series of papers, provided
both the relevant theory for optical gratings and phase
gratings, and showed experimental images using coherent
light. Because only periodic-object components can be
imaged in this way, they named these images "Fourier
images. " The development of modern field-emission
scanning transmission-electron microscopes (STEM s) in
the nineteen seventies (which use the same geometry) pro-
vided the incentive for developing the relevant multiple-
scattering theory, which also forms the basis of the
theory of STEM lattice imaging. Thus the observation of
a lattice image in the geometry of Fink, Stocker, and
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Schmid results from the interference between coherent
overlapping Bragg-diffraction orders, as also used to form
a lattice image in STEM. '

Since the resolution of point-projection images from a
physical tip is proportional to the emitting area of the tip,
the attainment of atomic resolution will depend on the
use of newly developed field-emission tip sharpening pro-
cedures, ' which, it will be seen, must emit into large
angles (as measured at the sample). Evidence for single-
atom tip emission has been reported.

We next consider a simple geometric optics interpreta-
tion of the images. Section III discusses the scattering ki-
nematics for the relevant transmission-low-energy-
diffraction (TLEED) case, and establishes the importance
of multiple scattering and its implications for Fourier im-
aging. Section IV resolves these issues, suggests a simple
way of dealing with it in computations, and reports and
analyzes the artifacts which occur in the images. Section
V defines the effective source concept used throughout
this paper, and discusses resolution and coherence. A
summary is provided in Sec. VI.

II. GEOMETRIC OPTICS

It is clear that, in view of the small source size, the
coherence width at the sample in the experiments of
Fink, Stocker, and Schmid is very much larger than typi-
cal crystalline interplanar spacings d&&1, and that ade-
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quate penetration may be obtained from very thin sam-
ples. Under these conditions of coherence, electron
wavelength k, d spacing, and penetration, the images
must be dominated by Bragg-diffraction effects.

Figures 1(a) and 1(b) show a simple interpretation of
point-source projection lattice images in terms of
Young's pin-hole experiment. A thin film of Ag in the
[110) orientation is used as an example. On passing
through the sample, the cone of radiation from the tip
(with semiangle a) is split by Bragg diffraction into multi-
ple cones whose axes differ in direction by twice the
Bragg angle. These cones define virtual sources on a
plane passing through the tip (normal to the axis) which
lie on the points of the (110) reciprocal-lattice plane for
silver. Since these virtual sources are images of the real
source they are necessarily coherent one with another.
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FIG. 1. (a) The incident cone of radiation is diffracted into
multiple cones which overlap at the detector if a & 20&. Exten-
sion of rays behind the object defines virtual sources. The ar-
rangernent is the same as for coherent convergent beam electron
diffraction with a focusing error. (b) The equivalent set of virtu-
al sources in two dimensions on the (110) reciprocal-lattice
plane which contribute fringes to the image.

FIG. 2. Relationship of Fink, Stocker, and Schmid's experi-
ments to STEM lattice imaging. Dotted lines show the
equivalent lens used in STEM. If only first-order elastic Bragg
scattering is allowed, the three continuous lines show the only
contributions to the axial lattice-image point. The contribution
at an off-axis image point 8 selects different direct and Bragg-
scattered components from the incident cone of illumination.
The ray leaving the tip at twice the Bragg angle would run to
the center of the first-order disk in Fig. 1(a).
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The Fourier image consists of the superposition of all
such sets of interference fringes in two dimensions from
these virtual sources. We see from this construction
that Fourier imaging is impossible if cz (0&. For
8+ &a &28&, off-axis Fourier images are formed (as for
inclined illumination two-beam lattice images in STEM).
For a & 20~ Fourier images are formed on the optic axis.
If a small axial detector is used, and the probe scanned, a
STEM lattice image may then be formed. Experimental-
ly, while emission into very small solid angles has been
reported from few-atom tips, ' the filling of the micro-
channel plate detector reported more recently shows
that emission into angles much /arger than the Bragg an-
gle (as measured at the sample) is also possible, as re-
quired for Fourier lattice imaging. Since lines of constant
phase difFerence at the detector are not straight (as for
Young's experiment), we expect various image field dis-
tortions, and an undistorted geometric projection of the
object structure to appear only near the axis. Thus, as
demonstrated experimentally, ' the central region of such
a difFraction pattern (a coherent convergent beam pattern
or Ronchigram" ) using a stationary probe gives an direct
aberrated lattice image of the crystal structure.

Figure 2 shows the relationship of the coherent
convergent-beam patterns used in STEM to projection
images formed with a physical source. These differ only
in the electron wavelength used and the aberrations of
the "probe" in each case. (The aberration coefficients for
the physical source may be defined by rearward asymp-
totic extension of rays leaving the tip to a virtual cross-
over behind the tip, as further discussed below. )

III. MULTIPLE SCATTERING

The original treatment of Fourier imaging showed
that true images of a periodic grating may be obtained
without lenses or scanning by projection from a point
source. This treatment assumed a=~/2, and was based
on the definition of a "transmission function" (such as a
phase grating) in the projection approximation, in which
only zero-layer reciprocal-lattice points are excited. Fig-
ure 3 shows the Ewald sphere drawn to scale for 150-V
(A, =0. 1 nm) electrons, clearly indicating that this ap-
proximation cannot be used. In addition to being highly
three dimensional, there is strong multiple scattering. Ig-
noring the small exchange correction (see below), relativ-
istic Hartree-Fock calculations' give U =15 V for the
g = (1,1, 1) Fourier coefficient of the silver crystal poten-
tial. At an accelerating voltage of V0=150 V, the two-
beam extinction distance g», = Vol, /v», =0.867 nm at
the Bragg condition, and the phase change in a diffracted
beam is approximately crt/g, or 21' per A of thickness t
As is also well known from low-energy-electron-
diffraction (LEED) work, Bragg scattering under such
conditions where g & t is strongly dynamical, and also in-
volves consideration of backscattering within the crystal
and exchange corrections to the scattering potential.
Then the transmitted intensity %(X)%(X)* becomes a
strong function of the incident-beam direction. If, in ad-
dition, a & 28~, so that there are two optical paths
(differing by a Bragg scattering event) from the tip to the

=0.1 nm

(150 V.)

000

FIG. 3. Emald sphere construction for silver projected along
[211]and drawn to scale for 150- and 600-V electrons.

detector, %(X)%(X)' will depend on the phases of the
dynamical rocking curve. The wave field %2(x) leaving
the object cannot then be expressed in terms of a
transmission function for axial plane-wave illumination.
The propagation of the incident spherical wave P(x)
through the multiple scattering within the sample is dis-
cussed for this case in detail elsewhere. It is then not ob-
vious that Fourier images of the lattice will be formed at
all.

Since the tip may be operated over a range of voltages
above that required for the onset of field emission, a relat-
ed question concerns the choice of accelerating voltage
V0, which maximizes the number of beams contributing
to the image for a given resolution. Figure 3 suggests
that the resolution may be limited by the scattering kine-
matics alone (essentially the electron wavelength limita-
tion due to the small size of the Ewald sphere), rather
than by incoherent instabilities such as tip vibration. In
the zone-axis orientation the excitation error for Bragg
beam g is given (in V A units) by

S =A,g /2=12. 264g /(2QVo),

while the width of the two-beam rocking curve is

1/g = v /( 12.264+ Vo ) .

Since the elastic-scattering kinematics allows strong exci-
tation only of points near the Ewald sphere, a beam will
be strong if 5 & 1/g in the nonrelativistic two-beam ap-
proximation. Thus, for a lattice spacing d =

~g~
' to

contribute strongly to the image, we require

12.264
2d )

Qv,

which is independent of wavelength. This relationship
between structure factor and lattice spacing (of similar
form to the de Broglie equation) holds only in the nonre-
lativistic small-angle approximation, which is appropriate
here since, as shown below, source coherence limits the
range of Bragg angles which contribute to the image.
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Physically, these results show that, as Vo is increased, the
resulting flattening of the Ewald sphere is exactly com-
pensated for by a narrowing of the two-beam rocking
curve, since both scale as Vo

' . Thus, for small-angle
scattering, the number of beams contributing to the image
is independent of accelerating Voltage, and increases with

the atomic number of the sample

IV. FOURIER IMAGING WITH MULTIPLE
SCATTERING

%D (X,u ) =O'D(X, O) exp(2aiuX), (2)

where u =P/A, . Equation (2) holds if the angle hP sub-

tended by the first lattice-fringe maximum at B in Fig. 4
is a small fraction X ' of the first-order Bragg angle for
lattice spacing a. Let N b P =He =A, /2a, so that N is the
number of lattice fringes occurring within the Bragg an-

We first show that point-projection Fourier images
occur in the general three-dimensional dynamical case,
and provide an algorithm for their computation in terms
of the "best possible" image 4~%'D, by using the recipro-
city theorem of Helmholtz. This image is defined as the
intensity distribution across the downstream face of the
sample when it is illuminated by a plane wave in the
symmetrical orientation, as shown in Fig. 4. %D is con-
veniently available from computer programs which solve
the one-electron Schrodinger equation by various
methods. (It will not, however, in general provide a faith-
ful representation of the projected crystal potential. ) We
let %D(X, u =P/A, =O), with Fourier coefficients Gs and

period a be this dynamical wave function excited by an
incident plane wave in the [110] direction ()33=0).
possesses the translational symmetry of the lattice, and
includes all the effects of three-dimensional multiple
Bragg scattering within the sample. In Fig. 4, according
to the reciprocity theorem, we may compute the wave
function at A due to a point source at S by calculating
the wave function at S due to an identical source at A.
We now make the approximation that, if f3 is small, the
wave function %D (x, u ) excited by an off-axis plane wave

originating at B is given by

gle oe ( =P in Fig. 4). With EP=Ma jz2 =a /z, , we have

N=z, j(2a /A, )=z, /b, (1) . (3)

%(S,u)= g JG„exp 2mihx
exp(2miux)

l 7TX
Xexp — dx .

Xz ]
(4)

The accuracy of the binomial expansion used in the
Fresnel propagator in Eq. (4) for these relatively large
scattering angles must be considered. Taking A, =1 A
(150 V), dt&& =0.23 nm for silver and 28& =25', we find

the ratio of the third-order (neglected) term to the
second-order term used in Eq. (2) to be 0.015, justifying
the approximation.

4(S,u) is equal (by reciprocity) to the image amplitude
%(u) at the channel-plate detector, and so, on evaluating
the integral, gives for this quantity

%(u) =e' g Gh exp
h

2&l k,zi uA 1

h
exp i km.z

a

where 4 is an unimportant phase factor. Here
Az, uh la =hX/Ma, where X is now a coordinate on the
microchannel-plate detector and M is the magnification.
The last term in Eq. (5) gives the focusing condition for
Fourier images, and is unity for all di+racted orders h for
particular values of z& satisfying

It will be seen [Eq. (6)] that, since b, (1}is the Fourier
image period, X is equal to the order n of the Fourier im-

age. Thus Eq (2. ) is a good approximation for high-order
Fourier images (N large), for which z, is not too small,
the magnification M = (z, +zz ) /z, is moderate, and P is

small compared to 0~. In addition, we see that the num-

ber of lattice fringes within the Bragg angle is equal to the
order n of the Fourier image

Allowing for propagation across z„we then find the
amplitude at S where the lateral tip coordinate is zero to
be

z& =2na /A, =b, (n) . (6)

Z)

FIG. 4. Application of the reciprocity theorem to allow com-

putation of the Fourier images in terms of %D. The angle P is

also defined.

Then the image wave function %(u) becomes a scaled
replica of the wave function O'D across the exit face of the

sample excited by axial plane-wave illumination.
Dynamical Fourier images can therefore be calculated us-

ing Eq. (5) for points near the optic axis where f3 is small

compared to 0&. At larger angles the images will become
confused by the crystal "rocking curve" and its phases.
The expansion coefficients Gh must be evaluated from
transmission LEED calculations.

The images are seen to be periodic in the z coordinate
of the tip, with period b,(1}. Thus any arbitrary image
will recur if the tip coordinate is changed by b, (1), and,
for images of finite resolution, the number of different im-

ages in any period is limited. In addition, images dis-

placed by half the ceil dimension are formed for half-

integral values of n (In two dim. ensions the displacement
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occurs along the cell diagonal, and may be thought of as
a contrast reversal. ) If a faithful image of the structure
occurs at z, =zo, then an image showing strong half-
period fringes will occur at zo+b, (1)/4. The order n of
the image may be negative, and both real and virtual im-
ages are formed.

These "images" result from the interference at the
detector between waves originating from object points
which are equivalent by translational symmetry. Only
periodic-image detail is therefore faithfully imaged.
Since no lenses are used, rays from non-periodic-object
detail never recombine at the detector, and the Fourier
imaging process acts as a filter for Bragg scattering. De-
fects in the crystal structure will not be seen. The images
thus reveal the periodically averaged electron intensity
distribution across the exit face of the sample. Since only
periodic detail is seen in these images, they might be
thought equivalent to Bragg-diffraction patterns. How-
ever, it is important to emphasize that they contain addi-

tional information on average atomic positions, since
these are faithfully represented in the images. This infor-
mation is normally lost when using diffraction tech-
niques, since the structure-factor phases which convey it
are not then observable quantities.

The size of the region of sample over which the period-
ic average is taken depends on the order of the Fourier
image, and increases with the order of the image. It will
be least for the first-order (n =1) image. For the exam-
ple of [110] silver, the required tip-to-sample distance z,
is [from Eq. (6) with a =d»i ] about 2.2 nm for a first-
order image with A, =0.05 nm.

Because of its influence on image resolution, an
effective source intensity distribution 0(b) may now be
introduced, and the intensity resulting from Eq. (5) in-
tegrated over this source. (Complex amplitudes were er-
roneously added in Ref. 3.) We thus obtain for the com-
plex image amplitude at the detector

ip(X)ql'(X) =I„(X)=f g G„expi[8&+X(h)]exp
2irih (X —Mb)

h aM

2

cr(b)db,

where 8& =z, irkh2/a . A function X(h) (assumed small)
has also been introduced. This is the wave-front aberra-
tion function for the tip, describing the deviation in phase
of the wave arriving at the sample from that of a spheri-
cal wave. This quantity depends on the detailed electric-
field distribution and shape of the tip. The relationship
of this effective source to the physical source is discussed
in Sec. V.

As a two-dimensional example, Fig. 5(a) shows the
[110]projection of the silver lattice, together with a pos-
sible orthogonal choice of unit-cell axes of length a and b.
Figure 5(b) shows the geometry of the Fourier transform
of this projection. In two dimensions, a second equation
similar to (6) must be satisfied, with a replaced by b and n

by an integer I. Thus faithful images of the two-
dimensional exit-face wave function are only formed if a
choice of unit cell can be found such that

for the case of Ag [110] at 602 V (A, =0.05 nm). The
effects of backscattering, and those of exchange between
the beam and crystal electrons, must be considered. Pre-
vious LEED computations' suggest, however, that back-

0
2.3A = a//3

a = 4.O7

a /b =(I/n )
'~2 . (8) 002

Since, for this projection of the silver lattice, b =a /&2
with a =0.4085 nm, exact Fourier images are formed in
two dimensions (see Ref. 13 for a fuller discussion).

The lowest resolution image possible in this projection
is seen from Fig. 5(b) to be formed from the (111) struc-
ture factors, for which the corresponding crystal planes
are indicated. The lattice spacing is d»& =a/&3=0. 236
nm. If the image consisted solely of crossed (111)fringes
with all higher-order contributions eliminated by tip vi-
bration or virtual source aberrations and electronic insta-
bilities, the separation between identical Fourier images
would be given by Eq. (6) with a replaced by d i».

Multiple-scattering calculations have been performed

220
0

(000) 220

002

FIG. 5. In (a) is shown the (110) projection of the silver crys-
tal structure. The (111)planes are indicated. In (b) is shown the
corresponding diffraction pattern.
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scattering within the sample does not significantly affect
the forward scattering for these very thin samples. The
small exchange correction to the interaction potential for
602-V electrons may be calculated, ' and is found to be
greatest for the zero-order Fourier coe%cient of poten-
tial. This "refraction" coeScient has only a small effect
on the images, since they are formed in the transmission
geometry. In the light of these considerations and based
on Eqs. (5) and (7) (with X=O), Fig. 6 shows five-beam
multiple-scattering-image simulations at 602 eV. These
were obtained using the "multislice" algorithm (for a re-
view, see Ref. 16) to obtain ipD(X, Y, O) for various values
of "defocus" z„with C, =O. The thickness used was
seven (110)atomic layers (2 nm).

In the absence of controllable tip aberrations, a faithful
linear representation of the crystal potential cannot be
obtained in the images even under single-scattering con-
ditions. (These produce an intensity distribution propor-
tional to the square of the crystal potential. A simple re-
lationship between potential and image has, however,

1.2 Intensity (orb. units)

0.8

0.4

0.23 nm referred to object
=(

602 V Ag (111)

Z, = 11.3 nm

0.0

1.2 -- Intensity (arb. units)

n = 100
602 V AQ (111)
z, = 223.2 nm

(a)
I I

O„Angular coordinate

p on detector

0.23 nrem referred to object

~
I 1

0.8

0 4

0 ' 0 O,/20 Angle P

FIG. 6. {a) Multiple scattering calculations for silver [110]
Fourier images from an ideal point source at 602 V, correspond-
ing to Fig. 5. The thickness is 2.02 nm (7 atomic layers). There
are five beams [four {111)type, plus (000)]. Tip-to-sample dis-
tance z& =222. 75 nm (n = 100). Note square "atoms. " (b) Simi-
lar to (a), showing half-period fringes when z'=z +6(1)/4.

FIG. 7. (a) Three-beam point-projection Fourier lattice im-

ages calculated exactly for the (111) planes of silver with
X=0.05 nm and a sample-to-tip distance z, of 11.272 nm. The
thickness is 2 nm. This fifth-order Fourier image shows five

fringes within the Bragg condition 0&. Fringes near Oz show

variations in period, and the image is modulated by the crystal
rocking curve. (b) Similar to (a} for n =100 over a smaller an-

gular range. Tip-to-sample distance z, =223. 16 nm. No distor-
tions in fringe period are seen.
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been obtained in the phase-grating projection approxima-
tion. ) With a typical scattering phase shift of 21 per A
of thickness (at the Bragg condition) due to multiple
scattering, it is clear that all such images must be con-
sidered general dynamical images with no simple rela-
tionship to the crystal structure other than that imposed
by symmetry. The choice of "origin" for z& is therefore
arbitrary, and a value of Z& =b,(100)—0.29 nm=222. 75
nm (n =100) was selected since it produced a strong
full-period image. We note in particular the rectangular
shape of the atom images in Fig. 6(a), due to restricting
the image synthesis to five beams. Identical images (not
shown) are obtained for z, =222.75+6(l). In Fig. 6(b),
half-period fringes are shown as they occur at
z& =222.75+6,(1)/4=223. 3 nm.

These multislice image simulations are expected to be
accurate only for high-order images [see Eq. (3)]. A
better impression of the image distortions to be expected
for smaller values of z& (which minimize the region of
periodic averaging) may be obtained by performing
three-beam systematics lattice-image calculations based
on the exact reciprocity theorem, without making the ap-
proximation of Eq. (2). We thus compute the intensity
exactly at S in Fig. 5 in an out-of-focus three-beam lattice
image as a function of incident-beam direction P. The re-
sults are shown for both high- and low-order images in
Fig. 7. Figure 7(a) shows a near fifth-order image, with

z, =56(1)+0.12 nm=11.272 nm (chosen to minimize
half-period fringe artifacts) at 602 eV (A, =0.05 nm). Five
lattice fringes are seen within the Bragg angle, as predict-
ed, and we note the distortion of the fringe period in the
neighborhood of the Bragg condition (for p). This is due
to the rapid change of phase with angle near the Bragg
condition due to multiple scattering. The whole fringe
pattern is modulated by the crystal rocking curve.

For high-order images (which maximize the region of
periodic averaging), Fig. 7(b) shows the case of n =100
[actually z, =1006,(1)+0.12 nm] for a much larger tip-
sample distance, plotted over a smaller angular range in
p. No image distortions can be seen other than the small
half-period contribution.

V. RESOLUTION, COHERENCE
AND MULTIPLE TIPS

From the preceding analysis it can be seen that, as for
coherent imaging generally, ' the resolution of a Fourier
image cannot simply be defined since it depends on the
scattering properties of the object, and not on the instru-
ment (source) alone, as required by a classical definition
of resolution in incoherent imaging theory (e.g., the Ray-
leigh criterion).

From Eq. (7) we see that the effect of displacing an
ideal tip point transversely by b is to translate the image
by Mb. This imposes a resolution limit on Fourier im-
ages, since the image must be integrated over this
effective source size. For emission from extended tip re-
gions (e.g., many-atom clusters), the concepts of classical
optics may be used to suggest the approximate resolution
of the Fourier images. A virtual source may be defined
using the rearward asymptotic extensions of rays striking

the sample behind the tip. Since these do not meet at a
point, they allow the classical aberration coefficients and
a corresponding disc of least confusion to be defined.
These have been computed, ' and are much smaller than
those for electron-microscope lenses. Using these values
to define g(h) in Eq. (7) would allow accurate compar-
isons of computed and experimental images to be made in
order to refine the resolution-limiting parameters for a
particular sample. The effective source size combines the
effects of these aberrations with those due to tip vibration
and electronic instabilities (which may lead, for example,
to fluctuations in electron wavelength).

The finest spatial frequency contributing to the image
will depend on the angular range a over which rays arriv-
ing at the crystal are coherent and therefore able to inter-
fere after Bragg scattering onto the optical axis. Since
the kinetic energy and direction of emitted electrons
changes continuously between the tip and the sample, the
question arises as to how to define a. The relationship
between the asymptotic ray directions, the quantum-
mechanical theory of field emission, and coherence have
all been discussed elsewhere. ' ' We avoid these issues
here by defining d, as the size of that ideally incoherent
(fictitious) effective source ' for electrons of energy Vo at
the tip which would give rise to the observed spatial
coherence width X, =2z, a at the sample. Then, from the
Cernike —Van Cittert theorem, we have X, =2z, i,/d„so
that a=A, /d, . The approximate coherence requirement
for observation of fringes of spacing I. =A, /28~ is thus
approximately a=28&, or a=A, /L so that the effective
source size d, =l., the period of the object. (A more de-
tailed discussion of the inhuence of source shape is given
in Ref. 3.) Thus a (and hence d, ) can be measured using
image-matching procedures to determine the finest fringe
contribution to the image, which must result from Bragg
diffraction through an angle a. Assuming the absence of
incoherent instabilities (voltage and mechanical fluctua-
tions), the resolution can only be improved by increasing
a (i.e., decreasing d, ). There is a limit, however, set by
the wavelength, which is much larger than that used in
high-resolution electron microscopy (HREM). Since
coherent, diffraction-limited emission from a region of
size A, cannot be distinguished from incoherent emission
from the same region, the smallest region of integration
over the effective source in Eq. (7) therefore has size A, .
Fringes whose period is less than A, will be washed out by
this integration. The ultimate directly interpretable reso-
lution in these images is therefore expected to be about A,

for the case of single-atom emission from a tip with per-
fect mechanical and electrical stability.

Since Eq. (7) shows the image to be a convolution of
the tip emission distribution with the ideal image, it fol-
lows that for a tip consisting of a lattice of emission
points which is identical to the object lattice, images
should be obtained with near-atomic resolution. Experi-
ments with a thin [111] oriented tungsten foil and
tungsten tip could be used to test this.

For sufficiently thin low-atomic-number samples the
forward scattered contribution to the image may dom-
inate. Then the image may be interpreted as an in-line,
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axial electron hologram, and numerical reconstruction
techniques applied. In this case the resolution of the
reconstructed images may be somewhat less than the
electron wavelength, and will depend ultimately on quan-
tum noise in the electron beam.

For opaque non-periodic-object detail (e.g. , the edges
of a thick sample) a low-resolution shadow image is seen
to be formed crossed by Fresnel fringes. These extend
over the image to a width which is approximately equal
to the lateral coherence width of the beam.

VI. SUMMARY

(1) The transmission diffraction pattern from a thin
crystal irradiated by a "point" electron source or probe
consists of coherent, overlapping diffraction orders. The
central region of this shows a lattice image of the periodi-
cally averaged crystal lattice. These Fourier lattice im-
ages formed by a projection from a stationary focused
probe or 1ow-voltage field-emission source may be inter-
preted by a combination of the theory of bright-field
STEM lattice imaging, " the reciprocity theorem, and
Founer image theory. The high-order Fourier images
are given to a good approximation by conventional
HREM multislice calculations, if due account is taken of
the three-dimensional nature of the scattering, with a
focus defect Z& equal to the tip-sample distance. Calcu-
lations show that, due to strong multiple scattering in the
sample, these images bear no simple relationship to the
crystal potential other than that imposed by symmetry.
A source wave-front aberration function may also need to
be introduced.

(2) The images reveal the periodically averaged struc-
ture of the sample. This average is taken over a region
whose size 8', increases with the order of the Fourier im-

age (i.e., with the tip-sample distance z, ). The number of
lattice fringes occurring within the Bragg angle (subtend-
ed by the detector at the sample) is equal to the order of
the Fourier image. If this is small, (small z, ) so that W,
is minimized, severe image distortions occur around the
Bragg condition. These 1ow-order images cannot be sim-

ply related to the dynamical image wave function for
plane-wave illumination.

(3) The optimum conditions for imaging may be under-
stood by considering the relative strengths g and g' of
elastic and inelastic scattering, the electron wavelength k,

and the Hopkins effective source size d, . Penetration im-
proves as the square of the beam velocity. Inelastic
scattering and radiation damage to the sample due to ion-
ization vary inversely as the square of the beam velocity,
so these factors argue for the use of higher voltages (lim-
ited by the onset of field desorption). The ratio of inelas-
tic to elastic scattering 8 for atoxns is approximately in-
versely proportional to atomic number. In the absence
of incoherent instabilities (e.g., tip vibration), resolution
is limited ultimately by the angular range a=A, /d, over
which the wave field leaving the effective source is
coherent. This determines the highest-order re6ection
which will contribute to the image, which therefore has
spacing L =A, /a=d, . For a given crystal lattice, beams
are strongly diffracted only if they satisfy the small angle,
nonrelativistic, wavelength-independent condition given
by Eq. (1). Of these strong beams, only those within an
angular range a contribute to the image. The strength of
these beams is increased at high atomic number (large
Us), and the inelastic-scattering ratio 8 minimized, so
that the heaviest material should be used for greatest im-
age contrast. At very low voltages (A, )0. 1 nm) in small
unit-cell crystals the small-angle approximation on which
Eq. (1) is based fails, and resolution may be limited to
first-order rejections by the scattering kinematics, pro-
vided 28& (n.

(4) The imaging is highly three dimensional (see Fig. 3),
and the possibility therefore exists of extracting informa-
tion on atomic coordinates along the beam path from ex-
periments in which the wavelength is varied.

(5) The images may be useful for the study of thin bio-
logical membranes, however, the effects of radiation dam-
age may be severe. Since the Lorentz-force deflection is
proportional to the product of wavelength and thick-
ness, the magnetic interaction is weaker than that ob-
tained in conventional transmission-electron-microscopy
machines, unless spin-polarized sources can be devised. '
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