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Measurements made of the effects of hydrostatic pressure on ultrasonic wave velocities have been used
to obtain the hydrostatic-pressure derivatives of the six independent second-order elastic constants
(SOEC's) and the bulk modulus of very-high-purity quartz crystals in the temperature range 243—393 K.
The results, which quantify the nonlinear properties of quartz, show that (BC' /BP) y p —0 depend
markedly upon temperature (contrary to their previous usage in technological applications as
temperature-independent quantities), some to the extent of having a maximum or minimum in their
values, in this technologically important temperature range. The compression estimated at very high
pressures using the Murnaghan equation of state is in reasonable agreement with experimental data. A
theoretical calculation of the six elastic-stiffness-tensor components and their hydrostatic-pressure
derivatives has also been made by atomistic simulation techniques with the short-range interaction be-
tween Si and 0 ions represented by the Buckingham potential. A comparison between the calculated
and experimental results shows good agreement for the SOEC's themselves (the second derivatives of the
potential energy with respect to the strain) and also reasonable accord for the (BCIJ/BP) ~ p o, which are
the combinations of the third derivatives of the potential energy with respect to the strain. That the
hydrostatic-pressure derivatives {BC~4/BP)& p =0 and (BC«/BP}& p 0 have negative signs has interesting
ramifications concerning the nature of the a-P displacive phase transition of quartz. A detailed descrip-
tion of the vibrational anharmonicity of the long-wavelength acoustic modes is given in terms of their
Gruneisen parameters in the quasiharmonic approximation. Certain shear and quasishear acoustic
modes have negative acoustic-mode Gruneisen parameters, thus accounting for the negative value of the
thermal-expansion-tensor component a33 at low temperatures. The mean acoustic-mode Gruneisen pa-
rameter yH in the long-wavelength limit decreases markedly in the temperature range 243—330 K due to
the temperature dependences of the hydrostatic-pressure dependences (BCIJ/BP)y p —p of the elastic-
stiffness-tensor components.

I. INTRODUCTION

To investigate the nonlinear behavior of very-high-
purity quartz (VHPQ), the hydrostatic-pressure deriva-
tives of its second-order elastic-stiffness-tensor com-
ponents (SOEC's) have been measured in the temperature
range 243 —393 K, in which quartz devices are usually
operated. As a result of the considerable technological
significance of the elastic stiffnesses CIJ and their temper-
ature coefficients as input data in resonator and oscillator
device designs, they have been measured by many au-
thors using a wide variety of techniques. ' In the case
of very-high-purity quartz, James has reported the first
set of all six SOEC's and their temperature coefficients in
the temperature range 213—393 K. However a linear
description of quartz device effects is not adequate for the
design and usage of the next generation of resonators, os-
cillators, and frequency control devices. Knowledge of
higher-order elastic coefficients is needed to quantify the
nonlinear effects responsible for most frequency instabili-

ties. In addition, a design requirement of high-precision
quartz resonators, oscillators, and surface-acoustic-wave
devices is to incorporate in the analysis, by means of the
SOEC's and third-order elastic constants (TOEC's), non-
linear effects on resonance frequencies, such as the
amplitude-frequency effect, intermodulation of the reso-
nance frequency, and coupling between different vibra-
tion modes. The available data for higher-order elastic
constants do not provide a sufficiently comprehensive
description of the nonlinear acoustic behavior of quartz
over the range of temperature in which quartz devices are
usually operated. Third- and fourth-order elastic con-
stant combinations corresponding to some longitudinal
modes have been reported. ' The hydrostatic-pressure
dependences of the six independent second-order elastic
constants of quartz at 298 and 77 K and all of the four-
teen third-order elastic constants (TOEC's) at 298 K have
been measured ' using the ultrasonic pulse superposi-
tion technique. However, these data do not define the
temperature dependences of either the pressure deriva-
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tives of the SOEC's or the TOEC's. The present contri-
bution is to provide complex sets of values of
hydrostatic-pressure derivatives (dCI&/"dP)r p —0 of the

second-order elastic-stiffness-tensor components for
VHPQ in the temperature range 243 —393 K. To enhance
understanding of the physical origin and nature of the
elastic and nonlinear properties of quartz, a theoretical
calculation of the SOEC's and their pressure derivatives

(BCIJ/BP)z p o has been performed using the atomistic
simulation method. By comparing the calculated results
with the measured data, a rigorous test of the potential
used in the simulation can be made.

The pressure dependence of the SOEC's is one of the
consequences of vibrational anharmonicity of the acous-
tic modes in the long-wavelength limit in crystals. This
vibrational anharmonicity is related to nonlinear intera-
tomic forces with respect to atomic displacements. Thus,
knowledge of the pressure derivatives of the SOEC's is
essential to any investigation of the nonlinear elastic
properties and the acoustic-mode vibrational anharmoni-

city of crystals. Measurement of the effect of hydrostatic
pressure on the velocity of ultrasonic modes propagated
in a crystal is the most accurate way of determining these
pressure derivatives. When combined with the depen-
dence of ultrasonic wave velocity upon uniaxial stress,
such results lead to the eventual evaluation of the
TOEC s, which quantify the cubic terms in the strain
Hamiltonian. However, for many practical purposes the
hydrostatic-pressure derivatives of the elastic-stiffness-
tensor components suffice. For example they establish
the pressure dependence of the bulk modulus and hence,
the equation of state. They also can be used to evaluate
the acoustic-mode Gruneisen parameters, which measure
the effect of hydrostatic pressure on the frequency of the
long-wavelength acoustic modes and also the contribu-
tion of these acoustic phonons to the thermal expansion.
The temperature dependence of the hydrostatic mode
Gruneisen parameters has been determined by using the
measured (BCIJ /r)P)r p 0. This clarifies the variation of
the contribution of the acoustic-wave modes to the
thermal expansion of quartz as a function of temperature.

II. EXPERIMENTAL PROCEDURE

The samples used were two blocks of the recently
developed very-high-purity quartz (VHPQ) prepared by
the Hirst Research Centre of the GEC company at
Wembley, Middlesex. Three orthogonal reference faces
on each block were orientated using an x-ray goniometer.
One block was right-handed and was cut with its axes
along the X, Y, and Z crystalline axes, respectively. The
other was left-handed and was cut with its axes along a
direction at 45 between the +Z and + Y crystallograph-
ic axes, 45 between the +Z and —Y crystallographic
axes, and along the X axis, respectively. The sample faces
were polished optically parallel; all faces were flatter than
a quarter wavelength of 633-nm light. On the right-
handed XYZ block the worst face misorientation was
about 25 arc sec and the worst parallelism approximately
one fringe. On the left-handed rotated block at 45 from

+ Y to +Z, the misorientation of the rotated Y' axis was

2 6o
arc min and the face misorientation of the work

faces was —33 arcsec. The parallelism of the working
faces was close to a zero fringe. Having such accurately
prepared samples reduces the error from nonparallelism
and misorientation to the extent that it can be ignored.

Ultrasonic pulse transit times were measured as a func-
tion of pressure and temperature using the ultrasonic
pulse echo overlap technique, "which is particularly well
suited to determination of small changes in velocity. X-
and Y-cut quartz transducers with a diameter of 6 mm
were employed for generating the 10 MHz longitudinal
and shear wave pulses, respectively. Acoustic coupling to
make a thin, uniform transducer-sample bond to ensure
an exponentially decaying echo train was achieved using
either Dow resin 276-V9 or Du Pont thick film conductor
composition as the bonding material. The former provid-
ed good acoustic energy coupling for longitudinal wave
insertion throughout the temperature range (243 —393 K)
over which measurements were required but not for shear
waves above 313 K when it was not viscous enough. Use
of the Du Pont bonding agent formulated for higher tem-
perature usage overcame this problem. The procedure
employed for transducer-specimen coupling with the Du
Pont agent was: (1) to attach the transducer with Du
Pont couplant onto the sample work face, (2) bake at
353—373 K for 8 —12 h, (3) cool down naturally to room
temperature.

Hydrostatic pressures up to about 2X 10 Pa were ap-
plied in a piston- and-cylinder apparatus constructed
from EN26 nickel alloy carbon steel. The pressure
transmission fiuid was Dow Corning 200/1000cs silicone

fluid, which can operate in a temperature range of
243—450 K. Pressure was measured using a precalibrat-
ed manganin resistance gauge. '

Possible sources of error in the ultrasonic measure-
ments include a time delay due to the phase shift induced

by the bonding material estimated using the approach
developed by McSkimin' as about 0.02% in wave veloci-

ty and corrected for. Multiple internal reflections within
a transducer can lead to distortion of the pulse envelope
and to a time lag of the center of the reflected pulse rela-
tive to a signal reflected from the surface of the transduc-
er a correction has been applied using Kittinger's
method. ' An estimation of the error caused by the
diffraction field of the transducer, obtained using Papa-
dakis' analysis, ' shows that in a threefold (Z) axis direc-
tion in quartz, it is about twice for longitudinal wave ve-

locity measurements than for shear waves, but both are
less than 1% and have been taken into account. Applica-
tion of pressure alters the transducer resonant frequency;
it is necessary to make a correction for the transducer
phase shift due to this effect. ' The corrections have been
incorporated in the computational analysis involved in
calcu1ating the pressure derivatives of the elastic con-
stants. Errors in the other parameters, such as those of
pressure, temperature, sample dimensions, and density
incurred in the measurements are included in the quoted
deviations of the data. Temperature induced changes in
sample dimensions and density have been corrected for
using thermal-expansion coefficients for synthetic stan-
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dard grade quartz because those of VHPQ are unavail-
able.

To circumvent the necessary calculation of the change
in crystal dimensions incurred by application of pressure,
the experimental data have been transformed into the
"natural velocity" W (Ref. 18), which is defined by the
equation

W=2lof .

Here lo is the transit length of the wave and f is the mea-
sured frequency of wave round trips in a sample. The ad-
vantage of the natural velocity approach is that
(poW )p —p is directly related to the initial slope and in-

tercept of the measured frequency versus the pressure
curve of ultrasonic measurements:

ies' ' rather than negative. ' The tensor component
C,4 of both standard synthetic quartz and VHPQ
remains positive in the temperature range 213—393 K.

In the calculations of the pressure derivatives of the
SOEC's, it is necessary to distinguish between the
effective C,'k and thermodynamic C, -k elastic constants
as defined by Thurston. The superscripts eff, S,E indi-
cate the effective elastic constants and the thermodynam-
ic adiabatic elastic constants in zero electric field, respec-
tively. These quantities are related by

C t, =P(5,"5~ —5,. 5 k
—5,k5 )

~ ax, ax, ax„ ax.
po t)a t)a t)a„~}a,

(poW )p=o=&povof'Ifo,

where f' is the pressure derivative of the measured fre-
quency.

III. DETERMINATION
OF THE HYDROSTATIC-PRESSURE DERIVATIVES

OF THE ELASTIC-STIFFNESS- TENSOR COMPONENTS

Here X, are the coordinates of a particle in the initial
stressed state and a; are the coordinates in the strain-free
state. At zero pressure the effective SOEC's tensors and
the thermodynamic SOEC's tensors are equal: we can
use C-,k, to indicate the effective elastic constants at at-
mospheric pressure.

For piezoelectric crystals the SOEC's tensors C „k, are
coupled with the second-order piezoelectric coefficient
tensors en „as

The elastic-stiffness-tensor components of VHPQ have
been measured with high precision as a function of tem-
perature and the results need not be duplicated here.
However, the set obtained at room temperature is given
in Table I where a comparison (discussed in Sec. IV) is
made with results calculated theoretically using atomistic
simulation. Concerning the central objective of measure-
ment of the pressure derivatives of the elastic stiffnesses,
one important feature is that the sign of C &4 is confirmed
as being positive as reported from several previous stud-

=Cs, E enjr„Nn eks Nl
grks jrks

~nl n l

where the tensors C,",k, are called the "stiffened" elastic
coefficients and N, are the direction cosines of the mode
propagation direction.

The hydrostatic-pressure derivatives of the therrno-
dynamic stiffened elastic constants at zero pressure can
be defined as

estj rks

8CJ'„'k,

aI

S,E0Cjrks

as
+ enj Nn elksNl

. T &nlNnNl
gp g + g

njr n lks 1e N e N
j rks

C, nlN„Nl

TABLE I. Comparison between the theoretical values of CIJ and the bulk modulus B of a-quartz
determined at 0 and 300 K using the ASM model and those measured experimentally for VHPQ at 298
K. Pa.

T (K)

0
300
298

C„(10' Pa)

8.940
8.844

8.487+0.002

C, (10' Pa)

1.030
0.518

0.535+0.002

C„(10' Pa)

1.701
1.249

1.215+0.003

C (10' Pa)

3.955
4.163

3.976+0.002

T (K)

0
300
298

C, (10' Pa)

1.678
1.811

1.768+0.003

C33 (10' Pa)

11.218
10.206

10.555+0.001

C44 (10' Pa)

5.062
4.953

5.781+0.001

B (10' Pa)

4.218
3.770

3.651+0.003
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where

S,Fac,-;„
ta

for the modes measured here for a-quartz are given in
Table II. The pressure derivatives of the effective
stiffened elastic constants at I' =0 can be related to the
thermodynamic stiffened elastic constants by

r

. ~ij ~km ~im ~jk ~ik~jm +~ijkm
gp . /j Ill lltl j I jIll

++ ~ij km ~pj km ttip ~iqkm ttj q

~S, ,E ~S,E T, E
~ij rm ttkr ~ii ks ttms (10)

Thus pressure derivatives can be related to the measured
ultrasonic frequency data, using a similar approach to
that given for nonpiezoelectric crystals,

Po~of'/fo=(Po~ )'p=o

= —1 —
Uj Uk (2Povos&kq|j N„N—,Bj'„'~, ) .

Expressions for

0 0 TF= Uj UkSjkqq

and

Thurston has worked out the differences between the
B,„k,. and (dCj'.„k,/BP)r for crystal symmetries other than
monoclinic and triclinic without considering piezoelectric
effects. The expressions appropriate to a-quartz are
given, in matrix notation, in Table III. The method used
here is first to calculate the 8~",k, from the measured
f'lfo, next to determine B.„k,, then the derivatives with
respect to pressure (BCj'„k,ldP)y' p —o in the zero pressure
limit of the effective elastic constants are evaluated em-
ploying the relations in Table III. For convenience we
will henceforth denote the pressure derivatives of the
effective SOEC's as (BCjjldP)r p o with the SOEC's in

matrix form.
The hydrostatic-pressure derivatives of the natural ve-

locity (1/Wo)(BW/BP)p o of the modes given in Table
II have been measured at selected temperatures and the
pressure derivatives of the effective (dCjjldP)y' p —o and
thermodynamic (Bjj) SOEC's have been evaluated. The
wave velocities and their pressure derivatives in the zero
pressure limit have been obtained by a least-squares fit to
the measured data. A comparison of the experimental
values obtained for (1/8'o)(BW/BP)p o with the data of
McSkimin, Andreatch, and Thurston' at 298 K is given
in Table IV. For several modes there is reasonable agree-
ment with the earlier data obtained on, presumably at
that time, natural quartz single crystals (of unquoted pur-
ity). The higher-order elastic-stiffness behavior of a
piezoelectric crystal, such as quartz, would be expected
to be sensitive to crystal purity and perfection. Substan-
tial differences are found between the

TABLE II. The parameters F and B corresponding to the ultrasonic modes measured for the a-quartz structure. The mode num-

bers are the same as those used in Ref. 9. The direction cosines of the particle displacement of certain wave modes determined at 298
K are given at the bottom.

Mode N1 N2 N3 U1 U2 U3

r2 r2

$1

P;-';+0;~;2 2

r2 1+3 2 3
2 2

S1

Be&
B11+

BP . T

P';&--+VA&;A&~~

r 1B11 2r lr2B14r2B44

Be&B«+
BP

10

12

1/&2

—1/&2

1/&2

1/&2

S3

$1

01s 1 + 02S3

Sl

B44

01B11+( 1+20102 )B44+20102813

—2(01+0102)B14+02B33/2

Be&
(B44+B«) /2 —2814+

BP

r2

0.8529 —0.5221 0.4428 0.8966 0.5137 0.8580
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TABLE III. The analytical differences between the pressure
derivatives of the effective and thermodynamic SOEC's for the
o.-quartz structure.

(BC;, /BP) = —B„=—1+(s,—2s, )C, ',

(aC, /aP) — Blp =1+(s —2s, )C&z'
(aC, /aP), =,—B, =1—s C'„'
(aC, /aP) = —B, = —s, C'„'

(BC' /BP) = —B = —1+(2s, —3s )C,'
(aC, /aP) = —B = —1 —s C,",

(ac6', /aP) p —0 866= 1+(s —2s, )C66'

(1/Wo)(BW/BP)p o values for mode 1, mode 5, and
mode 10 obtained for the two different types of quartz.
The hydrostatic-pressure derivatives of the six indepen-
dent effective SOEC's (BCIJ IBP)T p o, calculated from
the measured (1/Wo)(BW/BP)~ o, are listed in Table V
as a function of temperature. The derivatives
(BC IBP)r p —p (BC]zIBP)T p —p (BC~3 IBP)T p —p and
(BC«/BP)T ~ o include piezoelectric contributions and
values with and without these contributions are given in
Table V(a); the piezoelectric contributions are consider-
able. For comparison, the values of the (BCI& IBP )T p —p

at 298 K given by McSkimin, Andreatch, and Thurston'
are also listed in Table V.

Since some modes include a piezoelectric contribution,
while others do not (Table II) the pressure dependence
measurements can be used to estimate the pressure
derivatives of the parameters e

&

=e» /c. ~&& and
e~ =(e,4

—e„)'/2(E"„+E3',), results are given as a func-
tion of temperature in Table V(b). The value obtained for
(Be, /BP), po at 298-K is larger than that quoted by
McSkimin, Andreatch, and Thurston. ' The values of
the pressure derivatives (BCIJ IBP)T p o obtained at 298
K, which have not been adjusted for piezoelectric contri-
butions, are in reasonable agreement with the
(BCIJ IBP ) y' p —o given by McSkimin, Andreatch, and
Thurston exceptions being (BC&3/BP)T p o and
(BC~4IBP)T p „, which are not related simply to mea-
sured velocities but have to be calculated from sequences
of sums and differences of squares. A notable difference
is that (BC,4/BP)r p o is found to be negative, although
a positive value was given by McSkimin, Andreatch, and
Thurston. ' This stems directly from the different signs
of the elastic constant C,4 used in the calculation;
McSkimin gives C,4 as —1.904X 10' N/m but in the
hand convention used we obtain a positive value

V0

V(P)

B0

can be used in the form

V0

V(P)
1,p P

ln 80 +1
g T (12)

(+ l.768+0.003 X 10' N/m ) (Table I) as do other work-
ers. ' ' The positive sign is retained in the tempera-
ture range 243 —393 K. The pressure derivative of the
adiabatic bulk modulus (BB/BP ) T p o with the
piezoelectric contribution abstracted is given in Table
V(b) as a function of temperature; (M/BP)T z o at 298
K is in reasonable agreement with that determined previ-
ously. "

The experimental results show that the pressure
derivatives (BCIJ/BP)T p o of the SOEC's (Table V) and
of the bulk modulus (BBIBP)Tz o [Table V(b)] are
markedly dependent upon temperature. Each of the
derivatives (BC„IBP)T~ o, (BC«/BP)T p o, and
(BC,~/BP)T ~ o (after removal of the piezoelectric con-
tribution) show a minimum value at about 283 K. These
minima are a direct consequence of a maximum in the
measured value of (1/Wo)(BW/BP)~ o for mode 5,
which plays an important role in these derivatives. Quite
different behavior with temperature is shown by
(BC„IBP) and (BC«IBP)T without adjust-
ment for the piezoelectric contribution. Both
(BC33/BP)T ~ o and (BC44IBP)T z o increase approxi-
mately linearly with increasing temperature. Both
(BC, IBP) and (BBIBP) o exhibit quite deep
minima at about 333 K in their temperature depen-
dences; these accrue from the measured value of
(1/Wo)(BW/BP)p 0 for mode 10, which shows a pro-
nounced minimum at this temperature. The physical
source of these minima is not yet known.

Knowledge of the compression V(P)IVo (the ratio of
the volume V(P) to the Vo at atmospheric pressure) is
usefu1 in theoretical studies of the physical properties of a
solid under pressure. Although the dependence of ul-
trasonic wave velocity upon pressure can be measured
with precision, the pressure range is limited. To evaluate
the compression at higher pressure, an extrapolation pro-
cedure based on the Murnaghan ' equation of state

TABLE IV. Comparison between (1/8'0)(BW/BP)r p o measured for VHPQ at 298 K and the pre-
vious data for quartz (Ref. 10). Units are 10 "Pa

Mode
Data

(VHPQ)

2.173+0.022
0.388+0.004
5.085+0.051

—3.467+0.035

Ref. 10

1.511
0.466
3.956

—3.665

Mode

7
9

10
12

Data
(VHPQ)

4.386+0.025
1.63 1+0.016
5.061+0.051'
2.818+0.028'

Ref. 10

4.507
(mode 8 ) 1.671

2.190

'Measured on left-handed quartz. In mode 12, the wave propagation direction is along
[0 —1/&2 1/V'2] and the polarization direction is along [100].
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This describes the compression of many solids well. Ul-
trasonic measurements give adiabatic moduli, so to use
this equation of state it is necessary to transform the in-
put data to isothermal moduli. The adiabatic bulk
modulus Bo for a-quartz obtained at 298 K from

Bo —[(C„+C,2 )C33 2C, 3 ]j[(C,1
+ C~2 )

+2C33 4C, 3 ] (13)

is given in Table I and its pressure derivative
(BBIBP)T z o written as (Bo ) at 298 K, from

TABLE V. (a) The hydrostatic-pressure derivatives (BCIJ /'BP) T p=o of the elastic-stiffness-tensor components including (indicated

by "P') and not including (indicated by "n") the piezoelectric contribution (Be; /BP)r ~=0 of VHPQ determined between 243 and 393
K and the comparison with previous data at 298 K. (b) The hydrostatic-pressure derivatives (BCIJ/BP)z p=o for those elastic-
stiffness-tensor components that do not involve a piezoelectric contribution, the hydrostatic-pressure derivatives (BB/BP)T p=o of
the adiabatic bulk modulus, and (Be; /BP )z p =0 of a-quartz between 243 and 393 K and the comparison with previous data at 298 K.

T (K)
1

+0.04
n

+0.02

(ac„/ap)„,
l

+0.05
n

+0.06

(a)
(ac„/ap)„, (BC13/BP) T, P =0

l n

+0.02 20.02

(ac„/ap)„=,
n

+0.03 +0.05

243
253
263
273
283
293
298
303
313
323
333
343
353
363
373
383
393

3.43
3.50
3.54
3.64
3.73
3.78
3.81
3.79
3.89
3.94
3.95
3.97
4.06
4.12
4.11
4.09
4.08

1.89
1.69
1.44
1.36
1.15
1.17
1.49
1.44
1.91
2.21
2.28
3.09
3.66
4.09
4.50
4.93
5.58

9.70
9.82
9.95

10.14
10.13
9.86
9.80
9.65
9.67
9.77

10.05
10.27
10.57
10.85
11.12
11.34
11.44

11.23
11.63
12.05
12.42
12.72
12.47
12.12
12.00
11.65
11.50
11.71
11.15
10.97
10.88
10.72
10.50
9.93

6.83
5.95
5.24
4.20
3.43
3.25
3.34
2.95
2.79
1.42
0.34
0.93
1.69
3.00
4.30
5.79
7.01

7.30
6.49
5.87
4.89
4.20
4.03
4.04
3.65
3.39
1.94
0.84
1.19
1.81

3.01
4.18
5.54
6.56

—3.13
—3.16
—3.21
—3.25
—3.20
—3.04
—2.99
—2.93
—2.89
—2.91
—3.05
—3.15
—3.26
—3.37
—3.51
—3.63
—3.68

—4.67
—4.97
—5.31
—5.53
—5.78
—5.65
—5.32
—5.28
—4.87
—4.64
—4.71
—4.03
—3.65
—3.40
—3.11
—2.79
—2.18

298' 3.28 8.66 5.97 —2.69

(b)
(BC33/BP)T p=o (BC~/BP)z p=o (BC&4/BP)y' p=o (BB/BP)T p=o (Be]/BP)T p=o (Be2/BP)T p=o

T (K) +0.03 +0.02 +0.04 +0.02 +0.02 %0.01

243
253
263
273
283
293
298
303
313
323
333
343
353
363
373
383
393

298'

8.71
8.86
8.91
9.02
9.24
9.45
9.51
9.57
9.71
9.86

10.04
10.17
10.20
10.33
10.45
10.56
20.77

10.84

1.28
1.38
1.43
1.57
1.68
1.75
1.84
1.88
1.90
1.98
2.04
2.12
2.20
2.31
2.39
2.41
2.51

2.66

—3.86
—4.06
—4.29
—4.37
—4.46
—4.27
—3.96
—3.91
—3.52
—3.29
—3.29
—2.69
—2.34
—2.07
—1.74
—1.39
—0.85

1.93

7.00
6.75
6.55
6.26
6.04
5.92
5.92
5.73
5.67
5.17
4.84
5.05
5.40
5.95
6.48
7.07
7.50

6.3

1.54
1.81
2.10
2.28
2.58
2.61
2.32
2.35
1.98
1.73
1.66
0.87
0.39
0.03

—0.40
—0.84
—1.50

0.005

—0.35
—0.48
—0.48
—0.51
—0.60
—0.49
—0.37
—0.41
—0.22
—0.19
—0.25
—0.09
—0.06
—0.02
—0.00

0.14
0.42

'Reference 10.
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8 o
—[(C]] + C&~ )C33 +C33( C

&&
+C r2 )

—4C&3C &3
—8o(C &&

+ C &~ )+2C33 —4C )3 ]/[(C&] + C)2 )+2C33 —4C)3 ]

(14)

aBs
r=

poC
(16)

where po is the density of the VHPQ under atmospheric
pressure and Cp is the heat capacity at constant pressure.
A value for Cp of 740.9 Jkg 'K ', estimated from the
empirical equation given by Samsonov, has been used.
The calculated isothermal bulk modulus Bo of the VHPQ
at room temperature is 3.626 X 10' Pa. The hydrostatic
pressure derivative Bo is given by

Bo 2 BBo
Bo =Bo + Tap 1—

Bo aBo ~ p

B T
+ TQP Bs

s 1 ~a
ov

(17)

is listed in Table V(b). The adiabatic and isothermal bulk
moduli are related by

80 =8 (1+ay T) .

For a-quartz, the thermal-expansion-tensor components
obtained at 298 K by using the results given by McSki-
min, Andreatch, and Thurston' are A» =13.932X10
K ', o.33=7.308X10 K ' so that the coefficient a of
volume expansion is 35. 172 X 10 K '. The Gruneisen
parameter y used in these calculations is 0.6544, which
has been calculated from

where (r)Bo /r)T)I, can be obtained from

BBo

()T p

M,'
BT 1+Tay

8,' T y (aa/aT),
1+

T (1+Tay )2 a/T

IV. THE ELASTIC-STIFFNESS TENSOR COMPONENTS
AND THEIR HYDROSTATIC-PRESSURE DERIVATIVES

CALCULATED USING THE ATOMISTIC
SIMULATION METHOD (ASM)

The temperature dependence of the adiabatic bulk
modulus (r)Bo /r)T), calculated from the measured elastic
constants is —0.78 X 10 Pa K ' for the VHPQ at 298 K.
For VHPQ (r)a/r)T)r»s K is not yet known and so it
has been estimated (as 6.604 X 10 K ') from the
thermal-expansion coe5cient results of McSkimin, An-
dreatch, and Thurston. ' Insertion of data for Bo (Table
I), a, y, and (Ba/BT) into Eq. (18) gives a value of
(r)Bo/r)T)r z9s z of —9.04X10 PaK ', and then from
Eq. (17) 8rI ( =r38o /r)P) is 5.94. The compression of the
VHPQ, calculated using the Murnaghan equation of
state, ' is compared with that of natural quartz calculat-
ed by Anderson who used the data measured by McSki-
min, Andreatch, and Thurston' and with those mea-
sured by Bridgman and Wackerle ' (Fig. 1). At high
pressures the experimentally determined compression is
rather less than that estimated from the ultrasonic data
as would be expected due to the tendency in any material
towards an increased stiffness in this pressure regime.

0,95

Q

C

0.9

CL
E0
O

0.85

Atomistic simulation is an effective technique for pre-
dicting structural, elastic and thermodynamic properties
of solids. The approach adopted in this study is based on
the classical Born model of solids, in which potential en-
ergy functions represent the interactions between pairs or
groups of ions or atoms in the structure. This representa-
tion allows a range of properties to be determined, in-
cluding the vibrational characteristics of a crystal. The
sum of interaction energies gives the lattice energy of the
crystal. In general the potential model used to describe
the interaction between a pair of ions is given by a simple
analytical expression

0.8
0

r r I

6 8 10

Pressure (GPa)

I

12 14 V; (r; )= +A; exp
q, q

r;J

C,

lJ

(19)

FIG. 1. The isothermal compression of quartz extrapolated
to very high pressures (solid line) by using the Murnaghan equa-
tion of state in comparison with experimental data [filled trian-
gles (Ref. 29), filled circles (Ref. 30), and 611ed squares (Ref.
31)]. The dotted line is the compression determined by Ander-
son (Ref. 26) using SOEC's and pressure derivative data from
Ref. 10.

where the erst term is the long-range electrostatic in-
teraction, q; and q being the charges of the ions i and j,
separated by a distance r; . The second and third terms
correspond to the short-range interaction, where the pa-
rameters A, , p, , and C, . are required for every pair of
species. The exponential term represents the repulsive
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Table VI. Potential parameters used in the atomistic simulation.

Interaction

O-O
Si-0

W (ev)

1388.7730
18 003.7572

pQ (A )

2.7600
4.8731

C'j (eV A )

175.0000
133.5381

Atomic charges

qo = —1.2
si 24

component between neighboring charge clouds and the
last term models the dispersive interactions. The accura-
cy of an atomic simulation method depends almost en-
tirely upon the chosen potential. The SOEC's are second
derivatives of the lattice energy with respect to strain and
their calculation provides a rigorous test of the potential
used. An even more stringent demand on the model is to
reproduce the experimental values of the hydrostatic-
pressure derivatives of the SOEC's which are third
derivatives of the lattice energy.

The potential used in this work was derived quantum
mechanically. In this calculation, the Si and 0 ions
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FIG. 2. The pressure dependences of the elastic-stiffness-
tensor components C&J of quartz at 0 K (squares) and 300 K (di-
amonds) calculated using the atomistic simulation method.

were treated as rigid and assigned partial charges, +2.4
for Si ions and —1.2 for 0 ions. The potential parame-
ters used in the modelling are listed in Table VI. To per-
form the calculation, the computer code PARAPOCS (Ref.
33) has been used to find the minimum energy structure
at a specific pressure and temperature. This method is
based on lattice dynamics and calculates vibrational fre-
quencies in periodic structures. A major assumption of
these calculations is the quasiharmonic approximation,
which assumes that the vibrational motions in the solid
are comprised of independent quantized harmonic oscil-
lators whose frequencies vary with the cell volume.

The pressure dependences of the SOEC's and the bulk
modulus of a-quartz have been calculated from zero pres-
sure to 12 GPa at 0 and 300 K, respectively. The calcu-
lated SOEC's at zero pressure are in good agreement with
the measured quantities (Table I). The calculated results
show nonlinear dependences of the SOEC's on pressure
(Fig. 2). Interestingly C~ reaches a maximum at about
30X10 Pa, while C66 has a minimum around 80X10
Pa. The pressure derivatives of the SOEC's as P~0 have
been obtained by a least-square fit method applied to the
data from zero pressure to 0.5 GPa. In view of the com-
plexity of quartz the calculated and measured
hydrostatic-pressure derivatives of the elastic-stiffness-
tensor components (Table VII) are in good agreement
validating the theoretical potential. In particular the
theoretical and measured values of (BC»/dP)r p o and
( 8C44 IdP )r p —0 agree well. Both the measured and
theoretically calculated pressure derivatives of the bulk
modulus are close to each other. All of the
( BC' /BP )T p —p are positive except for the
(BC66/dP )r p —p and (dC, IdP )T p —0. Thus, the
theoretical calculation confirms the experimental finding
of a negative value for (dC, ~/BP)r ~ 0 for VHPQ. The
( BCjJ/BP )r z o obtained from the theoretical calcula-
tion do not show as large a change between 0 and 300 K
(Table VII) as the measured temperature dependences be-
tween 243 and 393 K (Table V).

V. THE NEGATIVE PRESSURE DERIVATIVES
OF SOEC AND THE a-P PHASE TRANSITION

a-quartz (space group P3221 or P3,21 corresponding
to handedness) transforms at 846 K to P-quartz (space
group P6422 or P6222). In the high-temperature struc-
ture each Si atom is sited almost in the same position as
in a-quartz. The transition is driven by an optic pho-
non, which is very soft in the [(00] direction. There is
only one irreducible representation for phonons in +-
quartz with q in the [$00] direction so that one branch
cannot cross another: as the optic branch softens it
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TABLE VII. Comparison between the theoretical values of the hydrostatic-pressure derivatives
(BC»/BP) y p =o of the elastic-stiffness-tensor components of a-quartz determined using the ASM mod-
el and those measured experimentally.

T (K)

0
300
298'

(BC»/BP) y' p —o

1.72+0.01
1.41+0.02
1.49+0.02

(BC„/BP).. .
6.79+0.03
7.89+0.05

12.12+0.05

(BC„/BP)„=,
6.31+0.02
6.91+0.03
4.04+0.04

(BC66/BP ) ~ p =0

—2.53+0.02
—3.24+0.03
—5.32+0.05

0
300
298'

(Bcl4/BP)r, p=o

—2.22+0.01
—1.98+0.01
—3.96+0.04

(BC33 /BP ) T, P =0

14.72+0.02
15.39+0.03
9.51+0.03

(BC„/BP).. .
1.10+0.02
1.75+0.03
1.84+0.02

(BB/BP )

6.33+0.01
6.85+0.02
5.92+0.02

'Measured data, not including the piezoelectric contributions (Be; /BP ) y p =o.

pushes the transverse-acoustic phonon in that direction
down. This depressed acoustic branch has a slope co/q
equal to (C«/p)' . The experimental value of C« for
o.-quartz is consistent with the calculated depression of
this acoustic branch for a wave vector close to the zone
center. The shear elastic stiffness C66 for a-quartz
shows an anomalous increase with temperature ' and
(BC«/BP)r has a negative value, features that identify
acoustic-mode softening. A decrease in an elastic con-
stant under the influence of pressure can indicate inci-
pient lattice instability because it corresponds to a reduc-
tion in crystal stiffness for the associated acoustic-phonon
mode. The finding of a negative pressure derivative for
C« indicates that even at room temperature there could
be a degree of interaction between the soft optic phonon
and the transverse-acoustic phonon in the same crystallo-
graphic direction leading to the anomalous behavior of
C«with pressure and temperature.

The main contribution to the strain at the a-P transi-
tion is produced by rotation of the Si04 tetrahedra about
their respective twofold axes, which comprises the dis-

placement parameter in the a-quartz structure. The
soft-phonon eigenvector involves 20% Si stretch, 70%
oxygen tetrahedron rotation, and 10% oxygen stretch;
displacements evinced not only by the anomalous behav-
ior of C«but also by that of C,4. The soft optic mode
has B& symmetry. There is no plane wave of B, sym-

metry in quartz: C,4 is always coupled to other elastic
constants. Hochli and Scott showed that the soft elastic
constant C,4 in n-quartz is related to the displacement
parameter xo by C,4-xo and ultrasonic measurements
show that near the transition temperature the elastic con-
stant C&4(T) behaves as the displacement parameter, as
does the soft optic phonon frequency co(T) Therefore it.
can be deduced that the negative (BC,~/dP) z. is also one

of the results of the interaction between the soft optic
phonon and the transverse-acoustic phonon in quartz.

VI. THE ACOUSTIC-MODE GRUNEISEN
PARAMETERS

The pressure derivatives of the SOEC's quantify the
hydrostatic components of the coefficients of the cubic
terms (8 U(g)/Brl, b Bq,

d'art,

f )„0in the expansion of the
strain energy density U(g) with respect to the Lagrang-
ian strain and thus, the leading term describing the vibra-
tional anharmonicity of the long-wavelength acoustic
phonon modes. Normal practice is to discuss vibrational
anharmonicity in the quasiharmonic approximation in
terms of mode Griineisen parameters

y(p, q) = —(8 inca(p, q)/B ln V)r ~ (2O)

y Bco~(q)
Hypq=,

( ) aV( )=
T iP=O

(2l)

For a piezoelectric crystal the mode Griineisen parameter
can be calculated using

Here co(p, q) is the vibrational frequency of a mode of
wavevector q. In the quasiharmonic approximation pho-
non frequencies change with temperature only through
the lattice dimension, i.e., they are strain dependent and
the generalized Griineisen parameter can be calculated
from the elastic constants and their pressure depen-
dences.

For the particular case of volume change induced by
an applied hydrostatic pressure P, Brugger introduced a
generalized Gruneisen parameter

B T

Hy (N)= — [1+2s„kw (N)U Uk
—8'„'q, U UkN„N, ] .

2w (N)
(22)

Here B'-„'k, are the hydrostatic-pressure derivatives of the stiffened thermodynamic elastic stiffnesses. By considering the
relationships between B'.„'k, and B.,k, and those between B „I„and the pressure derivatives of the effective elastic
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stiffnesses, one can obtain the equations required for calculating Hy~(N) from the hydrostatic-pressure derivatives of
the effective elastic stiffnesses and for piezoelectric crystals in Laue group RI these equations can be written as

Hl'p(N}=
BT

2w [s,(U, +Uz)+s3U3]—
BP

Be&+ BP,+1+(2s,—s3)C, ', (Ni U, +N2U2)

BC66

BP

Be,+
BP

+1+(2s,—s3)C66 (N& U& N2—Uz}

+1+(3s3—2s& )C33 N3U3
dP

BC44 + 1+s3C44 [(N2 U3+N3 U~ ) + (N, U3+N3 U, ) ]S,E 2 2

BP

—1+s3Cf3 [(N|U)+N2U2)N3U3]dP

where

Ci4

dP r
+s, Cf4 [(N 1

—N2 }Uz U3+( U, —Uz )NzN3+2N, U, (N2U3+N3 U2)], (23)

(24)

w~=Cfp(N, U, +N2U2) +C66 (N, U2 N2U, ) —+C33 N3U3+C44 [(N2U3+N3U2) +(N|U3+N3U, ) ]

+2C )3 (N, N3 U, U3 +N2N3 Uq U3 ) +2C f4 (N ) U2 U3 N2Uq U3—+N2N3 U f +2N, N2 U) U3 +2N ) N3 U) Uq )

[e&&[(N| N2)U—)
—2N|NqU2]+e&4[Nq(N) U3 N3U))—+N)(N3Uq N2U3)]]—

[e»(N f +N2 )+e33N3 ]

si =s +s +s

$3 —2$ )3 +S33
T T

(25)

(26)

The acoustic-mode Griineisen parameters in the long
wavelength limit have been calculated as a function of
acoustic-mode propagation direction and temperature
from the measured elastic constants and their pressure
derivatives. Selected mode Gruneisen parameters as a
function of sound wave propagation direction are given
in Fig. 3 at 243 and 333 K. It can be seen that the values
of the parameters are strongly dependent on the sound
wave propagation direction as would be expected in a
highly anisotropic crystal. An exception is yL in the Y-Z
plane, which does not change much with propagation
direction especially at higher temperatures. The substan-
tial directional dependence of the acoustic-mode
Griineisen parameters is consistent with the anisotropy
shown by the linear thermal-expansion coefficients. In
the absence of mode softening the elastic constants and
the lattice vibrational frequencies increase under hydro-
static pressure, which raises the strain-free energy, so
that normally the mode Griineisen gammas are positive.
For quartz, most values of the mode Gruneisen gammas
are positive and lie in the usual range up to about 2.
However many mode gammas on one shear branch have
negative values; these arise because (r}C66/r}P)r p —p is

aVB aVB
Cv Cp

(27)

negative throughout the whole temperature range. There
are substantial changes in y, &

and y, 2 with sound wave
propagation direction in the Z-X plane in the vicinity of
333 K as the temperature is changed. These correspond
to the occurrence of the minima in (BC»/dP)r ~ p and
(dB/"r}P)r ~ p (Table V).

The temperature dependences of the acoustic-mode
Griineisen gammas of the modes propagated along the X,
Y, and Z axes are shown in Fig. 4. The notations used to
define the shear modes, which can be propagated along
these three axes, are given in Table VIII. Most of these
parameters show a marked temperature dependence. The
influence of the negative value of (BC66/BP)r p p can be
seen in the findings that y, 2 for wave propagation along
the X axis and y„ in Y axis have negative values ranging
from —0.793 to —0.063 and —1.184 to —0.916, respec-
tively.

In addition to being responsible for the nonlinear
acoustic properties of a crystal under finite strain, the
anharmonicity of lattice vibrations brings about thermal
expansion. At a given temperature the expansion results
from summation of the anharmonic effects of all the ex-
cited phonon modes rather than solely the acoustic
modes at the long-wavelength limit so that the thermal
Gruneisen parameter
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TABLE VIII. Terminology used to define shear
three major crystallographic axes.

acoustic-mode Gruneisen parameters along the

Ul

X axis
U~ U3 Ul

Y axis
Uq U3 U,

Z axis
U~ U,

ys I

$2

0
0

P2

Pi

P—i
Pz

0
0

yl
y2

y2

yl

0
1

0
0

(D

Q
E
05

Q.
C
M
Q

Q
Q)
O0

Q)

Q)

E

CL

Q)
M
Q)

:D
G
(D

0

2—

1

0

-1

-2

2—

1

0-

-1

-2

Z

Y$2

YS1

Wave-propagation direction

Y$2

YSf

X

Wave-propagation direction

'~

(b)

\
\

1

I
\

I
1
I

Q)

1.5-
CQ

g$
1

C
Q

0.5-

0
(3

-0.5-

0 ~
~ ~

~ ~

~„~ a ~ I ~ ~ ~ ~ ~
~ ~ ~ ~

k k
k kk

k

~ ~
k

k k
k

YL

Ys1

~S2

-1
200

I

250
I I

300 350

Temperature (K)

I

400 450

Q)

Q) 2
E
CO

C
CL

0-

(D
D0

~ ceo
~ e ~

~ ~ ~ ~

~ ~

~ g ~ ~ ~
~ ~ ~ ~ ~ ~

k k kk k k k k k

YL

Ys1

YS2

(where a is the volume thermal expansion coefficient, B
and B are the isothermal and isentropic bulk rnoduli,
and Cv and Cp are the specific heat at constant volume
and under constant pressure, respectively) can be ex-
pressed as the weighted average of mode Gruneisen pa-
rarneters y;
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FIG. 3. The directional dependence of Griineisen parameters
for mode propagation in (a) the Z-X and X-Y planes at 243 K,
(b) the Z-X and X-Y planes at 333 K, and (c) the Y-Z plane at
333 K.
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FIG. 4. The temperature dependences of the Griineisen pa-
rameters of the modes propagated along (a) the X, (b) the Y, and

(c) the Z axis.
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yth

yi&i

c;

where c; represents the Einstein heat capacity associated
with a mode i and rejects the contribution of the ith
mode to y'". The mean long-wavelength acoustic-mode
Gruneisen parameter yH in the high-temperature limit

(H) calculated using the elastic-stiffness-tensor and pres-
sure derivative data, which include the piezoelectric con-
tribution is plotted in Fig. 5. The observation that
(C» /C33 =0.80) (Table I) shows that elastically quartz is
rather softer in the basal plane than in the direction of
the threefold axis and the anisotropy (a33(a») of the
thermal-expansion-tensor components evinces this. Be-
tween 200 and 500 K, the thermal Griineisen parameter
y'" of quartz reduces from about 0.75 to 0.64 (Fig. 5). '

At these temperatures y'" should be much influenced by
optic mode contributions. Stress dependence measure-
ments of Raman-active mode frequencies, ' reveal that
lower frequency optic modes have large positive
Griineisen parameters. At low temperature (T(&8D)
the thermal expansion is mainly dominated by the acous-
tic vibration modes, and the negative values of some of
the acoustic-mode Griineisen parameters (Fig. 4) cause
the mean Gruneisen tensor component y» to decrease as
the temperature is lowered until it, and the thermal-
expansion-tensor component a33 become negative. '
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