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Critical exponents for site-bond-correlated percolation
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We examine a limiting case of the percolation model with site-bond correlation used in the description

of the magnetic behavior of KNi~Mgi F3. In this limit, a vacant site destroys the bond between a
nearest-neighbor pair along the line joining the three sites. Monte Carlo simulations for both the square

and triangular lattices are used to calculate the concentration thresholds and the critical exponent ~

describing the scaling of c1uster numbers; the latter is related to the order-parameter exponent P. We

find that the critical exponents are the same as those for uncorrelated percolation.

In the usual percolation problem, ' a given site (or
bond} is randomly occupied with a certain probability p,
independently of the configuration of its neighboring sites
(and/or bonds). One is then interested in determining
critical concentrations and exponents, as well as to estab-
lish the scaling properties of macroscopic quantities of in-
terest such as the number of clusters of size s, n„ the or-
der parameter (the fraction of sites belonging to the
infinite cluster}, P(p), the average cluster size, S(p},and
so on. '

The study of some disordered systems in recent years,
however, has suggested that uncorrelated disorder was
unable to account for all expected properties, so that
different models of correlated disorder have been pro-
posed. These models can be broadly classified according
to the correlation being long or short ranged. Examples
in the first category are thermally induced models ' and
the bootstrap percolation model, whereas in the second
group are high-density percolation and site-bond-
correlated models; see also Ref. 9 for related work.

The results available so far suggest that the effects of
long-ranged correlations are quite drastic: one finds new
exponents and, in some cases, first-order transitions;
they can also turn the temperature for correlated dilution
problems into an irrelevant (in the renormalization-group
sense) field near zero temperature. + ' In contrast, short-
ranged correlations are unlikely to give rise to a connec-
tivity exponent v distinct from the uncorrelated case.
Physically, the connectivity properties of the percolating
cluster are determined by its backbone which, in princi-
ple, is not too sensitive to correlations, provided they are
short ranged. On the other hand, the mass of the per-
colating cluster ean be afFected by correlations, since the
dangling bonds contribute to the behavior of P(p) and
therefore to that of the critical exponent P. Thus, there is
no reason a priori to discard the possibility of having
v„„=v „while P AP„„„„for a particular correla-
tion model.

Here, we examine the critical exponents for the so-
called site-bond-correlated percolation problem in
both the square and triangular lattices through Monte
Carlo simulations. This model was proposed by de
Aguiar et al. to explain some unusual experimental re-
sults on KNi Mg& F3. First, the decrease in the critical

temperature T„as the concentration p of magnetic ions
is lowered from one is faster for this compound than for
the isostructural KMn Mg& &F3, which is well described
by a standard (noncorrelated} diluted Heisenberg model.
Second, the phase boundary between antiferro- and
paramagnetic phases in the temperature-concentration
plane for KNi Mg& F3 displays an upward curvature,
which is absent in its counterpart for KMn Mg& F3.
As the magnetic behavior of pure KNiF3 is well de-
scribed by the Heisenberg model, the observed features
have been interpreted as signaling correlated dilution
efFects. Indeed, the authors of Ref. 6 recall that, while
in Mn + the electronic configuration is such that these
ions can form both e and m. bonds with the Quorine
ligands, the corresponding configuration in Ni + ions is
such that they can only form cr bonds. Due to the direc-
tionality of e bonds, if a nonmagnetic atom replaces an
Ni + ion, this will strongly afFect the interaction of two
nearest-neighbor Ni + along the line joining the three
atoms. Those authors then proposed a model with the
following expression for the exchange constant between
two nearest-neighbor sites:

where 5 denotes an elementary lattice vector, e; is a site
(random) occupation variable which equals 1 or 0 with
probability p or (1—p), respectively. As we are interest-
ed in the geometrical properties of the correlated prob-
lem, we set a=0 so that the bond between i and i +5
only exists if both sites i —5 and i +25 are occupied. If
0(a&1, the bond between i and i+5 is merely weak-
ened by the absence of a magnetic ion at i —5 or i +25,
and the disorder is effectively uncorrelated as far as
geometrical properties are concerned. Previous studies of
this percolation model have concentrated on the
square lattice and estimates were obtained for p, and v.
Although the latter was found to be approximately the
same as that of uncorrelated percolation, we feel that fur-
ther investigation is in order, in particular to obtain P. In
this way, more complete statements can be made with
respect to universa1ity classes. In what follows, we brieAy
review both the scaling theory of cluster numbers, as we11

as the Monte Carlo algorithm for percolation problems.
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We then present our results and conclusions.
Let us first define n, as the number of clusters (per lat-

tice site) with s sites. It is by now well established for un-
correlated percolation that, in the asymptotic region
s ~ ao and p =p, , one has (see, e.g. , Ref. 1)

(2)

where v and o are critical exponents, and f (z) is a scal-
ing function. A log-log plot of n, at p, can be used to
extract the exponent ~. Given the cluster size distri-
bution, n„one can calculate the fraction of sites belong-
ing to the infinite cluster,

geometric mean for that interval.
In order to test the method outlined above, we first in-

vestigate the uncorrelated problem on a square lattice, for
which very accurate results are available. '" Our esti-
mates for p, (L) were obtained from M-100 runs for
600 L ~ 1600, and from M —10 for L=5000. The corn-
putations were carried out in a 386 microcomputer; one
needs typically 10 steps of iteration to find p, (L, i) to four
significant figures, which takes about 4 minutes for
L=1000 and 25 hours for L=10000.

From finite-size-scaling theory, ' the shift in critical
concentration is given by

p, (L)=p, ( ~ )+ AL (4)

(the prime denotes exclusion of the infinite cluster), which
plays the role of the order parameter; other quantities
may be calculated as di8'erent moments of the distribu-
tion. ' %ith the use of hyperscaling, one can easily get'

7—2P=dv
7-—1

(3)

Since a calculation of P that is both direct and accurate
is very hard even for the uncorrelated case (see e.g., Ref.
1), one can use Eq. (3) instead. Our strategy for the
correlated case consists in taking v to be the same as in
uncorrelated percolation, as discussed in Ref. [7], and
determining v independently by Monte Carlo simulations.

The simulations can be outlined as follows. A
configuration is generated by initially occupying each site
of a lattice (of linear size L and with periodic boundary
conditions) at random with probability p. For the corre-
lated case one tests if every pair of occupied neighboring
sites is such that their nearest neighbors along the line
joining them are also occupied [see Eq. (1)]. If this condi-
tion is not satisfied the pair is not connected and they
only belong to the same cluster if there is another path
linking them. A few technical remarks are worth making
at this point. First, we use the Hoshen-Kopelman algo-
rithm' to verify if the configuration percolates or not;
this is achieved by assigning a label to each site to indi-
cate which cluster it belongs to. Second, with this algo-
rithm there is no need to store the con6guration of the
whole lattice, but only three lines (3XL); this should be
compared with the case of uncorrelated percolation, in
which only one line is needed. " ' By using the fact that
the same sequence of random numbers can be reproduced
for a given seed, one can determine p, (L, i), where i labels
the run (seed), as the concentration at which a spanning
cluster first appears. We repeat this procedure for M
runs to obtain the average p, (L) and the corresponding
standard deviation. One should note that this procedure
is distinct from the one used in Ref. 11,where the critical
concentration is signaled by the decrease in the partial
sum of cluster numbers.

The calculation of n, (p) is carried out by grouping the
possible cluster sizes into bins corresponding say, to sizes
between 2 and 2 +' —1, where k =1,2, 3, . . . . The to-
tal number of clusters with sizes in that interval, divided
by the size of the interval, is then n L, where s is the
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FIG. 1. Average critical concentration as a function of I
(L is the linear size of the lattice), for the uncorrelated case on a
square lattice (circles), and for the correlated case on the tri-
angular (triangles) and square (square) lattices. The lattice sizes
used are 1=600,700,800,1000,1600„5000; the error bars are
smaller than the data points.

where A is a nonuniversal amplitude. The circles in Fig.
1 represent p, (L) as a function of L '~', with v=~4, the
exact value; ' extrapolating to L = 00 one gets
p, =0.5930+0.(X62, which should be compared with

p, =0.5927+0.0001, as obtained by Rapaport" from
Monte Carlo simulations on a lattice with L =80000. In
Fig. 2, we show the cluster numbers n, as a function of s,
for a single run on a lattice of linear size L =10000, at
p =0.59305, which is very close to the extrapolated
value of p„ the slope provides the estimate
~=2.06+0.02, which should also be compared with the
exact value' r= 187/91=2.0549. These results indicate
that this procedure yields reliable estimates both for
p, (00) and for r, even though we are using somewhat
small lattices. Also, the present estimate for p(ao) only
relies on v being known, while the one in Ref. 11 assumes
a previous knowledge of ~. As argued above, the value of
v is sti11 an open question for short-ranged correlation
and one should avoid its use in estimating other quanti-
ties.

For the correlated problem the runs are about 1.6 and
2.5 times longer (for the square and triangular lattices, re-
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FIG. 2. Cluster numbers [Eq. (2)] at p, for uncorrelated per-
colation on a square lattice with L = 10000.

FIG. 3. Cluster numbers [Eq. (2)] at p, for site-bond-
correlated percolation on the square (squares, right axis) and tri-
angular (triangles, left axis) lattices with L =10000.

r( square) =2.03+0.03,
r( triangular ) =2.07+0.04,

(6)

indicating they are the same, within error bars, as ~ for

spectively) due to the environmental constraint; the typi-
cal number of runs for lattice sizes are the same as for the
uncor related case. Our results for p, (L ) are also
displayed in Fig. 1 (squares and triangles denote the
respective lattices) and the extrapolated values are

p, ( square ) =0.7395+0.0003,

p, (triangular) =0.6768+0.0002 .

For the square lattice, the above value should be com-
pared with p, =0.741+0.002, obtained by large-cell posi-
tion space renormalization group, whereas, to our
knowledge, this is the first estimate for the threshold in
site-bond-correlated percolation on a triangular lattice.
(See Fig. 3).

Our estimates for the cluster number exponent ~, were
obtained from lattices with L = 10000; the runs were car-
ried out at p =0.73961 and p =0.67773 for the square
and triangular lattices, respectively. We get

the uncorrelated problem. This suggests that no new
universality class is introduced by this correlation.

To summarize, we have calculated percolation thresh-
olds and the exponent describing the scaling of cluster
numbers; this exponent is related to P. The procedure
used to estimate p, in all cases turned out to be very reli-
able, and is intermediate between those used for many
runs on small lattices and those for single runs on very
large lattices. We can conclude by stating that the range
of correlations within this model is too short to give rise
to new critical exponents or to modify the scaling form of
cluster numbers. The possibility of subdominant (i.e.,
corrections to scaling" ) exponents being afFected by
short-ranged correlations was not examined here due to
our limited computer capabilities.
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