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We consider a two-dimensional hexagona1 nonlinear lattice with two sites per unit ce11 and an on-site

double quadratic potential, which can describe some phase transitions in lithium iodate. We investigate

the strip version of this model. The phonon stability and phase diagram of this strip-lattice model are

determined and compared to those of the infinite model to derive size effects on the static structure of
the lattice. Furthermore, our phase diagram provides theoretical support for the hypothesis of the ex-

istence of an intermediate modification of LiIO3 during the transition from a-LiIO3 to y-LiIO3.

I. INTRODUCTION

Spatially modulated systems, ' ' domain walls in fer-
roelectric and antiferroelectric crystals, or phase transi-
tions in various materials such as LiIO3 (Refs. 4, 7, and
8), NaNOz, or SC(NH2) (Refs. 11—13) have been inten-
sively investigated with various 1D (one-dimensional) and
2D nonlinear lattice models. All the models assume an
injinite lattice for the determination of the static struc-
ture (atomic positions, phase diagram} of the material.
Real physical systems, however, are finite, and their sur-
faces and boundaries can make appreciable contributions
to the physical properties of the material. It is notably
the case for lithium iodate, where the a-y transition or
even the existence of the y phase, described in more de-
tail below, depends strongly on the physical state of the
material: monocrystal, powder, or grain size in the
powders. Neutron-diffraction experiments, performed
on powders of LiIO3 with very small grain sizes (less than
20 pm}, show that phase-transition temperatures increase
as the grain sizes decrease. Furthermore Denes, ' who
studied phase transitions in SnFz, has shown that the
transition from a-SnF2 to y-SnF2 is greatly influenced by
particle size: The transition temperature increases as the
grain sizes decrease. Finite-size effects are also observed
in specific-heat experiments on phase transitions in
monolayers adsorbed at surfaces (e.g. , Ne or 02 adsorbed
on grafoil). ' On the other hand a large amount of
theoretical development on critical phenomena in sys-
tems with one or more finite dimensions —performed
with Ising lattice models. ' ' —yield some interesting
results: Ferdinand and Fisher, ' who examined some
properties of planar-Ising-lattice models, noted the
rounding and shifting of the specific-heat peaks as the size
of the lattice decreases. Similar results were also found
by Fisher and Barber' for the critical temperature of
finite-thickness films under boundary conditions.
Binder examined finite-size effects on phase transitions
in thin films and showed that both first- and second-order
transitions get smeared and shifted owing to the finite
size of the sample. Thus, size effects play an important
role on the physical properties of various materials.

Neutron-diffraction studies of the domain of stability

of y-Li103 (Ref. 22) show that y-Lii03 is never observed
as a single phase but always coexists with a- or P-Li103.
It is obvious that one cannot rely solely on infinite lattice
models to derive a bona fide description of the phase dia-
gram for mixed compounds or powders in which several
different phases coexist. Therefore, it is interesting—
from a theoretical point of view —to include one or more
finite dimensions to the nonlinear lattice models' ' men-
tioned earlier.

The purpose of this paper is to take into account the
size effects in the study of a 2D nonlinear lattice model,
since apart from Ising models all previous 2D nonlinear
models assume an infinite lattice for the determination of
the phase diagram. The natural and straightforward ap-
proach for studying the size effects would be to obtain the
phase diagrams for the infinite lattice and the finite lat-
tice, respectively, and then compare the two phase dia-
grams. However, before considering a 2D model with
finite size in both directions of the lattice, an important
question that should be answered is how size effects mani-
fest themselves in a 2D model when the lattice size is
finite in only one direction, that is, when a material is
sensitive to size effects in only one direction of the lattice.
We therefore examine the effects of finite sample size on
the phonon stability and phase diagram of an hexagonal
lattice, which will be made more precise below, with a
finite number of cells in one direction and an infinite
number of cells in the other, that is, an infinite strip with
finite width. This simple approach allows us to proceed
quite far in the theoretical analysis and facilitate the en-
suing numerical calculations. Our phase diagrams show
that, in strip structures, physical states containing
different phases in different grains of a powder are possi-
ble, in contrast to the phase diagram of infinite lattice
models in which the coexistence of different phases
occurs solely on the phase-transition lines. The strip-
lattice model therefore becomes interesting for describing
the phase transitions in some powders where phase coex-
istence is observed experimentally. Such an analysis is
also especially interesting for giving an account of some
phase transitions, which give rise to a considerable frac-
tioning of the crystals and the occurrence of an amor-
phous or a very divided phase as an intermediate step in
the transition. ' Such divided phases, made of very small
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crystallites, are generally difficult to observe directly ex-
perimentally. However, their existence has been suggest-
ed in some materials such as LiIO3 (Ref. 24) or SnF2 (Ref.
14). The increase in the phase transition temperatures at
smaller grain sizes observed in LiIO3 could be attributed
to the smaller probability of nucleation in a small crystal-
lite, but for some materials, such as BaTi03, the size
effects on the phase-transition temperatures are different
so that in such cases the sole nucleation process is not
sufficient to explain the observed behavior. Therefore a
theoretical treatment for strip-lattice models can be useful
for such cases.

Our theoretical treatment for strip structures is
relevant, in general, to hexagonal lattices in which two
order parameters in each basic cell can occupy two stable
equilibrium configurations. In order to illustrate this
point we consider as a test case lithium iodate, in which
the Li sublattice in the a phase forms an hexagonal lat-
tice and the rotational position of the IO3 ions can oc-
cupy two stable equilibrium configurations in the enan-
tiomorphic forms of a-LiIO3. Lithium iodate has been
intensively investigated in the last few years from an ex-
perimental point of view, owing to its piezoelectricity, py-
roelectricity, and nonlinear optical physical proper-
ties. Several distinct crystalline modifications of
LiIO3 are known. Two of them, known as a and P
phases, are stable at room temperature. Upon heating a-
LiIO3 transforms reversibly into y-Li103 (at about 500 K
with a large hysteresis), then y-Li103 transforms irrever-
sibly into P-Li103 (at 540 K), which is stable up the melt-

ing point (768 K). These phases of LiIO3 are discussed in
detail in Refs. 23 —27. A 2D hexagonal lattice model was
developed previously by Coquet, Peyrard, and Buttner
to study the phase transitions of LiIO3. In this model the
change of the Li sublattice is ignored and attention is fo-
cused on the rotation of the IO3 ions around the c axis
of the crystal, in an a-b plane orthogonal to the c axis.
Besides its fundamental interests, this model provides a
fairly complete description of the difterent enantiomorph-
ic forms of o.-LiIO3 and gives an account of the a-y tran-
sition of LiIO3. The model describes satisfactorily the
phase transitions of LiIO3, which are mainly character-
ized by the rotation of some IO3 ions around the c axis
and which do not involve a significant distortion of the Li
sublattice, as does the a-y transition. Coquet, Peyrard,
and Buttner have analyzed the phonon stability and ex-
amined some quasi-1D phases of the model, and recently
a more complete phase diagram including the true 2D
phases (that is, phases whose periodicity is greater than
one in the two directions of the lattice) were obtained. In
the present paper only such phase transitions are con-
sidered. Phase transitions that involve rotations around
an axis lying in the a-b plane cannot be described within
the present model.

We examine in this paper the static structure of the
strip version of the 2D hexagonal lattice model. Our cal-
culations for the strip mode1 show some typical size
effects on this phase diagram. We observe a
modification of the phonon stability region, which gen-
erates a change in the parameter regions of high-

temperature phases (that is, the phases that appear near
the phonon stability curves). We note that some phases
appearing in the infinite-lattice phase diagram are no
longer the ground states in the strip lattices, whereas
some other phases become the ground states only in strip
lattices with small sizes. Furthermore, the phase dia-
grams that we obtain in this work reveal an intermediate
2D phase whose 3D version has not yet been observed ex-
perimentally, which we call P", which appears only on
the transition line a*-y' for the infinite model, and
whose domain of existence increases in strip lattices. By
a' and y* we denote the 2D version of a- and y-LiIO3,
respectively, obtained by performing the projection of the
structure o. and y onto the a-b plane. The 3D version of
P* is therefore suggested by our treatment of strip struc-
tures as an intermediate modification of LiIO3 during the
transition a-y. This hypothesis has been already suggest-
ed by Crettez et al. , who performed neutron-powder-
diffraction patterns of ( a+ y )- and P-phase lithium
iodate. Their results suggest that the transition from a to
y proceeds through an intermediate phase, which may
we11 be amorphous or at least a very divided phase.

The paper is organized as follows: In the following
section we present the calculational procedure for obtain-
ing the commensurate static solutions for the atomic po-
sitions in the strip lattices. In Sec. III we perform the
phonon stability and the phase-diagram analysis for the
strip structures, and we derive size effects on the static
structure of the lattice. In the last section we summarize
all results of the paper. Our investigation consists of ana-
lytic as well as numerical calculations. These calcula-
tions treat intrinsically the discreteness of the lattice.

II. GENERAL STATIC SOLUTIONS

The model is schematically shown in Fig. 1. Two sites
i =1,2 lie at positions ( —'„—,' ), ( —,', —,') in each cell. The cells
are labeled by indices n, m and the sites by n, m, i. The
lattice is infinite in the m direction and consists of N sites
in the n direction, ranging from 0 to N —1. Each site is
characterized by an order parameter q„;, which
represents the rotational position of an iodate ion of
LiIO3. To take into account the two possible positions of
the IO3 ion observed in the enantiornorphic forms of

0 1 n-1 n n+I N-2 N- I

/ //, / / // / f
/ //:. /""/ // / /

/ // / / // / /
1 i i/ / / //

o site 1

site 2

FIG. 1. The strip version of the 20 hexagonal lattice model
under consideration.
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the a phase, an on-site potential with a double quadratic
form is assumed:

] 2 2
p 2p (qn, m, i S+n, m, i }

(for a site n, m, i), where cr„;=sg n(q„, ), p measures
the potential barrier, and 2c locates the two minima of
the potential. A site n, m, i situated in the bulk of the sys-

tern ( 1 ~ n ~ N —2 ) is connected to neighboring sites by
harmonic interactions of constant k 1 for the three nearest
neighbors of the second type, k 2 with the six nearest
neighbors of the same type i, and k 3 with the three
second neighbors of the opposite type so that the energy
per site for two sites in the cell n, m situated in the bulk
of the system is

2 2
fn, m, i TI (qn, m, I S~n, m, I)

+
4 1[(qn, m, l qn, m, 2} +(qn, m, l qn, m —1,2) +(q», m, i qn—+i, m, 2} ]

2 2+ 4 2[(qn, m, l qn —l, m, l } +('qn, m, l qn —I, m —1, 1} +(qn, m, l qn, m —1,1}

2+(q mn, l qn+I, m, l } +(qn, m, l qn+ I,m+1, 1} +('qn, m, l qn, m+1, 1} ]

+ 4k3[ qn, m, I qn —l, m —1,2} +(qn, m, l qn+ I, m —1,2) +('qn, m, l+'qn+ I,m+1, 2

2 2
fn, m, 2 2I (qn, m, 2 e~n, m, 2)

2+
4 I [(qn, m, 2 qn, m, l ) +(qn, m, 2 qn, m+1, 1} +(qn, m, 2 'qn —I, m, l }

2+ 4k2[(qn, m, 2 qn —l, m, 2} +(qn, m, 2 qn —l, m —1,2} +(qn, m, 2 'qn, m —1,2}

2 2+ qn, m, 2 qn+l, m, 2 +(qn, m, 2 qn+1, m+1, 2} +(qn, m, 2 'qn, m+1, 2}

2+ 4k3[(q mn, 2 qn —l, m+1, 1} +(q mn, 2 qn —l, m —1,2} +(qn, m, 2 qn+l, m+1, 1} l

We have used here a symmetrized form of the energy per site in which half the coupling energy of a site with its neigh-
bors is introduced —hence the factor 4 . The energy per cell n, m in the bulk of the structure is then

fn, m =fn, m, l+fn, m, 2 ' (2.1)

These expressions are formally equivalent to those of the infinite lattice; however, they must be modified in order to
correctly describe the system behavior at the free edges of the lattice. Thus,

fo, m =f0,m, 1+f0,m, 2 (2.2)

where f0, and f0 2 are obtained from the general expressions by removing the interactions with the n —l, m sites
(and replacing n by 0}. In a similar manner on the other side of the lattice

fN —I, m fN —I, m, l+fN —l, m, 2

is obtained by eliminating the interactions involving the n + 1,m sites. The total energy of the system is then

F=X X
m n=0

(2.3)

(2.4)

The static structure of the system is obtained by energy minimization, which gives the following equilibrium equa-
tions for each site.

For n = 1,2, . . . , N —2:

[IM +3(k, +k3)+6k2]q„m, —k, (q„m 2+q„m I 2+q„+I m 2)

k2(qn —l, m, l+qn —l, m —1,1+qnm —1, 1 n,q+mI, l+ q+nmI+, II+qm»+, II)
2

3('qn —I, m —1,2+qn+ I, m —1,2+'qn+I, m+1, 2) EP IT», m, i

[IM +3(k, +k, )+6k, ]q„,—k, (q„,+q„+»+q„ I I)

(2.5a}

2(qn —l, m, 2+1» —I, m —1,2+qm —1,»2+ qn+I, m, 2+''qn+I, m+1, 2+'qn, m+1, 2)

2
3 ~ ~n —1,m —1, 1 +Vn + 1,m + 1, 1 +Cn —1,m + 1, 1 ~ ~P ~n, m, 2

For n =0

(P +3ki + k2+2k3 }q0 I kl('q0, ,2+q0, —1,2+ql, , 2 } k3(ql, —1,2+ql +1,2 }

(2.5b)

k2(q0, —1,1+qi i +qi, +i, i +qo, +i, i }=Ep IT0 i, (2.6a)
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(p +2kl +4k/+ k3 )qp p kl(qp 1 +qp + 1 1 ) —k3q, +,
2

k2(qp, —1,2+q1, ,2+ql, +1,2+qp +1,2) EP +0 2 '

For n =X—1

(p +2k, +4k2+k3)qN 1 1
k—l(qN 1, , 2+qN 1,——1,2} k3'qN —2, —1,2

2
k2(qN —2, , 1+qN —2, —1, 1+qN —1, —1, 1+'qN —1, +1,1) eP ~N —1, , 1

(p + 3k 1 +4k2+2k3)qN —1, , 2 kl(qN —1, , 1+qN 1, +—l, 1+qN 2, —

2k (3q N—2, m2+'qN —2, m —1,2+qN —l, m —1,2+qN —l, m+1, 2) k3 qN —2, m 1, 1 qN —2, m+1, 1 P N —l, m2

(2.7b)

It is important to notice that in the infinite lattice each phase is characterized by its periodicity in the two infinite
directions of the lattice, whereas in the strip lattice the periodicity cannot be defined in the finite direction n. Thus, the
essential parameters to consider in calculating the static solutions of a strip lattice are 1V and P . For a given phase
with periodicity P in m and configuration o, embedded in a strip lattice with size X in n, we rewrite the equilibrium
equations (2.5), (2.6), and (2.7) with the periodicity condition

~n, m, i qn, m +P,i (2.8)

which gives us systems of equations that we rewrite in the following matrix form:

Bp Uo, p + Ap Ul, p Do, p
(o) T (2.9)

AP Un 1 p +Bp Un p + Ap Un+1 p =Dn p s for n =1/2/ ~ ~ yN 2

Ap UN zp +Bp U~ 1 p =D~ 1 p
(1)

(2.10}

(2.11)

whel e U p and D„p are the following 2P X 1

(column) matrices, respectively, for the atomic positions
and the configuration 0'.

B(1)—
1

P +3k, +2(k2+k3)
—2k,

—2kl

lu +2(k, +k2)+k3

(2.13c)

U„p

qn, O, 1

9'n, O, 2

qn, 1, 1

qn, l, Z

'7n, P —1, 1

qn, p —1,2

Dn p P

+n, 0, 1

+n, O, 2

~n, l, l

0 n, l, Z

+n, p —1, 1

~n, p —1,2

(2.12)

B(o)—
2

5o —k,

po
—2k —k2 1

—2k —k2 1

—k —2k1 2

5o —k, (2.14a)

1
—k —2k 2

B'z" has the same form
changed:

—k 2

—k 1

0 —k —k2 3

—k —2k —k2 3 2

—k, po

as Bz ', but with 5o and po inter-

—2k,

P +3k, +2(k2+k3)
(2.13a)

B(o)
1

—2k2 —(k, +2k3)

The superscript T denotes the transposed matrix; Bp ',

&p, Bp, and Bp ' are 2P X2P matrices (an n Xm
m m m

matrix is taken to mean a matrix with n rows and m
columns), defined as follows:

P +2(kl+kz)+k3 Bz=

with

—k —k2 3

—2k —k3 2

—k 2

—k 1

0

—k —2k —k1 2 1

5 —kl —2kz
—2k —k2 1

—k, —2kz —k,

(2.14b)

Bl = —2k,

A —k 3
—2k 2

P, +3(k, +k3}+4k& —2k,

p'+3(k, +k, )+4k,

5O =P +3k 1 +4kz +2k3

p =p +2k, +4kz+k3, (2.15)

5=P +3(k, +k3}+6k2 .

From P =3 upwards, the order of Bp(', Ap, Bp,
m m m
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and BP" becomes increasingly large so that it becomes

more convenient to express these matrices in block form.
Indeed, expressing the matrices Bp A p Bp, and BP",

m m m m

for P ~ 3, as P XP matrices whose elements are 2X2
submatrices, we find that they have the same general ex-
pression as the matrix QJ(x„x2,x3) given in Table I,
where by x„x2,x3 we denote nonzero 2X2 submatrices
and the subscript j indicates the order of f (QJ. .is a jXj
matrix). Thus, each of the matrices Bp Ap Bp, and

m m m

BP is now determined by a unique set of three 2 X2 sub-
m

matrices x1,x2,x3 for all P «3. In this notation these
matrices have a simple form:

Bp =gp (b1 bo b 1 ) Bp =ttip (b1 bo b 1 ) (2 16a)

T„p = —(Ap T„1p +Bp ) 'Ap

(2.19a)

(n =1,2, . . . , N —2) . (2.19b)

Also, from Eq. (2.9), one straightforwardly obtains

in which the matrices S„P and T„P are to be deter-

mined. Substitution of Eq. (2.18)—at order n —1—into
the nth equation (2.10) yields the relationship between

U„p and U„+, p in (2.18), subjected to the following

recursion relations:

S„p =(Ap T„,p +Bp } '(D„p —Ap S„,p )

AP Pp (+1 ~2 ~3) P Pp ( l»b1 }

where
—k —k2 1

0 —k2

0
—k 1

—k, P0

5 —k,

(2.16b)

(2. 17a)

So,p. =(Bp.'} 'Do, p. To,p. = —(Bp.'} 'Ap. .

(2.20)

Finally, substitution of the solution (2.18)—at order
N —2—into Eq. (2.11) yields

UN 1p =(Ap Tn 2P +Bp )

X(D„1P P SN 2 p }=SN 1 P

(2.21)

a1=

Q2=

Q3=

—k —k2 3

—k —k3 2

—k2 0
—k —k1 2

0 0
—k3 0

(2.17b)

bo has the same form as bo, but with 5o and po inter-
changed.

Equations (2.9), (2.10), and (2.11) form a tridiagonal
system for matrices. We then solve these equations using
the well-known recursive Choleski method, ' which we
have extended to work with matrices instead of numbers.
Thus, we introduce the recursion solution —at order
n —of the form:

n, m, i g (Qnmi, , (2.22)

so that if Eq. (2.22) is not fulfilled, the corresponding
solution is not valid. We now consider the phase diagram
for the strip lattice.

We stress that this calculational procedure —using the
following two-step process —enables us to obtain all the
commensurate static solutions for an ¹trip lattice (i.e.,
with size N in n )

(i) We first calculate all the S„p 's and T„p 's using,

successively, the recursion formulas (2.20), (2.19a),
(2.19b), and (2.21) (in this order). Note that Eq. (2.21)
also gives us, straightforwardly, Uz

(ii) Next, we make use of Eq. (2.18), with n ranging
from N —2 to 0, to obtain the others U„P 's. The static

solutions q„, must, of course, be checked for self-

consistency at each site. The self-consistency conditions
are written as

n7P ~nP + nP Un+1&P (2.18)
III. PHASE DIAGRAMS

Xz X3

xl Xz x3 0 ~ ~ ~

0 xl
0 0

P, (x&,x2,x3)=
0 xl xz x3 ~ ~ 0 0

0 x& xz x3 0

0 0

x3 0

0 Xl

0
Xz X3

xl Xz

TABLE I. General expression of matrix 1iij(x, ,x2, x3 ), of or-
der j. Each element of g, (xi,x2,x, ) is a 2X2 submatrix, and

x&, Xz, and X3 denote nonzero submatrices.

y„,. = Y.exp( jabot)exp[ —j (ng, +mg2)], (3.1)

A. Phonon stability analysis

For a nonlinear lattice the phonon stability generally
depends upon the particular phase that is considered.
This is not the case for our model, owing to the piecewise
harmonic double-well potential. Thus, a general investi-
gation of phonon stability analysis for our system can
now be performed. Furthermore, we recall that the
infinite lattice is a system with two degrees of freedom in
a cell n, m, so that the eigenfrequencies for the small am-
plitude displacements of the form
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q„,=q„,+x„,exp(jest)exp( —jmg),

q„,=q„,+x„2exp( jabot)exp( —jmg),

(3.2a)

(3.2b)

in which Q is the component of a wave vector Q=ga in
the first Brillouin zone. The squares of the frequencies co;

(i =1,2, . . . , 2N) are given by the eigenvalues of the fol-
lowing 2N X2N matrix P:

P1 1 P1,2

(pT )e p (3.3)

near the equilibrium configuration (q„,=q„, ) in a
given phase, co& and co&, depend upon the model parame-
ters and the components Q, and Q2 of a wave vector
Q=g, a+Q2b in the first Brillouin zone. The squares of
the frequencies, co1 and co&, have been previously obtained
by Coquet, Peyrard, and Biittner. Thus, for a given pa-
rameter set k„k2, k3,p, the injtnite lattice is linearly
stable if the two eigenfrequencies co1 and co& are positive
for all Q in the first Brillouin zone. Owing to the finite
size in the n direction, the basic cell of an ¹trip lattice
is, in fact, a row of N cells n, m in the n direction. This
strip lattice gives, therefore, a system with 2N degrees of
freedom per basic cell. We then look for solutions of the
form of small amplitude displacements near the equilibri-
um configuration

Thus, for a given parameter set, the stability condition
for an ¹trip lattice is written as

a~, )0, for i =1,2, . . . , ZN, and for all Q . (3.5)

2 I I
I

I I I I
I

I I I

p. =Sk&=3.0 (a)

~+i
- B&ilB

VIII

/+ /++/
/-/+//

/-+/- //+/, /,
/++/-+/ /+ /++/- /

I I I I I I

07 « i I
]

I I I I
t

I I I I
)

I I I I
f

I I I I

p, =Bk=3. 0 (b)—

Note that the condition (3.5) depends not only on the
model parameters, but also on the size of the lattice in the

with 0.6—

0 X* 0 0 0 0

P11=

0
0

0 0
0

ol 0

0
0

0
0

0 0 ~ ~

0

0

0

x
0

0

x
0

0 0 0
0 0

0

'(3 4)

0.4—

0.3
—1.6 —1.4 —1.2 —1 —0.8

k1

—0.6
I I I I I I I I ] I I I I I I I I I I i 1 I I

P1 2=

0
0

0
0

0 0 0 0 0

0

7l

0

0 0
p, =3k~=3.0 (c}

I I I

I
I I I I

I
I I I I

In these expressions the superscript "e" designates the
complex conjugate,

t)o=p +3k, +2k 3+2k~(2 —cosQ),

8, =p +2k, +k3+2k~(2 —cosg),

t) =p +3k, +3k3+2k2(3 —cosg),

y = —kz [ 1+exp( jQ) ], ri = —k 3exp( jg),
g= —k, [1+exp(jg)], A, = —(k, +2k3cosQ) .

Pz z has the same form as P. .. but with 80 and 8, inter-
changed.

—15—
— /+/ / / /+/+/

/++/- /
2 2.5

FIG. 2. Plot of the phase diagram of the infinite lattice ob-
tained by Tchofo Dinda and Coquet (Ref. 4). (b) and (e) are en-

largements of the small boxes B and C, respectively, shown in

(a) ~
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finite direction of the lattice. In Fig. 2(a) the shaded bor-
der indicates the stability curve for the infinite lattice, ob-
tained by Coquet, Peyrard, and Biittner. This curve
consists entirely of straight lines with sharp intersections.
It has been shown in Ref. 8 that in the domain of the pa-
rameter space that appears in Fig. 2(a) the model pro-
vides the best qualitative description of the a-y transition
of LiIO3. The same domain of the parameter space was

subsequently used for performing a more complete
analysis of the phase diagram from a theoretical point of
view. We consider in the present paper the same domain
in the parameter space in order to make the connection
with previous work ' and, hence, facilitate the compar-
ison with the findings of previous work ' and our strip
calculation of phases. We determine the stability curves
for the ¹trip lattices, from N =10 upwards. Figures 3,
4, and 5 show the stability curves for N =10, 11, 40, 41,
80, and 81, indicated by the shaded borders in the figures.
The reasons for choosing those values of N are given in
the following section. Size effects on the phonon stability
become evident when these stability curves are compared
with that of the infinite lattice in Fig. 2(a). As general re-
sult, we observe a rounding of the sharp intersections of
straight lines (that are present in the stability curve of the

infinite lattice) as the size N of the lattice decreases.
Furthermore, all the stability curves (for the values of N
considered) essentially lie entirely in the phonon stability
region of the infinite lattice. For lower N values, the sta-
bility curves have a paraboliclike shape (Fig. 3). As N in-
creases, these curves progressively collapse on the stabili-
ty curve of the

infinite

lattice. These curves, for higher N
values, consist of straight lines (very close to those of the

infinite lattice) connected by smooth intersections. The
fact that these intersections are still round for N =80
simply implies that for the corresponding parameter re-
gions the value of N chosen is not yet suScient to induce
an ingnitelike behavior. Furthermore, we stress that the
shift in the curves as a function of the size N is very slow
so that it is only slightly visible in Figs. 3, 4, and 5, which
indicates that these systems are in states that are ex-
tremely sensitive to boundary effects, even if the boun-
daries are at very large distance apart. As a result of the
modification of the stability curve in the strip lattices, the
domain of existence of high-temperature phases (those
are phases that appear near the stability curve in the
phase diagram) is modified and shifted. We now consider
the phase diagrams.

I I
)

I I I I
i

I I

p, =3k~=3.0 N=10

2 I I
I

I I I I
I

I I I

p, =Sks=3.0 N=40 (~)

0—
0—

I i t t i I

I I I I I I I I I I I

k1

I
' ' ' '

I

p =Sks=3.0 N=11 (b) p, =Sks=3.0 N=41 (b)

0— 0—

I i i & i I I & i I & I

k1

FIG. 3. Plot of the phase diagram of the strip lattices for
p2=3Jc& =3, N =10 (a) and N =11 (b).

k1

FIG. 4. Plot of the phase diagram of the strip lattices for

p =3k, =3, N =40, (a) and N =41 (b).
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2 I

0—

I I I I I I I I I I I

0—

I i i i i I

k1

FIG. 5. Plot of the phase diagram of the strip lattices for

p =3k~ =3, N=80 (a) and N=81 (b).

B. Ground states

As mentioned earlier, we emphasize that a periodicity
can be defined only in the infinite direction m of an N-
strip lattice, so that the unit cell of a periodic structure
with period P in an ¹trip lattice consists of a group of
XP cells n, m embedded in the strip. Since our ap-
proach looks for periodic structures, hereafter only the
unit cells of commensurate phases will be considered.

2NP
For each of these unit cells there exists altogether 2
possible configurations o., which are candidates for the
ground state for a given parameter set. Only some of
them correspond to energetica11y different phases because
of symmetry reasons. However, since the possible
periods P range from unity to infinity (incommensurate
phases), there are, in fact, an infinite number of possible
configurations, which are candidates for the ground
states. Since we are interested in size effects on the phase
diagram, we consider in this work the strip versions of
some commensurate phases that we considered recently
for studying the infinite lattice. In order to indicate pre-
cisely what we mean by the strip version of a commensu-
rate phase of the infinite lattice, let us introduce some no-

tations that will make the discussions more clear. By
"R eS phase" we denote a commensurate phase of the
infinite lattice with periodicity R in n and S in m. By
[cr ]& I we designate the configuration of a group of l„l
cells n, m embedded in an inj7nite or strip lattice. We
build up the configuration of the unit cell of the strip ver-
sion of a commensurate phase R +S by setting a succes-
sion of identical building blocks [cr ]n s along the n direc-
tion, across the strip lattice. It is important to note that
in the infinite lattice the directions n and m are strictly
equivalent so that a commensurate phase [cr]II s is the
satne phase as [o ]s II obtained by simply interchanging
the n and m axes. So if R XS, then two different
configurations for the strip version of [cr]II s (:—[o']sII )

can be constructed depending upon the way the building
blocks are disposed along n in an ¹trip lattice. If one
disposes the building block [cr ]II s along n in a way such
that the period of the commensurate strip version P is

equal to R, then the number of identical blocks within
the unit cell constructed will be h, =int(N/S), where
"int(x)" designates the integral part of x. In order to fa-
cilitate some forthcoming discussions, we treat S as a
pseudoperiod in n, denoted P„'. On the other hand, if one
disposes the building blocks so that P =S (P„"=R), that
will yield hz=int(N jR) identical blocks within the unit
cell of the strip lattices then constructed. For performing
the phase diagrams we systematically consider that of
these two commensurate strip versions, which corre-
sponds to the largest number of identical building blocks
per unit cell (i.e., the lowest pseudoperiod P„*). This
choice allows us to treat strip lattices with relatively
lower N values (which is advantageous for numerical
computations), and which contain enough identical build-
ing blocks to exhibit bona fide size effects. Furthermore,
for the forthcoming discussions we denote the commens-
urate phase of the infinite lattice by Roman numerals,
and the commensurate strip version of a phase J ("J"is a
Roman numeral) as [J]z h, where N and h refer, respec-
tively, to the size of the lattice in n and the number of
identical building blocks per unit cell. In plotting the
phase diagrams we use the notation [J] instead of [J]~„
for simplicity.

In order to facihtate the comparison between the phase
diagram of the infinite lattice and that of the strip lattice,
we consider the strip versions of the 140 phases that we
examined recently in performing the phase diagram for
the infinite lattice. In this reference all the centrosym-
metric configurations and those with an inversion center,
with the following periodicities are considered: 1+1,
1e2, 1+3, 1+4, 1+5, 2+2, 2+3, 2+4, and 3+3. This is
largely sufficient to draw most of the interesting con-
clusions for LiIO3 for which only phases with low periods
are known. However, it should be mentioned that the re-
striction to those phases does not exclude the possibility
of the existence of higher-period phases or even the in-
commensurate phases. However, such phases generally
occupy very small parameter regions when they appear in
a phase diagram (compared to the region occupied by
lower-period phases) for double-quadratic systems. ' ' ' '

Furthermore, it is obvious that the phase diagrams for
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different N values have to be considered to obtain a bona
fide description of a powder, where one can find different

N values (for the strip lattices) even for a given average

grain size. Figures 3, 4, and 5, where only phases that oc-
cupy the larger regions in the phase diagrams are men-

tioned, show the results obtained for N =10, 11, 40, 41,
80, and 81. As general results we find that the strip ver-

sions of some phases that are present in the phase dia-
gram of the infinite lattice also appear as ground states in
the phase diagram for the strip lattices. Those are phases
a', y', (()' (see the discussion below for the reason why

is not visible in Fig. 2), I and IX. The configuration of
P' is given in Table II. On the other hand, some quasi-
1D and true 2D phases, which are not present in the
phase diagram of the infinite lattice, become the ground
states in some parameter regions for the strip lattice.
Those are phases [X], [XI], [XII], [XIII], and [XV]. The
configurations of their corresponding infinite versions are
given in Table II. Furthermore, we stress that with the
exception of phase P the strip versions of the true 2D
phases, which are present in the infinite lattice do not ap-
pear as ground states in the strip lattices because of self-
consistency reasons. This suggests that the true 2D
phases are much more sensitive to size effects than the
quasi-1D phases.

We now discuss in more detail some interesting results.
We first cominent on size effects on phases a', y*, [P'],
and the a*-y* transition. We point out that in the phase
diagram for the infinite lattice (Fig. 2), in fact, in addition
to a* and y* another phase also exists along the a'-y*
transition line. That is phase P". Note that the
orthohexagonal unit cell of this phase consists of the jux-
taposition of the orthohexagonal unit cells of the its two
adjacent phases a* and y'. This intermediate phase has
not been revealed in previous work. "' Furthermore,
Figs. 6 and 7 giving plots of the energies of phases [a'],
[y*], and [P]' as a function of N better illustrate size
effects on these phases in the transition regions between
[a'] and [y"]. Note that the energy of [a'], represented
by the horizontal straight line in Fig. 7, is always zero
owing to the fact that the [a'] phase lattice is always
equivalent —with regard to its static structure (atomic
positions) —to a fictitious lattice where the interactions
between sites do not exist (k, =k2 =k3 =0). In this ficti-
tious lattice all the atoms lie naturally in the same equilib-
rium position q„;=c representing one of the minima of
the local potential (which corresponds to a zero total en-

TABLE II. Configuration of phase P* and the commensurate
phases which are not present in the phase diagram of the infinite
lattice, whose strip versions are the ground states in some pa-
rameter regions in the phase diagrams for strip lattices in Figs.
3, 4, and 5.
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FIG. 6. Plot of the energy of the strip structures [o,'], [y ],
and [p~] vs N for p =3k, =3 and k, = —0.85, k&=0.4. The
horizontal straight lines represent the energies of their corre-
sponding infinite version a, y", and P .
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ergy). Therefore, size effects —which result in some miss-

ing couplings at the free edges of the lattices —do not
affect the static structure of this lattice. Furthermore, we
also see in Figs. 6 and 7 that the energy curves of [P']
versus N oscillates. We think that this energy oscillates
because in [P'] the pseudoperiod is P„'=2 (and P =2),
and therefore two types of ¹trip lattices [P']~„can be
constructed depending on whether N is even or odd,
corresponding, respectively, to mod(N, h) =0 and
mod(N, h)= —,

' [mod(N, h) designates the remain of the
division of N by h]. The two envelope curves of these os-
cillations correspond precisely to mod(N, h)=0 and
mod(N, h) =

—,', respectively. Also note that P„' = I in the

strip structures corresponding to quasi-1D phases of the

infinite lattice, and consequently only one type of
the ¹trip lattices "[J]zh" corresponding to
mod(N, h) =mod(N, N) =0 can be constructed, for all N.
That is the reason for which the energy of [y ]' versus N
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FIG 7. Plot of .the energy of the strip structures [a ], [y ],
and [P ] vs N, for @2=3k,=3 and k, = —2k2=2. The hor-
izontal straight lines represent the energies of their correspond-
ing infinite version a*, y, and P*.
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does not oscillate. We also note in Figs. 6 and 7 that the
energy curves of [P*] and [y*] versus N progressively
approach horizontal straight lines, which represent the
energy of their corresponding infinite versions, as N in-
creases. Figure 6, performed in the E region (delimited
by the small box "E"in the phase diagrams in Figs. 3, 4,
and 5), shows —for the parameter set considered —that
for the strip lattices with size N & 16, phase [P'] is the
ground state. For 16&N &35, [(t)*] is favorable with
respect to [y"] for odd N values, whereas [y'] is the
ground state for even N values. Consequently, in a
powder of strip structures with an average grain size X
ranging from 16 to 34 the ground state consists of the
mixture [y*]+[P*](since in such a powder there are sta-
tistically as many grains with size N odd as with size N
even). For N ~ 36 we see that [y*] is the single ground
state. We note that in the case of LiIO3 this is not in
agreement with experimental results, which show that y-
LiIO3 always coexists in a mixture with another phase of
LiIO3. ' Consequently the parameter regions between
[a*]and [y*] that are situated towards or in (that is, in
the E region and its vicinity) the E region are not ap-
propriate for describing phase transitions.

On the other hand Fig. 7—performed in the D region
of the phase diagrams —shows, for the parameter set
considered, that [y'] is the ground state for odd N
values, whereas [II)*] is the ground state for even N
values. That is the reason why [P*] does not appear ei-
ther in the D region in the phase diagrams in Figs. 3(b),
4(b), and 5(b), or in its vicinity. Consequently in a
powder of strip structures, for the parameter set con-
sidered, [y'] never appears as a single ground state but
always coexists in the mixture [y*]+[P*] or
[a"]+[y']+[/*]. We note that in the case of LiIO3
this behavior is not inconsistent with experimental re-
sults, ' unlike the behavior in the E region discussed
above, Moreover, in general, the whole parameter region
of [(()*]—that is situated towards or in the D region of
the phase diagrams [in Figs. 3(a), 4(a), and 5(a)]—is, in
fact, the parameter region where the mixture [y*]+[P']
appears as ground state in a powder of strip structures.
We stress that this coexistence of several distinct phases
in a same region makes the phase diagram for the strip
lattice quite different from those of infinite lattice models
and thus shows that the strip lattice can better describe
some physical states like mixtures of phases or powders
with distinct phases.

Furthermore, we see that as X decreases, the domain of
existence of [y']+[/*] spreads towards the phonon sta-
bility region, that is, towards the high-temperature
phases, which corresponds to an augmentation of the
transition temperatures from [a*] to [y*]. A similar
phenomenon is observed for powders of LiIO3, in which
the phase-transition temperatures increase as the grain
sizes decrease. Although a comparison between our re-
sults and the effects in the real crystal LiIO3 cannot be
done in a straightforward manner because of the simplici-
ty of our model with respect to the complexity of the
effects in the real material, it is, however, clear that the
region of the transition line a*-y* in which the model ex-
hibits some behaviors similar to those one observes in

I I I I
I

I I I I
I

I I

k~= —2k2 ——2.0

M K

FIG. 8. Plot of phonon dispersion curves for the in/rnite lat-
tice model, for p =3k

&

=3 and k
&

= —2k2 =2 in the directions
I -M, M-K, and E-I, in the Brillouin zone.

LiIO3 reduces to a small parameter region neighboring
the set p =3k3, k, = —2k2 =2 in the D region of the pa-
rameter space. We reemphasize that in the other regions
of the transition line a"-y* (which is of interest to us) the
model exhibits some behaviors that have neUer been ob-
served experimentally. Furthermore, it is also interesting
to mention that inelastic-neutron-scattering measure-
ments for dispersion curves for optic phonons in a-LiIO3
in the directions X and T [X=M—I, T=I —K, I
=(0,0,0), K =(2Ir/3, 2vr/3, 0), M=(0, Ir, 0)] of the Bril-
louin zone show, within the limit of experimental error,
that one of the two frequencies (for the rotation of 103
ions) is essentially constant: cu =(4. 1+0.1)10' Hz.
Such a behavior occurs in the infinite-lattice model solely
for the set k& = —2k2=2 of the transition line a*-y* in
Fig. 2 (see Fig. 8), which is situated precisely in the D re-
gion.

Our calculations for strip phases have revealed the
presence of an intermediate phase II)" between a' and y"
in the D region of the parameter space. This phase P*
has not been revealed in previous work ' owing to the
fact that its domain of existence is reduced to some ex-
tremely small parameter regions —essentially on the tran-
sition line a*-y* in Fig. 2 so that it is not visible in these
figures. The observability has become possible because its
domain of existence increases as the size of the strip lat-
tice decreases, so that P* becomes clearly visible at small-
er strip lattice sizes. This result illustrates clearly one of
the interests of our strip calculations for the theoretical
treatment of classical nonlinear lattices. Furthermore,
the presence of the phase P* between a* and y* shows
that our strip calculations —which consider only the
preponderant phenomenon that characterizes the transi-
tion a-y of LiIO3, that is, the rotation of the IO3 ions
around the c axis of the crystal —gives a theoretical sup-
port on the hypothesis of the existence of an intermediate
phase of LiIO3 during the transition cz-y. This hypotheti-
cal modification of LiIO3 was already postulated in view
of some NMR results. In this reference, although the
authors do not propose any structure for this hypotheti-
cal phase, denoted a' —LiIO3 in Ref. 24, they report
some of its essentia1 features suggested by their
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diffraction and NMR results, that this phase might be an
amorphous, or at least a very divided phase and that its
domain of existence is very narrow. %e note that these
correspond precisely to the main features of our phase
P', mentioned above. Furthermore, since the transition
from a- to y-LiIO3 involves only a very slight distortion
of the Li sublattice, one can conceive that in the first
step of this transition the crystal transforms into a phase
in which only a quarter of IO3 ions of a-LiIO3 have ro-
tated according to the configuration of P' (see Table II),
and the Li sublattice remains unchanged (or becomes
very slightly distorted) related to the hexagonal lattice.
Then, upon heating, the crystal transforms into y-LiI03
according to the mechanism suggested in Ref. 24, briefly
discussed below.

Thus, the presence of P* in our strip-lattice phase dia-
gram and its main features suggest its 3D version, which
we denote hereafter as $-LiIO&, as a possible phase of
LiIO&. We have used here the notation P-LiIO& instead
of a'-LiIO3 used in Ref. 24 just to avoid any confusion
with a-LiIO3. Figure 9 shows schematically the projec-
tion of the structure of P-LiIO& onto the a bplan-e or-
thogonal to the c axis of the crystal, that we obtain by
simply applying for each IO3 ions of the unit cell the ro-
tational position +9 according to the configuration of P'.
Indeed by calculating the static solutions q„, in the pa-
rameter regions, where P' exists, we find that the abso-
lute value ~q„; ~

is the same for all IO& ions as well in
P* as in a', which suggests that 8=15 in P-LiIO&, as
well in u-LiIO3. However, the rotational positions of

2b

2b

Q Lithium

~ Iodine

Oxygen

FIG. 9. Projection of the structure P-LiIO3 and y' —LiIO3
onto the a-b plane. Only one unit cell of each phase is
represented.

IO3 ions in the very divided phase P-LiIO& is certainly
somewhat different from 15' at the vicinity of the boun-
daries of the structure because of the extreme sensitivity
of P-Lil03 to the division state of the material. That is
precisely what we find by calculating the static solutions

q„; for the strip structures [(I}'].
$-Lil03 possesses eight formula units per unit cell

(Z =8), and we find that it is space group is P63. Note
that P and a have the same space group. Assuming the
existence of the phase P-LiIO& can allow the explanation,
at least partly, of why P-Lil03 has not yet been directly
observed in difFraction experiments, and why Crettez
et a/. have failed to refine the structure of a-LiIO3 from
their mixed sample a+ y +P.

%'e think that a possible explanation is the following:
The a and P phases have the same space group, and con-
sequently their diffraction diagrams yield the same Bragg
reflection angles and differ solely in the intensity of the
reflections owing to the fact that the number of formula
units per unit cell difFers in two phases. Moreover, since
the domain of existence of P is extremely narrow and in-
creases only in the case of extreme division of the crystal,
it is clear that the ratio P ja or P/y in a mixed sample
a+y+P is very small, and consequently the intensities of
the Bragg refiections for P are relatively weak but can be-
come perceptible in powders with very small grain sizes.
One can then conceive that Crettez et a/. have succeed-
ed in determining the structure of y from the sample
a+y+P because the space group of P (and a) differs
from that of y, and they have failed to obtain the struc-
ture of a because of the presence of P, which acts rather
like a smalI perturbation of the intensities of the Bragg
reflections of the a phase. However, another possible ex-
planation of their intensity data might involve fragmen-
tation of the crystallite during the transition because of
the strains localized at the interface between phases or
even the coupling between surface and boundary effects
and strains localized at the interface between phases that
become extremely important in very divided phases; this
shows that, nevertheless, our model oversimplifies the
effects in the real material, and that additional theoretical
and experimental investigations are required in order to
confirm the existence of the phase Q-Lil03.

An important point related to the description of y-
LiIO3 with the 2D model under consideration should
now be clarified. In fact, the space group of y-LiIO3,
Pna2&, corresponds to an orthohombic Li sublattice and
consequently cannot be rigorously described with the
present model. However, the present model can be used
to describe the transition from a to y, since the model
takes into account the preponderant phenomenon that
characterizes this transition, that is the rotation of IO3
ions around the c axis of the crystal. Nevertheless in or-
der to avoid any confusion we use for some forthcoming
discussions the notation y' to designate the 30 version of
y, in which the Li sublattice is quite hexagonal instead
of y as we did before. The phase y'-LiIO3, whose projec-
tion onto the a-b plane is schematically shown in Fig. 9,
has been suggested in Ref. 24 as an intermediate step dur-
ing the transition from a to y from which the system re-
laxes into the more energetically favorable phase y by a
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slight distortion of the Li sublattice, small cooperative
shifts and small tilts of IO3 ions from the c axis. In the
first step of the mechanism suggested in Ref. 24 half of
IO3 ions of a rotate and a transforms into y'. Assum-
ing the existence of Q-Lil03, one can conceive an inter-
mediate step between a and y' in which only a quarter of
IO3 of a rotates, which gives rise to P. Then, upon
heating, a quarter of IO3 of P rotates and P transforms
into y', and then the system relaxes into y. This shows
that the main steps of mechanism for the transition a-y
suggested in Ref. 24 are preserved in the presence of P-
LiIO3.

IV. SUMARY AND CONCLUSION

We have considered in this work the strip version of
the two-dimensional hexagonal lattice in the double-
quadratic substrate considered in Refs. 4 and 8. Our re-
sults show that size effects modify the phonon stability
region in the phase diagram of the lattice, which involves
a slight or significant modification of the domain of sta-
bility of high-temperature phases depending upon the pa-
rameter regions. Size effects also involve complete
changes for the ground states in some parameter regions,
in that some phases appearing in the phase diagram of
the infinite lattice are not longer the ground states in the
strip lattices for self-consistency reasons. The true 2D
phases appear to be much more sensitive to size effects
than quasi-ID phases. On the other hand, some other
phases appear as ground states solely in the strip lattices,
which shows that in some parameter regions the strip lat-
tices are extremely sensitive to boundary effects even if
the boundaries are at large distances apart, which gives
rise to divided phases. We have found several 2D divided
ground-state phases of the model. The general features of
one of them, P', suggest a new modification of LiIO3,
whose 2D projection is shown in Fig. 9. This result has,
of course, to be checked experimentally. The process for
directly observing this hypothetical phase from
diffraction experiments is in current progress. Further-
more, all results shows that the hexagonal model under
consideration qualitatively describes some essential

features, and particularly the transition from a- to y-
LiIO3 solely for a very small parameter range neighbor-
ing the set p =3k3 =3, k, = —2k2 =2 of the model.

However, it is clear that at the actual stage of the de-
velopment of theoretical treatments of 2D nonlinear lat-
tice models, one unfortunately cannot yet construct mod-
els that accurately describe some interesting properties or
effects —such as size effects —for real crystals, which are
generally very complicated. In this context our strip
calculations w—hich take into account size effects in the
theoretical treatment of a 2D nonlinear lattice model —is
just a step in the development of more realistic models
for real physical systems. An important question that
remains to be answered is how size effects manifest them-
selves in a two-dimensional model with finite size in the
two directions of the lattice. Furthermore, a useful ex-
tension of the model would be to include the rotations of
IO3 ions around axes lying in the a-b plane, which could
allow us to give an account of P-Lil03. It would also be
interesting to estimate the difficulty of nucleation of y by
computing the energy of the interface between the a* and
y* phases in order to provide a more likely explanation
of the size effects on the a-y phase-transition temperature
in LiIO3. Finally we would like to point out that we have
extensively discussed the case of LIIO3 merely because it
provides an example of size effects about which we have
extensive experimental data. However the approach that
we have presented here to analyze the phase diagrams of
a strip lattice can be easily extended to other cases. Our
analysis suggests that size effects can significantly affect
the phase diagram of a lattice and therefore must not be
ignored.
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