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Spin-wave velocity renormalization in the two-dimensional Heisenberg antiferromagnet
at zero temperature
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We compute the spin-wave dispersion of the square-lattice Heisenberg antiferromagnet at T=O
within the Dyson-Maleev formalism, to order 1/S. This allows us to calculate the spin-wave velocity
renormalization factor, Z„to order O(l/S~). For the 8= —, case, it is found that Z, =l.1765

0.0002, in very good agreement with series-expansion estimates.

A renewed interest in two-dimensional antiferromag-
nets has been recently brought about by the discovery of
high-T, superconductivity, partly because the undoped
parent La2Cu04 is a magnetic system which is believed to
be well represented by a square-lattice spin-2 antiferro-
magnetic Heisenberg model. The antiferromagnetic
Heisenberg model (HAFM) has been a challenging prob-
lem for many years and very few exact results are known

up to date. In particular, in contrast with the S& 2

case, ' the very nature of the ground state of the two-

dimensional spin S= —.
' system is not known rigorously,

and only through recent numerical work, considerable
evidence has been gained that the ground state indeed has
long-range antiferromagnetic order.

Among the approximation techniques used to tackle the
HAFM, spin-wave theory (SWT), in its different versions,
has turned out to be an extremely useful tool providing
very accurate results, even for the S —,

' systems, despite
the fact that SWT is believed to be only an asymptotic ex-
pansion in the parameter 1/S. Many authors have re-

centl~ addressed the question of how good SWT is for
S &, by calculating higher order terms on this asymp-
totic expansion for several physical quantities and com-
paring the spin-wave theory results with the results ob-
tained with other methods, e.g., series-expansion calcula-
tions. Recently Castilla and Chakravarty have calculat-
ed the staggered magnetization of the square-lattice
HAFM T=0 to order O(1/S ). They found that, up to
this order, the spin-wave expansion generates asymptoti-
cally small terms, so that the inclusion of the O(1/S )-
order term does not ruin the excellent agreement between
spin-wave theory and recent Monte Carlo and series ex-
pansion estimates of the staggered magnetization.

In this paper we want to carry out a similar analysis for
the T =0 spin-wave excitation energy of the square-lattice
HAFM, given by the Hamiltonian

H=JQS;. S , I
(ij )

where the sum extends over distinct pairs of nearest neigh-
bors. In particular, we shall study the long-wave limit of
the spin-wave dispersion, which, on the basis of general
principles, is supposed to vanish linearly for small wave
vectors, according to the relation cok —ck as k 0, where
c is the spin-wave velocity. Within spin-wave theory, c
can be written in the form

2J2SJa
( )C (2)

HpM =const+Ho+ VpM.

The quadratic part Ho is given by

(4)

H0 Z It t) k(ttkttk+PkPk)
k

(5)

where n =k[ JZS(ttS) h/] e,kek=(1 —yk)', and a(S)
=1+r/2S. The function yk is defined as

iak. S3't= —Z e
Z

and the sum over b is over the z =4 (for the square lat-
tice) unit vectors connecting site i with its nearest neigh-
bors. The constant r is the k-independent correction to

where a is the nearest-neighbor distance. Z„(S)is a re-
normalization factor which is expanded in powers of 1/S.
The first two terms of the expansion have been known for
a long time and give

Z, (S) 1+0. 15795/2S+ O(1/2S)

The most precise estimate of Z, . (S) comes from series ex-
pansion which gives 1.18 ~0.02 for S=

2 . The purpose
of this paper is to determine the O(l/S ) term in the
spin-wave expansion of Z, . and show that this correction is
small but not negligible and, in fact, it makes the agree-
ment between the SWT result and the series-expansion es-
timate almost perfect. We use the Dyson-Maleev (DM)
transformation"' to map the spin Hamiltonian of Eq. (1)
into a boson Hamiltonian. The DM transformation must
be preferred to the more familiar Holstein-Primakoff
(HP) transformation, because the infrared singularities of
the spin-wave interaction vertices are handled much better
by the DM formalism. A correct treatment of the spin-
wave interaction vertices is crucial for any calculations
that want to go beyond the noninteracting SWT, such as
the one that we are about to describe. The DM boson
Hamiltonian, obtained from the spin Hamiltonian equa-
tion (I), is the sum of a quadratic term and a quartic
term. ' The quadratic term is then diagonalized by a Bo-
goliubov transformation; the quartic term is expressed in
terms of the quasiparticle operators and normal ordered.
The total Hamiltonian finally reads
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the linear spin-wave dispersion coming from the normal ordering of the a and P boson operators in the quartic term. It is
known in the literature as the Oguchi correction and it is approximately 0.1 57 95 in two dimensions. The quartic part of
the Hamiltonian is expressed as

VDM = — g 6o(1 +2 —3 —4) [ V a~ aqa3a4+ V a{P2a3a4+ V a) aqP3a4+ V a~ a3P4P2+ V P4a3P~P~
zJ (2) (3) t t 4 (4) t t (S)
4& (l, 2, 3,4)

+ V{6)PtPt tP + V{7) 't tPtPt+ V{8)P P + V{9)P)P)P /1 ]

We shall use the abbreviations 1 for kl, 2 for k2, and so
on. In Eq. (7) the Kronecker delta function BG(1
+2 —3 —4) expresses the conservation of momentum to
within a reciprocal-lattice vector G. The vertex functions
V VJI234) i =1, . . . , 9 are the DM vertices. Their ex-
plicit expressions have been derived by several au-
thors. "' %e have recently rederived them using a
slightly diff'erent parametrization ' in order to implement
the umklapp processes that are possible when GWO. Fol-
lowing Ref. 1 3, the vertex functions can be written in the
form

G.{o)(k, co) =
N Qg+ig

(io)1

N+ Qg lg

G,t) (k;to) =GtI, (k;a)) =0.
G„and G)It) are represented by the diagrams shown in

Fig. 1 .
The Green's functions G„,satisfy a matrix Dyson's

equation "

~(l 234) & l & 2& 3&4 ~(l 234)
(i) (i) (8)

G„,(k, a)) =G„,(k, to)+QG„„(k,co)Z„s(k,co)Gs„(k,a)),

where uk=[(l+eq)/2eql' . The singularity of the ver-
tices is entirely contained in the prefactor u l u 2u 394,
which diverges like k 't, when any one of the momenta
vanishes. On the other hand, V{I234) are regular functions
of the momenta, which furthermore vanish linearly when
k3 or k4 vanishes. As we show below, this property turns
out to be essential to take care of the divergences of the
vertices in the calculation of the second-order self-energy.
The noninteracting spin-wave dispersion Ok, which is the
lowest-order spin-wave dispersion renormalized by the
Oguchi correction, immediately yields the first two terms
of the 1/S expansion of Z, given in Eq. (3). In order to
compute the 1/S correction, we need to take the magnon
interaction into account. We do this by using a Green's
function formalism. W'e define the following time-ordered
magnon Green's functions

G..(k, o))=
1

o) —nk Z„(k—,m)+i "t
(i 2)

The dispersion for an a spin wave with wave vector k is

given by the pole of the propagator G„(k,co), that is by
the real part of the solution of the equation

to —n) —Z„(k,o)) =0. (i 3)

Again, to leading order in
~ ~Z(k, co)

~ [/n) the solution of
Eq. (13) can be approximated as

(ii)
where the self-energy Z„s(k,co) can be expressed in the
usual kind of diagrammatic expressions. It turns out"
that Z„s(k,to) is small compared to the unperturbed ener-

gy nk, so that, to leading order in ) ]Z(k, co) [ ~/nk Eq. (11)
can be decoupled and we obtain

tok= ng+geZ„(k, ng) (i 4)

iG„(k;t—t') =(yp) Tag(t)ak(t')
~ {ttp&,

iGt)t)(k;t —t') =&{yp~ TPgt(t)P), (t')
) {)to&,

iG,t)(k;t —t') =()ttol Ta~(t )P~(t') I))to&

iGt).(k;t t') =({ttolTPk(t)ak(t'—) I{tto&.

For the unperturbed propagators we obtain '

where we have used the fact that the imaginary part of the
on shell (i.e., to = nk) magnon self-energy is identically
zero at T =0. '

It is possible to show that the first-order correction to
the self-energy, which is of order O(1/S ), is identically
zero at T =0, both for co on shell and oA shell. This is due
to the fact that all the quartic vertices have been normal
ordered. ' The second-order self-energy, ' which is of or-
der O(l/S), is given by the two diagrams shown in Fig. 2.
The analytical expression is

z.{.)(k, to) = n BG(k+2 —3 —4) 2 V{),234) V(432k)
1

[4Sa(S)1 N {2 3 4) CO E2 E3 E4+ l g

—8 V (k)34) V (432),)
M+ E2+ E3+ E4

(is)

where n,.„=JzSa(S) and co =p)/nm. . Using the property of the vertex functions given in Eq. (8), it is possible to see
that the products V/g)34)V/4/2g) and V 34)V/4j2'k) are regular functions of the momenta. ' '
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FIG. 1. The single-arrow line corresponds to the bare a prop-
agator T. he double-arrow line corresponds to the bare P propa-
gator.

The on-shell self-energy g„(k,Q k) gives a I/S correc-
tion to the magnon dispersion. We have evaluated this
correction by computing numerically the phase-space in-

tegrals in Eq. (15) in different ways, including lattice
summations and the Monte Carlo method. In Fig. 3 we

show the result for

Z k, Qi,
Ri, = [2Sa(S))'

Qg
(16)

as a function of k inside the antiferromagnetic Brillouin
zone. We find that the correction is small and positive—i.e., the magnon dispersion becomes slightly stiffer. We
can see that the second-order term increases the disper-
sion by approximately 2/0 for a wave vector close to the
zone center and by approximately 4% for some of the
wave vectors on the zone boundary. In order to compute
the correction to Z„aprecise evaluation of Rg for k 0
is needed. First we attempted to calculate Rt, for small

but finite k and extrapolated to k 0. This procedure is

not very stable numerically, though, since close to the
zone center Rt, contains the difference between almost

equal terms, whose magnitude diverges as k~ 0. Howev-

er, it is possible to show analytically' that Z„(k,Qi, )
vanishes linearly as k 0. This is expected, since, be-
cause of the rotational invariance of the Hamiltonian, the
elementary excitations must be gapless. ' Therefore, in

order to obtain a more precise result we expanded

Z„(k,Qt, ) in a power series around k=0, removed the
canceling terms at k =0 and computed the coefficient b of
the linear term by the Monte Carlo method. It is impor-
tant to note that a correct treatment of the umklapp is

essential here. The result is

[2Sa(S)1'Z.".'(k, Q&)6= lim =0.0215+ 0.0002. (17)
k 0 Ok

The error estimate corresponds to 1 standard deviation,
and 10 terms were used in the evaluation. This result is
in complete agreement with the results from evaluations
at small k, described above. Now Z„canfinally be rewrit-
ten as

Z, (S) 1+0.15795/2S+ b(1/2S) +O(1/2S), (18)

which for S=
& yields Z, . =1.1795+ 0.0002. As we men-

tioned above, ' Eq. (18) is obtained by expanding the

FIG. 3. Normalized self-energy R)„defined in Eq. (16), as a
function of the wave vector inside the HAFM Brillouin zone.

second-order self-energy in powers of 1/S and keeping
only the term of order O(l/S). If instead we want the
correction to Z, given by the "total" second-order self-
energy we obtain

Z, (S) 1 +0.15795/2S+ [b'/a(S) ](1/2S), (19)

which may be interpreted as a perturbation expansion in
the quartic term, VDM. For S —,', Eq. (19) gives
Z, 1.1765 ~0.0002. Both Eqs. (18) and (19) are in ex-
cellent agreement with the series-expansion result 1.18
+'0.02. Recently, Igarashi and Watabe' have calculated
the second-order correction to the self-energy by using the
HP formalism. They found that the correction is negative
for all the wave vectors and quite large near the zone
boundary. Their Z, is decreased by approximately 2% by
the 1/S correction. We believe that our result is more re-
liable because of the aforementioned property of the DM
vertices, that all the infrared singularities cancel out
order-by-order. This property is not shared by the HP
formalism. In addition, our calculation retained the um-
klapp processes which were neglected in Ref. 16. Our re-
sult strengthens the belief that the S%T expansion is a
useful and reliable tool, whose low-order terms indeed
give very precise results. A lengthy calculation, within the
same formalism, of the Raman spectrum will be presented
else~here. '
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FIG. 2. Second-order self-energy diagrams for the a magnon.
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