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Thermodynamics and correlations of the quantum Toda lattice
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The aim of the explicit evaluation of the equilibrium thermodynamic properties of the quantum

Toda lattice is here reached by a method which reduces the evaluation of quantum statistical averages

to a classical configurational integral. This is done by constructing an eff'ective potential of the same

form as the original one, whose parameters are renormalized by the quantum Auctuations. In addition

to quantum specific heat (in agreement with Bethe ansatz calculations), explicit results for meaningful

static correlation functions are reported.

The one-dimensional lattice with nearest-neighbor ex-
ponential interaction, ' also known as the Toda lattice,
has been widely studied in recent years. ' Its main dis-
tinctive feature is that it is exactly solvable both in the
classical and in the quantum regime, and the exact in-

tegrability is associated with a realistic interaction poten-
tial. Indeed the Toda lattice can either be assumed as a
model for complex physical systems like, for example, the
DNA molecule, ' "' or it can be used to mimic the behav-

ior of' other nonlinear, more complicated, pairwise poten-
tials, like the Lennard-Jones ones.

The problem of the classical dynamics of the model was

already solved by Toda, "'-' and the macroscopic thermo-
dynamic properties of the classical system can be obtained
in terms of the Euler I function and its derivatives.
Despite the full integrability, which has been shown by an

algebraic method ' and by quantum inverse scattering, a
complete, explicit solution for the quantum system is still
lacking. Only global quantum thermodynamic quantities
have been obtained by the Bethe ansatz. ' ' However,
the validity of such approaches for finding the exact ener-

gy eigenvalues cannot be proven in a rigorous way. More-
over, it has been recently shown that even though periodic
boundary conditions are applied, the Bethe ansatz gives
definitely incorrect results for the energy levels of finite
quantum chains.

In this paper we will present explicit results for the
equilibrium thermodynamic properties of the quantum
Toda lattice. They are obtained by reducing the evalua-
tion of quantum statistical averages to classical config-
uration integrals through the introduction of an approxi-
mate effective potential. This procedure, already success-
fully applied to other nonlinear systems, '" -' allows us
not only to reproduce very easily the results of the much
more cumbersome Bethe ansatz calculation for the ther-
modynamic quantities, but we are also able to evaluate
quantum static correlation functions, sho~ing peculiar
quantum effects.

The Toda lattice models a chain of /V distinguishable
particles of mass m described by the Hamiltonian

jY = g +c(xt xt —))
2m

where the nearest-neighbor interaction potential i is

a((r) =—e
b ~

' —I +a(r —ro) . (2)

(A) =— dX A(ihci„X ——' z)p(X ——' z, X+ —. z)
z=0

(3)

where Z is the partition function.
Treating the pure quantum part of the Auctuations in

the self-consistent Gaussian approximation, one can ob-
tain the following expression for the density matrix:

The constant b is a measure of the nonlinearity of the po-
tential, while the ratio a/b sets the energy scale. The po-
sition ro of the minimum of t (r), represents the equilibri-
um distance of two adjacent particles at zero temperature
and zero pressure in the classical system. The characteris-
tic frequency tao = [t "(ro)/ml ' = (ab/m) 'I'

is used
to deli ne the coupling parameter g —= (It too)/(2a/b)
=(Ab'I-')/(2&am ), which rules the strength of the quan-
tum effects. We will consider the thermodynamic limit
N ~, and L ~ with d=L/N held constant, L being
the total length of the chain; periodic boundary conditions
are applied.

The goal of reducing to configurational integrals the
evaluation of quantum statistical averages and ther-
modynamic functions, at the equilibrium temperature
T= I/kttP, is achieved when an explicit expression for the
matrix elements p(X', X) =(X'~p(X) of the density opera-
tor p=e t' is obtained. Indeed, for every p —x or-
dered- operator A—=A(p, x) (p={p;},x=fx;)), we can
write
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p(x ——,
'

z, x+ —, z) =
2trh -'p

dxe ' +exp yh(x)+ —z~.
—Pl;(x) 1 m

2' P

, , exp — (X„—x„.)
1 1

[.2trai, (x)] ' '-2a/, (x)
(4)

Here and in the following the subscript k denotes vari-
ables transformed by the orthogonal matrix U(x)
= IUh;(x)l, which diagonalizes the frequency matrix

l

where

b

xxij(x) =— (x+t)),
a'-v

m BxBxj X

(s) 2a I+ Db ph /2 h ' +H. (12)
2

'
whose eigenvalues are t()h(x). In Eq. (5) we have intro-
duced the notation (f(())„for the (x-dependent) Gauss-
ian average over the pure quantum fluctuation variables
g = Ig;), defined by

(f( ))„=-J d f(g)+
2tra/; x

where gh =Uh;g;. The parameters

ah (x)—= cothfq (x)— 1

2mtoh x X

and

yh (x)=—m '-a)t-', (x)ag. (x),
are respectively the pure quantum quadratic average fluc-
tuations of position and mornernturn for a harmonic oscil-
lator of frequency tot (x) and f& (x) = —' pht()h (x). Final-
ly, the effective potential Vo(x) is given by

Vx(x)=(V(x+g)), ——gaj(x) (x+X))I 8 V

2 ij r)xi r)xj X

sinhft (x)+— In
p h fh(x)

and the expression for the partition function simplifies to

In the last formula

H =(NP) 'g (Insinhft —Inft )

is the term which restores the quantum behavior of the
harmonic excitations, and

D =N '+4sin-'(kd/2)ah (i 4)
It

is a renor mal ization parameter typical of a one-
dimensional system with nearest-neighbor interaction
only. Both H and D in Eq. (I2) are evaluated starting
from the eigenvalues t()h —= t()h (xo) of the matrix (5), where

xo is the configuration corresponding to the self-consistent
absolute minimum of the effective potential subjected to
the constraint of fixed length or fixed pressure. Due to the
translational invariance of the system, such configuration
corresponds to a uniform spacing of the atoms with lattice
constant d, so that the transformation U reduces to a
space Fourier transformation. We note also that
Db /2« I is a-consistency test for the validity of the
LCA.

The effective potential (12) can also be rewritten in the
form

(is)

by defining the new renormalized constants

z= —PF m

2/rh 2P

—pv, (x)dxe (io)
Dh-'/2 ~ (I Dh)/2)

C = ar, (e""'' I )-—
When the quantum effects of nonlinearity are small, a low

coupling approximation (LCA) can be introduced, '"
which removes the implicit dependence on x of the renor-
malization parameters. ' ' For the system we are in-
terested in, we thus obtain

IV

Vi;(x) = g ( „.(r(x; —x; (),

2

b
1
—e

a
I Dh 2/2+ Db Dh ~/2 btd —0)—

2
e e

Once the effective potential has been obtained, the stan-
dard procedure for classical chains described in Ref. 26
can be used to evaluate the thermodynamic functions and
statistical averages. The final result for the quantum
specific heat at constant length is

1 1c =ktt' —+g
(jr'((,")

THTr+b2 I +b T
ktt (jr'(&) 2

0 —b(d —r~) + Db
e

bkgT 2

b4T2

4
roe

bkgT 2
(Is)

~here the subscripts 7 denote derivatives in respect to the temperature, y' is the derivative of the digamma function, and
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( is the solution of the saddle-point condition

d =r ——ln, + tJr(g)
bkBT

b a'

for the integral (10).
nction of theI n Fi . 1 we report the specific heat as a function o t e

reduced temperature t =bkBT/2a for som
n ig. we

e values of the
quantum coup ing g, oge1 t gether with the results for the same

IIquantity obtaine y ad b H der and Mertens by the Bethe
ansatz for g= . . e=0 5 The overall agreement between oth
approaches confirms the validity of these data. From t e
figure it is clear y seen1 1 that quantum harmonic features

~ ~ ~

are ominan od nt only at lowest temperatures, w i e in t e in-
termediate region,d' t re ion, whose width increases wit e c

1' b th quantum and nonlinear effects p ay an impor-
tant role. Eventually, the classical behavior is approach
at highest temperatures.

At difference with the Bethe ansatz method, we also are
able to compute static correlation functions of the quan-

Toda lattice through Eqs. (3) and (4). Here we ex-tum oa a i

C (n) and dis-licitl consider the position-position.
uantum correlationplacement-displacement, C„&~n~„q

functions, defined by

C, , (n) =((x;+„—x; —nd)'- (20)

and

C„(n) =((r; ~„d)(r; —d )),— (2l)
r; =x+] —x; eing eb th distance between two adjacent

I

0
0.0 0.5 1.0 1.5

FIG. I. Specific heat per particle at cons gnstant len th of the
Toda lattice vs the reduced temperaturere t see text). The dot-

r the uantumashed line is ihe classical result; the solid lines are q
its for the value of gshowed beside, an t e as eresu s or

value of . The solidh h onic approximation for the same va ue o g.
squares are the Bethe ansatz results (Ref. I I ) for g =

particles. uc unc ions,. S h f t' ns already studied in the classical
dynamica case, ' ' are1

'"'" are symmetric functions of n, an can
be easily related with the correlation function of the densi-

ty fluctuations an wid 'th the force-force correlation, re-

spectivelyy.

The I CA expression for the average of unc
'

pen ing on y ond'
1 the configuration x and translationally in-

variant when evaluated in xo can be obtained y

(v "(x))o—v "(d)
(A(x)) =(A(x))G+ g ak+b'k (22)

h

4mtOk
k

sin g k k

and we have denote witd h ( ) the configurational average

rm of A "(xo) ~[8 A(x)/r)xr8xJ]x=z„U A" (x ) is the spatial Fourier transform o ~J owhereAk =~; JUki kj ij xO

(23)

( . )6=—„dx( )e (24)

wo correlation functions for n ~ 0 are thereforeThe final expressions we obtain for the two corre a ion un

C, , (n) =, ntJr '( )+ g (ak+ Wb'k) [l cos(nkd)l— (25)

and

..kd) ,C„(n) =
2

[(n+ 1 )+In —ll —2n y & k .
2

cos nk1 ] '(()+ g(ak+ Wb'k) sin cos(nk
2 2

(26)

where the constant W is given by
r

l~h 2J& bk g T ktd "' —
I (27)W=e " — g, ea'

We can observe that the terms in Eqs. (25) and (26) in-
1 the di amma function corresponds to t e cd the classicalvo ving e

1 ed arame-results, although calculated with renormaiize p.
ters whereas the additional terms are of purely quantum

~ ~

hIn Fig. 2 we report C„,. (n= I ) as a function o

duced temperature for g=0.5 an = o, g
I =r to ether with

Its for the same quantity for the classical Todathe resu ts or e sa
c ain. e coh . Th rresponding curves in the harmonic appr

th theiso lotted, showing the relevance of both e
m and the nonlinear effects. For increasing va ues

f the quantum contribution to the corre a ion
( ) tends towards a constant value w ic

smaller and smaller as the temperature is raise

of the right-hand side of Eq. (25), and it displays the»me
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F[G. 2, position-position correlation function C, , (n= I ) for
g=0.5 vs the reduced temperature t (see text). The units of the

& axis are I/b'. Solid line, quantum Toda chain; dash-dotted

line, quantum harmonic chain; dashed line, classical Toda chain;
dotted line, classical harmonic chain. In the inset C, , (n) at
t =0.01 is plotted vs the lattice site n.

n
Fl6. 3. Displacement-displacement correlation function

C„(n) I'or g=0.5 vs the lattice site n at t =O. I (see text). The
units of the v axis are I/b'-. In the inset the absolute value of
C„(n=

I ) as a function of the reduced temperature is plotted.

linear growth (generally with a different slope, due to the
quantum renormalization) of the classical correlation
function, as it is shown in the inset of Fig. 2. Only for low

values of n and for low temperatures, the classical and
quantum behavior are significantly different.

For the displacement-displacement correlation function

C„,(n), the quantum corrections do affect more strongly
the dependence on n, because the first term on the right-
hand side of Eq. (26) is not zero for n=0, so that C„,(n)
for n~0 has an entirely quantum origin. Figure 3 shows

C,„(n) for the Toda lattice, for g=0.5 and t =0.1 and in

the inset C„,(n= I ) is reported as a function of tempera-
ture. We notice that, within the LCA, the nonlinear con-

tribution to C,„(n= I) only arises from the term propor-
tional to 8', and for the Toda potential 8 tends to 0 not
only for I 0, but also for t ~, so that C„(n=1 )
differs from the corresponding correlation function of a
purely harmonic chain only for intermediate tempera-
tures.

Equations (3) and (4) also allow us to evaluate aver-

ages of functions depending on both x and p; typical quan-
tities are the frequency moments of the spectral shape.
%'ork is in progress in this direction in order to approach
the dynamical correlations.

Useful discussions with Professor A. R. Bishop are
gratefully acknowledged.
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