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Antiferromagnetic polarization in the periodic Anderson lattice
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By using a third-order approximation of the local approach to the periodic symmetric Anderson lat-
tice, the ground-state energy, the correlation energy, the local magnetic moment, and the antiferromag-
netic polarization are obtained. We found that the local magnetic moment and the antiferromagnetic
polarization increase with increasing one-site f-f electronic Coulomb interaction U and with decreasing

d-f electronic hybridization strength V.

Extensive experimental and theoretical studies have
been made on the heavy-fermion compounds and their al-
loys since their discovery. Very different characteristics
have been found experimentally for various cerium com-
pounds at low temperature. For example, CeCu,Si, is a
superconductor,! while CeBg and CeAl, are magneti-
cally ordered. CeCug is a normal Fermi liquid even at 8
mk. For different values of the alloy composition y,
CeSi,_, and CeNi,Pt,_, may be either nonmagnetic or
magnetically ordered.”> These interesting and anoma-
lous properties are related to the spin fluctuations of 4f
electrons. In a theoretical analysis of these properties,
the periodic Anderson model is commonly used. Many
techniques have been used to solve periodic-Anderson-
lattice problems, such as functional integration®, the
real-space renormalization-group method,’ the Gutzwill-
er variational approach,®® large-orbital-degeneracy N !
expansions,” and Monte Carlo techniques.!®!!

The local approach, which has been developed from
the Gutzwiller variational method,'>'? has successfully
been used to describe correlations between the d electrons
of the transition metals.'*!*> Except for the third-order
calculation on a six-atom Hubbard model ring by
Horsch!® and our works on both the Hubbard and ex-
tended Hubbard model,'”!? all of the existing works us-
ing the local approach are within the scope of the
second-order approximation. Horsch discovered that, for
the Hubbard model, the correction of the correlation en-
ergy E_ of the third-order approximation is not negligibly
small compared with that in the second order; our early
works have reached the same conclusion when consider-
ing the local operator 0=n;,n;;. We believe that results
obtained with the third-order approximation are more re-
liable than those of second order, and conclude that the
f-electron correlations also have a local nature. There-
fore, we use the local approach to investigate correlation
effects of the Anderson lattice up to the third-order ap-
proximation. In this paper, we assume a paramagnetic
ground state for a not so large value of U (Ref. 19) and
study the antiferromagnetic polarization in the periodic
Anderson simple-cubic lattice.

The nondegenerate periodic-Anderson-lattice Hamil-
tonian is written as

H=H,+H,+H,+H, , )
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in the symmetric half-filled case
€f0+U/2=8F=O, Ne/N=2, (2)

where d,fa (dy,) is creation (annihilation) operator for a d
electron with momentum k and spin o, f (f;,) is
creation (annihilation) operator for a localized nondegen-
erate f orbital (i denotes the site) with energy €4, U is the
Coulomb repulsion between electrons with opposite spins
in the f orbital and describes a short-range interaction
between them. V is the positive hybridization parameter
of d-f electrons in the same site, N, and N are the total
number of electrons and sites, respectively, and the num-
ber of d and f electrons, n; and n,, per site are
ny =hn f =1.

Within the local approach, one first decomposes the
Hartree-Fock ground state |Wyg) into a near combina-
tion of configurations. The trial function for the correla-
tion ground state |¥, ) is constructed by modulating the
linear combination as

|\PL>=I_I H(l—‘qmo,(]'")) |‘I’HF) ’ (3)
ij m

where {7,,]} is a set of variational parameters, the indices
i and j run over all sites, and {O™} is a set of local
operators. For simplicity we only consider the single-site
correlations, then, 0,3’"’ reduces to O =n;n;, and 7,, to
7. For a given local operator, the ground-state energy is
written as

_1 (Y, |H|Y, ) _

EG_TV—W_EHF_FEC . 4)

The first term of (4) is the HF ground-state energy, the
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second term of (4) is the correlation energy, and the pa-
rameter 7) is determined by minimization of the ground-
state energy E;. The ground-state energy E; is related
to the correlation function. We use the Green’s-function
technique developed by Zubarev.”’ The Green’s func-
tions are defined as

UU = (<fl(7’f]TO’ »w ’ i(ljch: «fio;dlzo’ »m ’
K =dei [l N> DI =drosdfe N,

One can solve the equation of motion with decoupling
procedures and obtain the correlation functions in the
Hartree-Fock ground state

(5)
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0 =YgtV el +4V?) .

A systematic scheme has been formulated to calculate E
as a power series of 77. When 0 <7 < 1, the series expan-
sion is effective. Up to the third order in % the correla-
tion energy can be expressed as

Ec=—2nA+7B—1in’C, @)

where 7 satisfies
0E; /0n=0:

Cy?—2Bn+24=0.

the following equation due to

The coefficiencies of 7 in (7) are calculated with Wick’s
theorem and the linked-diagram rule (the diagram used in
Fig. 1) are as follows:

A=<OH>HF=22(704 ) (8)

FIG. 1. Schematic representation of diagrams which contrib-
ute to A4, B, and C, where X represents d,z d,; @ represents
£ + represents fla,; O represents n;;n;;; the lines corre-
spond to elements of the density matrix: solid lines for diagonal
elements and dashed lines for nondiagonal elements.

BRIEF REPORTS 45

B=(0HO0)yz+{00H )yg=—2a%7E,+3E,), (9
C=3{00HO0 ) zr+{000H )z =—306Ua’ , (10)

where A corresponds to the first row, B to the second and
third rows, and C to the others in Fig. 1. a, E |, and E, in
Egs. (8)-(10) are as follows:

a=1,

1+ V141672
4V

E,=—4V*+16V’arctan(1/4V) .

E, =2V"In

>

In order to provide explicit results quantitatively, we
have taken the rectangular density of states, and E has
been defined as normalized energy E. =E,/W as a func-
tion of U=U/W and V=V /W, where W is the band-
width. The normalized ground-state energy E is given
as

E;=E;/W=Eye+E.,
where

EHF=—%\/1+16I72+2E1—7. (11)

Computation results of the correlation energy per site E
vs Coulomb interaction U are shown in Fig. 2 and the
correlation ground-state energy E; vs Coulomb interac-
tion U is shown in Fig. 3. The curves q, b, ¢, d, and e in
Figs. 2 and 3 correspond, respectively, to ¥=0.5, 0.4,
0.3, 0.2, and 0.1. We found that, for constant ¥, E. de-
creases with increasing U. For constant U, E¢ increases
with increasing ¥, while the correlated ground-state ener-
gy E; increases with increasing ¥ for constant U. This
indicates that the paramagnetic phase would become un-
stable if ¥ becomes smaller and smaller for fixed U. The
local magnetic moments of f electrons are defined as
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FIG. 2. Correlation energy E. vs Coulomb interaction U.
The curves a, b, ¢, d, and e correspond, respectively, to fixed
V=0.5,0.4,0.3,0.2, and 0.1.
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FIG. 3. Ground-state energy E; vs U for the same ¥V as in
Fig. 2.

(S?) and are related to the correlation function {n;n;, )
by writing the spin operators in terms of fermion opera-
tors:

S, =(W, S, )=3(n,—2(n;1n;})) , (12)
where
(npn; ) =1—2n4,+7’B,—1i7’C, (13)

for the third-order-approximation calculation. The cal-
culation procedure of 4,, B,, and C,; are similar to those
of A, B, and C.

The curves of the local magnetic moments S,, vs U for
the same as in Fig. 2 are plotted in Fig. 4. For fixed ¥,
the local magnetic moments decrease with decreasing U.
This decrease in the local magnetic moment reflects the
transition from localization to nonlocalization for f elec-
trons. From the results of the present work, it can be
seen that with increasing pressure, U decreases due to the
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FIG. 4. Local moments S,, vs U for the same ¥ as in Fig. 2.

10 101

AN @ 6 O 65
DD D G2
ISV SN

FIG. 5. Schematic representation of diagrams which contrib-
ute to A,, B, and C,, where O - - O represents n;n;. Other
symbols are the same as in Fig. 1.

bandwidth W becoming larger, so that the local magnetic
moments of f electrons decrease. This is consistent with
the valence changes in the cerium compounds.

The discussions about the paramagnetic phase of the
Anderson lattice are relevant to the problem of polariza-
tion induced by the local magnetic moments. Although
the long-range order disappears, a short-range order may

still exist. The polarization is defined as
PL=<\I’L|n|an2_ol\I’L>—<\I’L|nwn20|\l/L> . (14)

If P, is greater than the corresponding Hartree-Fock
value, we will call the polarization antiferromagnetic;
otherwise, it is called ferromagnetic. In the third-order
approximation, the expression of P; may be written as

P, =a—2n4,+7’B,—19’C,, (15)

where A4,, B, and C, are calculated with the diagrams
shown in Fig. 5. We obtained

A2='—2¢l3
B,=a*4—2a+a?), (16)
C,=—3a*9—11a—2a?) .

=
™~
s
-~
|
=
=
=
<?

FIG. 6. Antiferromagnetic polarization P, vs U for the same
V as Fig. 2, where the dotted curve represents the Hartree-Fock
polarization.



10 102

The calculated local polarization is shown in Fig.6,
where Hartree-Fock local polarization is indicated by the
dotted curve. We see that the local polarization is always
antiferromagnetic. For a fixed U, the antiferromagnetic
polarization increases with decreasing V; for a fixed 7,
the antiferromagnetic polarization increases with increas-
ing U. This change of the antiferromagnetic polarization
with U or V is similar to the change of the local magnetic
moments. The mechanism of the antiferromagnetic po-
larization is then not difficult to understand. Let us as-
sume that a site is occupied by one f electron with up
spin. The larger the U, the easier any f electron with
down spin will be pushed from this site to its neighbors.
Then a localized magnetic moment occurs by which the
antiferromagnetic polarization is induced. On the other
hand, when P70, conduction electrons hop on and off
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the f orbital to mix these two f electron spin states. The
larger the ¥, the easier is the mixture and the smaller the
localized magnetic moments. The competition of these
two processes described above would lead to the antifer-
romagnetic polarization in the paramagnetic phase. This
conclusion is qualitatively consistent with results of Mon-
to Carlo simulations.!!

In conclusion, by using a third-order approximation of
the local approach to a periodic symmetric Anderson lat-
tice, the ground-state energy, the correlation energy, the
local magnetic moment, and the antiferromagnetic polar-
ization have been calculated in the present work. We
found that the local magnetic moment and the antiferro-
magnetic polarization increase with increasing one-site
f-f electronic Coulomb interaction U and with decreas-
ing d-f electronic hybridization strength V.
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