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Antiferromagnetic polarization in the periodic Anderson lattice
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By using a third-order approximation of the local approach to the periodic symmetric Anderson lat-

tice, the ground-state energy, the correlation energy, the local magnetic moment, and the antiferromag-

netic polarization are obtained. We found that the local magnetic moment and the antiferromagnetic

polarization increase with increasing one-site f felec-tronic Coulomb interaction U and with decreasing

d-f electronic hybridization strength V.

Extensive experimental and theoretical studies have
been made on the heavy-fermion compounds and their al-
loys since their discovery. Very different characteristics
have been found experimentally for various cerium com-
pounds at low temperature. For example, CeCu2Si2 is a
superconductor, ' while CeB6 and CeA12 are magneti-
cally ordered. CeCu6 is a normal Fermi liquid even at 8

mk. For different values of the alloy composition y,
CeS12 y and CeNi Pt& may be either nonmagnetic or
magnetically ordered. ' These interesting and anoma-
lous properties are related to the spin fluctuations of 4f
electrons. In a theoretical analysis of these properties,
the periodic Anderson model is commonly used. Many
techniques have been used to solve periodic-Anderson-
lattice problems, such as functional integration, the
real-space renormalization-group method, the Gutzwill-
er variational approach, large-orbital-degeneracy N
expansions, and Monte Carlo techniques. ' "

The local approach, which has been developed from
the Gutzwiller variational method, ' ' has successfully
been used to describe correlations between the d electrons
of the transition metals. ' ' Except for the third-order
calculation on a six-atom Hubbard model ring by
Horsch' and our works on both the Hubbard and ex-
tended Hubbard model, ' ' all of the existing works us-

ing the local approach are within the scope of the
second-order approximation. Horsch discovered that, for
the Hubbard model, the correction of the correlation en-

ergy E, of the third-order approximation is not negligibly
small compared with that in the second order; our early
works have reached the same conclusion when consider-
ing the local operator O=n;&n;&. We believe that results
obtained with the third-order approximation are more re-
liable than those of second order, and conclude that the
f-electron correlations also have a local nature. There-
fore, we use the local approach to investigate correlation
effects of the Anderson lattice up to the third-order ap-
proximation. In this paper, we assume a paramagnetic
ground state for a not so large value of U (Ref. 19) and
study the antiferromagnetic polarization in the periodic
Anderson simple-cubic lattice.

The nondegenerate periodic-Anderson-lattice Hamil-
tonian is written as

where

Hl Xekdkadkcr &

k, a

H2=&foX& &

H3= ~ g (e 'f, dk +H. c.),
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in the symmetric half-filled case

(2)

where I r) ] is a set of variational parameters, the indices
i and j run over all sites, and [0I iJ is a set of local
operators. For simplicity we only consider the single-site
correlations, then, O. ' reduces to O=n;~n;~, and g to
g. For a given local operator, the ground-state energy is
written as

1 &e, iaido, )
(y ~y ) HF (4)

ef, + U/2 =EF=0, N, /N =2,
where dk (dk ) is creation (annihilation) operator for a d
electron with momentum k and spin a, f; (f;e) is
creation (annihilation) operator for a localized nondegen-
erate f orbital (i denotes the site) with energy efo, U is the
Coulomb repulsion between electrons with opposite spins
in the f orbital and describes a short-range interaction
between them. V is the positive hybridization parameter
of d-f electrons in the same site, N, and N are the total
number of electrons and sites, respectively, and the num-
ber of d and f electrons, nz and nf, per site are
nd =nf =1.

Within the local approach, one first decomposes the
Hartree-Fock ground state

~ %HF ) into a near combina-
tion of configurations. The trial function for the correla-
tion ground state ~%'L ) is constructed by modulating the
linear combination as

H =H) +H2+H3+H4, (1) The first term of (4) is the HF ground-state energy, the
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= ((f;;f, ~ )), +; = ((f;;&
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(5)

One can solve the equation of motion with decoupling
procedures and obtain the correlation functions in the
Hartree-Fock ground state

second term of (4) is the correlation energy, and the pa-
rameter g is determined by minimization of the ground-
state energy EG. The ground-state energy EG is related
to the correlation function. We use the Green's-function
technique developed by Zubarev. The Green's func-
tions are defined as

8=(OHO)H&+(OOH)H&= 2—a (7E, +3E~), (9)

C=3(OOHO) H„+ (OOOH )Hi;= —306Ua (10)

1++1+16V
E& =2V ln

4V

E2= —4V +16V arctan(1/4V) .

where A corresponds to the first row, B to the second and
third rows, and C to the others in Fig. 1. a, E, , and E2 in

Eqs. (8)—(10) are as follows:

(d„~dk~) =

&N N CO

co
—=

—,'(sk+Qek+4V ) .

(6)

In order to provide explicit results quantitatively, we
have taken the rectangular density of states, and E~ has
been defined as normalized energy E, =E, /W as a func-
tion of U= U/W and V= V/W, where W is the band-
width. The normalized ground-state energy EG is given
as

A systematic scheme has been formulated to calculate E~
as a power series of g. When 0 ~ g (1, the series expan-
sion is effective. Up to the third order in g the correla-
tion energy can be expressed as

E~= —2gA+g B—
—,'g C,

where g satisfies the following equation due to
"r)EG /t) rI =0:

Cg2 —2Bg+2A =0 .

The coefficiencies of rI in (7) are calculated with Wick's
theorem and the linked-diagram rule (the diagram used in
Fig. 1) are as follows:

3 = (OH )H&=22Ua

EG —EG /W= EHp+ E~,
where

EH„= —
—,''1/1+16V +2E, ——.

Computation results of the correlation energy per site E&
vs Coulomb interaction U are shown in Fig. 2 and the
correlation ground-state energy EG vs Coulomb interac-
tion U is shown in Fig. 3. The curves a, b, c, d, and e in
Figs. 2 and 3 correspond, respectively, to V=0.5, 0.4,
0.3, 0.2, and 0.1. We found that, for constant V, Ez de-
creases with increasing U. For constant U, E~ increases
with increasing V, while the correlated ground-state ener-

gy EG increases with increasing V for constant U. This
indicates that the paramagnetic phase would become un-
stable if V becomes smaller and smaller for fixed U. The
local magnetic motnents of f electrons are defined as
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FIG. 1. Schematic representation of diagrams which contrib-
ute to 3, B, and C, where X represents dI, dk', ~ represents

f, f, ;(~ represents f, d„; represents n;&n, i , the lines corre-'

spond to elements of the density matrix: solid lines for diagonal
elements and dashed lines for nondiagonal elements.
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FIG. 2. Correlation energy E~ vs Coulomb interaction U.
The curves a, b, c, d, and e correspond, respectively, to fixed
V=0.5, 0.4, 0.3, 0.2, and 0.1.
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FIG. 5. Schematic representation of diagrams which contrib-

ute to A2, 82, and C2, where o . 0 represents n;n, . Other
symbols are the same as in Fig. 1.
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FIG. 3. Ground-state energy EG vs U for the same V as in
Fig. 2.

&S; & and are related to the correlation function &n;tn;z &

by writing the spin operators in terms of fermion opera-
tors:

bandwidth Wbecoming larger, so that the local magnetic
moments of f electrons decrease. This is consistent with
the valence changes in the cerium compounds.

The discussions about the paramagnetic phase of the
Anderson lattice are relevant to the problem of polariza-
tion induced by the local magnetic moments. Although
the long-range order disappears, a short-range order may
still exist. The polarization is defined as

~L, =&+I I" i "z— I+I, & &+L, I"i "z I+1. & (14)

S =
& %z I S; I VL &

= ,' ( nf —2&n; t
—n; ) & ),

where

(12)
If PL is greater than the corresponding Hartree-Fock
value, we will ca11 the polarization antiferromagnetic;
otherwise, it is called ferromagnetic. In the third-order
approximation, the expression of PL may be written as

(13)
PL, =a —2gA2+g B2 —

—,'g C2, (15)
for the third-order-approximation calculation. The cal-
culation procedure of A &, B„and C& are similar to those
of A, B, and C.

The curves of the local magnetic moments S vs U for
the same as in Fig. 2 are plotted in Fig. 4. For fixed V,
the local magnetic moments decrease with decreasing U.
This decrease in the local magnetic moment rejects the
transition from localization to nonlocalization for f elec-
trons. From the results of the present work, it can be
seen that with increasing pressure, U decreases due to the

A = —2a 3
2

Bz =a (4—2a+a ),
Cz = —3a (9—1 la —2a ) .

(16)

where A2, B2 and C2 are calculated with the diagrams
shown in Fig. 5. We obtained

o4-
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FIG. 4. Local moments S vs U for the same V as in Fig. 2.

FIG. 6. Antiferromagnetic polarization Pl vs U for the same
V as Fig. 2, where the dotted curve represents the Hartree-Fock
polarization.
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The calculated local polarization is shown in Fig. 6,
where Hartree-Fock local polarization is indicated by the
dotted curve. We see that the local polarization is always
antiferromagnetic. For a fixed U, the antiferromagnetic
polarization increases with decreasing V; for a fixed V,
the antiferromagnetic polarization increases with increas-
ing U. This change of the antiferromagnetic polarization
with U or V is similar to the change of the local magnetic
moments. The mechanism of the antiferromagnetic po-
larization is then not difficult to understand. Let us as-
sume that a site is occupied by one f electron with up
spin. The larger the U, the easier any f electron with
down spin will be pushed from this site to its neighbors.
Then a localized magnetic moment occurs by which the
antiferromagnetic polarization is induced. On the other
hand, when VAO, conduction electrons hop on and off

the f orbital to mix these two f electron spin states. The
larger the V, the easier is the mixture and the smaller the
localized magnetic moments. The competition of these
two processes described above would lead to the antifer-
romagnetic polarization in the paramagnetic phase. This
conclusion is qualitatively consistent with results of Mon-
to Carlo simulations. "

In conclusion, by using a third-order approximation of
the local approach to a periodic symmetric Anderson lat-
tice, the ground-state energy, the correlation energy, the
local magnetic moment, and the antiferromagnetic polar-
ization have been calculated in the present work. We
found that the local magnetic moment and the antiferro-
magnetic polarization increase with increasing one-site

f felectr-onic Coulomb interaction U and with decreas-
ing d felectron-ic hybridization strength V.
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