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Complete solution of the two-dimensional antiferromagnetic Heisenberg model on small lattices
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We present the results of a complete and exact diagonalization of the antiferromagnetic Heisenberg
Hamiltonian on 3 X 3, 3 X4, 3 X 5, and 4X4 lattices with periodic boundary conditions.

I. INTRODUCTION

One of the oldest models for the description of antifer-
romagnetic ordering is the spin- —, quantum Heisenberg
model. The interest in the thermodynamical and magnet-
ic properties of this model goes back to the early times of
quantum mechanics' and quantum chemistry and ex-
perienced a renaissance when antiferromagnetic order-
ing in two-dimensional planes had been observed in
La2Cu04 —one of the new high-T, superconductors.

Exact computations of the ground state of the antifer-
romagnetic Heisenberg (AFH) model were performed by
Oitmaa and Betts and extended to larger systems by
Dagotto and Moreo. Employing Monte Carlo tech-
niques, Barnes and Swanson estimated the low-lying en-
ergy eigenvalues on systems up to 64 sites. Variational
techniques were developed and refined to guess the
ground-state wave function and the behavior of spin-spin
correlation functions on large systems up to 256X256.
The finite-temperature properties have been studied by
several groups' ' performing Monte Carlo simulations
on lattices up to 128 X 128. The results of Ref. 12 indicat-
ed that the correlation length diverges exponentially for
T~O, in accordance with the "classical" picture of Ref.
13.

Complete and exact diagonalizations of the AFH Ham-
iltonian have not yet been done for two-dimensional sys-
tems. For one-dimensional rings they were performed by
Bonner and Fisher' and recently by the authors. '

It is the purpose of this paper to present the results of a
complete and exact diagonalization of the AFH Hamil-
tonian on lattices:

3X3, 3X4, 3X5, 4X4.
There are several reasons in favor of an exact solution of
the eigenvalue problem on rather small systems.

(1) Nontrivial degeneracies of the eigenvalues may help
to find "higher" conservation laws in the AFH model. In
one dimension they are known to exist, ' ' . In two di-
mensions nothing is known about them.

(2) The knowledge of the exact ground state ~0) pro-
vides us with a sensitive measure (namely, the overlap
( 0

~ P) ) for the quality of any variational ansatz
~ g ) .

(3) Detailed structures, which cannot be resolved in a
Monte Carlo simulation because of the inherent statisti-
cal errors, become visible in an exact calculation.

(4) There exist observables which are not accessible in a

Monte Carlo simulation. Nevertheless they may contain
important information on the properties of the model. In
our study of the AFH model on rings, ' the modulus of
the momentum turned out to be such an observable. Its
thermal average has the surprising property of being in-
dependent of the temperature.

The outline of this paper is as follows: In Sec. II the
distributions and degeneracies of the energy eigenvalues
are analyzed. In Sec. III a momentum analysis of the
low-lying states is given together with the thermal aver-
ages of some momentum-dependent observables. They
show the temperature independence found already on the
rings. In Secs. IV and V the thermodynamical and mag-
netic properties are presented and compared with the
Monte Carlo results of Ref. 12. The exact computation
of the specific heat on a 4 X 4 lattice reveals a shoulderlike
structure around T=0.2. Finally, in Sec. VI we check
the quality of resonating-valence-bond- (RVB-) type trial
functions for the ground state by computing their over-
lap with the exact ground state.

II. ENERGY EIGENVALUES: NONTRIVIAL
DEGENERACIES AND HIGHER SYMMETRIES

The two-dimensional isotropic antiferromagnetic
Heisenberg model with periodic boundary conditions on
a L XL lattice,

H= g S(x).S(y),
(x,y)

(2.1)

is symmetric under translations, rotations, and
rejections. Therefore, the eigenvalues

pj =2~n /L, j =1., 2, nj. =0, 1, . . . , L —1;
s=0, 1, . . . , L /2 for L even;

$=—', . . . L /2 forL o
(2.2)

I& s s3~pi~pp) . (2.3)

States with momenta p=(0, 0), (n, n) can be further
classified according to their transformation properties un-
der rotations:

$3 Sy ~ ~ ~ y $

of the momentum operators I', j =1,2 and total-spin
operators S,S3 are "good" quantum numbers for the
characterization of the energy eigenstates:
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~E,s, s&, p=(0, 0), (m, vr), m ) . (2.4)

The quantum number m for the angular momentum
takes the values

tice.
There are four types of multiplets, characterized by a

unique value of the total spin s, but different "ine-
quivalent" values of the momenta:

m = —1,0, 1,2. (2.5) p= —n, n=(0, 0), (0, 1),(0,2), (1,1),(1,2), (2, 2) . (2.6)
Under rejections, states with angular momentum m are
transformed into those with angular momentum —m
(where m = —2 is identical to m =2).

There are trivial degeneracies of the energy eigenstates
with (i) different values of s3 and s fixed, (ii) "equivalent"
values of p, which are related by rotations and rejections
on the (two-dimensional) lattice, and (iii) momentum (0,0)
or (m. , m) and angular momenta m = —1, 1. Any further
degeneracy of energy eigenvalues is a hint to the ex-
istence of higher conservation laws. An example of non-
trivial degeneracies is given in Table I, where we list the
lowest eigenstates of the AFH Hamiltonian on a 4X4 lat-

Energy

—7.017 802 005 268 03 X 10
—6.656 178 045 414 66 x 10-'
—5 ~ 948 554 989 960 78 X 10—5.554026 504 879 06 X 10—5.496486 817 585 94X 10
—5.323 927 247 648 78 X 10
—5. 158 016 848 31745 X 10
—4.923 690 869 607 52 X 10
—4.897 835 983 424 89 x 10-'
—4.882592505 595 16X10
—4.853 546 409 792 30X 10
—4.804521453 778 93 X 10—4.768 883 226 619 51 X 10—4.673 158 313 87200X 10
—4.645 378 378 786 03 X 10
—4.618 723 862262 69X 10
—4.608 998 651 801 91 X 10
—4.455 327 109 13006X 10—4.359 252 305 289 88 X 10
—4.319269 336 727 91 X 10
—4.235 480936 333 84X 10
—4.224754237457 31 X 10—4.209 606 319967 88 X 10
—4. 169 662 418 600 47 X 10
—4. 161 937 842 17303X 10
—4. 145 562 285 776 56 X 10
—4. 117309 332 175 66 X 10
—4. 11540619290159X 10
—4.072 034 892 611 81 X 10—4.059 984 921 488 66 X 10—4.033 064 755 665 25 X 10
—4.029 613 531 242 59 X 10—3.991 660 003 71103 X 10—3.982 015 332 061 19X 10
—3.931 766 662 348 56 X 10—3.919761 018 81147 X 10

Spin

00
22
00
12
01
20
00
12
22
11
01
00
21
11
11
12
22
11
12
10
00
02
02
11
01
22
21
10
11
11
20
12
12
11
12
22

Momenta

11
02
10

22

20
00
01
20
20

02
00
11
20

12
22
02
22

01
22

22

22

22

TABLE I. Quantum numbers of the low-lying states on a
4X4 lattice: energy per spin, total spin, and "inequivalent" mo-
menta. Note that some of the momentum vecotrs (0,0),(2,2)
occur twice (last column). These degenerate states differ in their
angular momentum m = —1, 1.

(1) "Doublet" states always have momenta

n=(0, 0), (2, 2) (2.7)

n=(0, 0), (0,2), (2,0),
n=(2, 2), (0,2), (2,0) .

(2.8)

(2.9)

They appear in the total-spin sectors s =0, 1,2, 3,4, 5, 6.
(3) There are three types of "sextet" states:

n=(l, l), ( —1, —1),( —1, 1),(1,—l), (0,2), (2,0), (2.10)

n=(1, 1),( —1, —1),( —1, 1),(1,—1),(2, 2), (2, 2), (2.11)

n=(1, 1),( —1, —1), (
—1, 1),(1,—1),(0,0), (0,0) . (2.12)

(4) "Octet" states always have momenta

n=(0, 1),(0, —1),(1,0), ( —1,0),(1,2),
( —1,2), (2, 1),(2, —1) . (2.13)

Octets appear in the total-spin sectors s =0, 1,2, 3,4, 5, 6.
The underlying symmetry of this multiplet structure

has a simple geometric origin. The 4X4 lattice with
periodic boundary conditions can be mapped onto the
four-dimensional hypercube 2 (again with periodic
boundary conditions) in such a way that nearest-neighbor
couplings correspond to nearest-neighbor coupling s.
Therefore, in this special case it is more appropriate to
classify the energy eigenstates according to the four-
momenta p =rr(n„n2, n3, n4), nj. =0, 1, on the hypercube.
Note that there are only five inequivalent four-momenta.
The eigenstates with four-momenta p =(0,0, 0,0) and
p =sr(1, 1, 1, 1) can be further classified according to the
irreducible representations of the four-dimensional rota-
tions on the hypercube. In particular, the ground state as
a four-momentum 0 state is invariant under these rota-
tions.

In Figs. 1(a)—1(f} the distributions X(E,s) of the ener-
gy eigenvalues in the total-spin sectors are shown for two
AFH Hamiltonians: (a) on a 4X4 lattice (solid line) and
(b) on a ring with 16 sites (dashed line). We observe that
the distributions on the two-dimensional system are nar-
rower than on the ring. On both systems the small ener-
gy eigenvalues are accompanied by small eigenvalues of
the total spin s.

III. THERMAL AVERAGE OF THE MOMENTUM

In Figs. 2(a) —2(f) the distributions of the energy eigen-
values in the six momentum sectors listed in Eqs. (2.6) are
plotted. They look almost the same, independent of the
momentum vector p. A similar feature had been ob-

They appear in the total-spin sectors s =0, 1,2, 3,4, 5.
(2) There are two types of "triplet" states with momen-

ta:
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( ~p~ )(T)=~/2 for»0 . (3.1)

On the ring with L = 16, this behavior is clearly seen for
T)0.5.

In two dimensions the momentum independence of the
distributions N (E,p ) leads to the predictions

( ~pj ~
)(T)/c =1 for j=1,2,

((p', +p, )' )(T)/ =1

The values of the constants c and c on the lattices,

3 X 3, 3X4,3X5,4X4,

(3.2)

(3.3)

(3.4)

are given in Table II. In Figs. 3(a) and 3(b) we have plot-
ted the left-hand sides of equations (3.2) and (3.3). For
T) 1 we find what is expected from the momentum in-
dependence of the distributions N(E, p). For smaller

served already on the ring with L =16 sites. ' . In that
case we suggested the distributions N(E,p =2an /L) to
be momentum independent in the thermodynamical limit
L —+ ~. Such a hypothesis fixes the thermal average of
the modulus of the momentum:

values of T, however, there are strong deviations. They
have their origin in the momenta of the low-lying states
on the finite systems (3.4), which can be read off Table II.

Just as in the one-dimensional case, ' we expect the de-
viations from the constant behavior (3.2) and (3.3) to be
mere finite-size effects. This would imply that (3.2) and
(3.3) are correct for all temperatures in the thermo-
dynamical limit.

IV. INTERNAL ENERGY, ENTROPY,
AND SPECIFIC HEAT

From the distribution of energy eigenvalues, we com-
pute the thermodynamical properties of the AFH model.
In Figs. 4 and 5 the internal energy per site and specific
heat are shown for the lattices (3.4). The specific heat
shows two characteristic features.

(1) There is a maximum around T =0.6. Its position is
rather independent of the lattice size, whereas its width
seems to shrink with increasing lattice size.

(2) At small temperatures T =0.2, a shoulder appears
for the largest lattice 4X4. Note that such a structure is
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FICx. 1. Densities of states iV (E,s) in the sectors with total spin s =0, 1,2, 3,4, 5 on a 4 X 4 lattice.
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TABLE II. Energy per site (cp, c1), total spin (sp, s1), momentum (pp, p1), and the degeneracy (dp, d1)
of the ground and first excited states. The coefBcients c1,c2,c appearing in Eqs. (3.2) and (3.3) are listed
in the last three rows.

Lattice

Ep

sp

pp/2m

dp
E, 1

$1

p1/2m

d1
C1/m.

C2/m.

c/m

3X3

0.441 000 1944
1

2

8
0.409 571 184

1

2

( —,',o)
8

4
9
4
9

0.7945

3X4

0.614018 14
0

(o,o)
1

0.539 710979
1

6
4
9
1

2

0.7558

3X5

0.528 456 52
1

2

0.7339

4
9
12
25

8
0.506 487 214 7

1

2

(o, —', )

4X4

0.701 780 2
0

(0,0)
1

0.665 617 8
1
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FIG. 2. Densities of states N(E, p) for the inequivalent momenta (2.6)
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absent on the smaller lattices 3X3, 3X4, and 3X5.
Therefore, it is rather implausible to interpret this shoul-
der as a mere finite-size effect.

Figures 4 and 5 also contain the results of Table I in
Ref. 12, which were obtained by a quantum Monte Carlo
study on rather large square lattices I.XL, with I. rang-
ing from 24 to 128. The internal energy on these large
lattices is bounded from below and above by our results
on the 4X4 and 3X4 lattice, respectively. This reminds
us of the one-dimensional case, ' where the internal ener-

gy per site in the thermodynamical limit I.—+ ~ is bound-
ed from above and below by the corresponding quantity
on a finite ring with I. odd and even, respectively. In or-
der to estimate the behavior in the thermodynamical lim-
it, we proceed here in the same way as we did in the one-
dimensional case. We start with an ansatz:

u ( T) =p, u, ( T)+p2u~( T), (4.1)

where u, ( T) and u2( T) are the internal energies per site
on the lattices 4X4 and 3X4, respectively. The weights

p1 and p2 are assumed to be temperature independent.
Their values are fixed by the ground-state energy:

-0.1

-0.2

-0.4

-0.5

-0.6

MC results of Ref. 12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
kT

FIG. 4. Internal energy per site on the lattices (3.4) together
with the Monte Carlo results of Ref. 12 and the interpolation
(4.1).

This is so far the best estimate, obtained by Huser and
Elser on the basis of a variational calculation. From this
value we get the weights

u (T =0)=0.668 . (4.2)
pl=0. 614, p2=0. 386 . (4.3)

1.6

1.4

1.2

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1
kT

1.4

1.2

p 4x4
p 3x3
p„3x5
p„3x4
p 3x5
p 3x4

1.2 1.4 1.6 1.8 2

(b)

c(T)=p&c, (T)+p2cz(T), (4.4)

yields a fairly good description of the Monte Carlo data.
It is remarkable that the maximum in the specific heat is
higher and narrower on the 4X4 lattice than in the
Monte Carlo data on much larger systems.

At this point we would like to stress that detailed
structures at low temperatures (such as the shoulder at

0.6

The interpolation (4.1) is represented by the solid curve in
Fig. 4. The Monte Carlo data of Ref. 12 are very close to
this curve.

Concerning the specific heat, the Monte Carlo data lie
just in between our results on the 4 X4 and 3 X4 lattices,
except for the points at T =0.45 and 0.5, which are close
to the point where the 4X4 and 3 X4 curves cross each
other.

The interpolation of the specific heats c, ( T) and c2( T)
on the lattices 4X4 and 3X4,

«0.8

+
cL-0.6

0.4

0.2

4x4
3x3
3x5----
3x4--------

0.5

0.4

0.3

0.2

0.1

interpolated
3x3
3x5
3x4-------

0
0 0.2 0.4 0.6 0.8 1

kT
1.2 1.4 1.6 1.8 2

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

kT

FICx. 3. Thermal averages ( ~p
-

~ ) ( T)/c
( (p &

+p z )
' ~ ) ( T) /c as a function of the temperature.

and FIG. 5. Specific heat on the lattices (3.4) together with the
Monte Carlo results of Ref. 12 and the interpolation (4.4)
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T =0.2) can be resolved in an exact computation only. If
such structures survive in the thermodynamical limit, it
will be extremely hard to extract the low-temperature be-
havior from a Monte Carlo simulation in a reliable way.

In Fig. 6 the entropy per site versus temperature is
plotted. The finite zero-temperature entropy on the lat-
tices 3 X 3 and 3 X 5 reflects the degeneracy of the ground
state in these systems (cf. Table II). Note also the change
in slope at T=0.4 on the 4X4 lattice. This is close to
the temperature where the specific heat has the shoulder
mentioned above.

V. UNIFORM SUSCEFTIBILITY
AND STAGGERED MAGNETIZATION

The uniform susceptibility g( T) is related to the
thermal average & S ) ( T) of the square of the total spin:

0.16

0.14

0.12

z 0.1

0.08

0.06

0.04

0.02

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

FIG. 7. Thermal average of S on the lattices (3.4).S= g S(x), (5.1)

Y(T)=(3NICT) '&S ) . (5.2) m+= liin L, 2&sr &ir2
L~ oo

(5.5)

Figure 7 shows the thermal averages of 8 on the lattices
(3.4) as a function of the temperature. The different low-
temperature behavior of this quantity on systems with an
even and an odd number X of sites is a reflection of the
different spin values for the low-lying states (cf. Table II).
Just as we observed in the entropy, there is a slight
change in the slope of this quantity on the 4X4 lattice
around T =0.4.

The uniform susceptibility on the lattices 4X4 and
3X4 is shown in Fig. 8 together with an interpolation
(solid line),

16 &S,t ) ( T = 0) =0. 276,

24 & S )(tT =0)=0.2341 .

(5.6)

(5.7)

Series expansions performed by Huse' and the Monte
Carlo simulations of Reger and Young' lead to the fol-
lowing estimate for this quantity in the thermodynamical
limit:

This quantity was calculated for T =0 on a 4 X 4 lattice
by Oitmaa and Betts and on a 6X4 lattice by Dagotto
and Moreo:

X( T) p 1X1(T) +p X22( T) (5.3) (m ) =009 (5.g)

S„=g( —1) S(x) . (5.4)

with weights (4.3). It fits nicely the Monte Carlo data of
Ref. 12, except for the lowest-temperature values.

Let us now turn to the thermal average L &S„) of
the square of the staggered spin:

Therefore, finite-size efFects for this quantity are enor-
mous and puzzling.

Figure 9 shows our result for 16 & S„)(T)as a func-
tion of T. At T =0 we agree with the value (5.6) of Ref.
6. We have also included the Monte Carlo data of Ref.
12. It is interesting to see that the extrapolation of the

In the thermodynamical limit L —+ ~, it is related to the
staggered magnetization
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FIG. 6. Entropy per site on the lattices (3.4).
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FIG. 8. Uniform susceptibility on the 4X4 lattice together
with the Monte Carlo results of Ref. 12 and the interpolation
(5.3).
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0.3

0.25

TABLE III. Energy per spin and overlap with the exact
ground state on a 4 X 4 lattice for the trial states

lj ),j= 1,2, 3,4,
defined in the text.

0.2
State 14&

+E 0.15

cj —c,o 0.20178 0.0472275 1.03X10 0.663X10
1 —(Ol j) 0 59 007441505 0931X 10 4 0 504X10

0.1

0.05

0
I I I I

choice of the weight function h ( lx —y l ) has been found
by the authors of Ref. 9 by minimizing the ground-state
energy.

Here we want to propose an alternative to the ansatz
(6.4):

0 0.2 0.4 0.6 0.8 1
kT

1.2 1.4 1.6 1.8 2
c(K)=f(Nd(K)) . (6.5)

FICx. 9. Staggered magnetization squared the 4X4 lattice to-
gether with the Monte Carlo results of Ref. 12.

Monte Carlo data from T =0.3 to 0 has to increase by a
factor of 8 in order to meet the value (5.8) of Refs. 18 and
19.

The weights only depend on the number of dimers Nd(K)
on each configuration K. Therefore, the variational an-
satz operates in the ( V/2+ 1 )-dimensional subspace
spanned by the states jl) with fixed dimer number

j =Nd(K) =0, 1,2, . . . V/2. Vis the number of sites:

(6.6)

VI. STRUCTURE OF THE GROUND STATE

There have been many attempts made to guess the
ground state l0) of the two-dimensional AFH model in
the thermodynamical limit. For an even number of sites,
the ground state has total spin 0. Therefore, one usually
starts with a superposition of valence-bond states lK ):

lo& = y c(K)lK & . (6.1)

The sum extends over all valence-bond configurations E.
They are obtained by connecting pairs of sites x,y by a
straight line. The spins at the paired sites x and y are
coupled to zero:

The variational parameters f (j ) are fixed by diagonaliz-
ing the AFH Hamiltonian in this subspace.

In Table III we list energy expectation values per spin
and the overlap with the exact ground state for four types
of wave functions on a 4X4 lattice: (i) the Neel state

l
1 );

(ii) the RVB state with dimers, l2); (iii) the RVB state
with variational parameters depending on the bond
length [h (1)/h (3)=0.278; cf. P.W. Anderson et al. in
Ref. 9], l3); and (iv) the RVB state with optimized varia-
tional parameters depending on the dimer number, l4).

The results for the Neel state
l

1 ) and the RVB state
with dimers, l2), have been obtained before by Dagotto
and Moreo (cf. Table V in Ref. 7). We do not agree with
their number for the overlap (Ol2).

[x,y]=2 '"[X+(x)X-(y)—X-(x)X+(y)] . (6.2)

The valence-bond state lK) is defined as the product
wave function for all pairs on K:

lK) = g [x, ,y ] . (6.3)

c(K)= + h(lx, —
y, l) . (6.4)

This ansatz is a generalization of the RVB state with
nearest-neighbor coupling ("dimer") only. The best

The valence-bond states form an overcomplete
nonorthogonal basis. Some of the linear dependences can
be easily eliminated. For example, valence-bond states
(6.3) with spin-0 couplings only among even and odd sites
xeS+ and yeS form a complete set as well. In the fol-
lowing we will consider trial functions (6.1), which are su-
perpositions of such states.

Various choices have been proposed for the coefficients
c (K) in the expansion (6.1). For example, in Ref. 9 a fac-
torizing ansatz with weights h(lx —y l) depending on the
bond length is made:

VII. CONCLUSIONS

Exact and complete solutions of the eigenvalue prob-
lem for the AFH model are feasible only on small lattices.
Nevertheless, they are needed for a quantitative check of
approximations and other methods which suffer from in-
herent systematic and/or statistical errors. Moveover,
they may reveal new features, as we found in our solution
on a 4 X 4 lattice.

(1) The distributions N(E; p) appear to be momentum
independent. As a consequence, the thermal averages of
the momentum-dependent observables (3.2) and (3.3) are
temperature independent.

(2) The specific heat on the 4X4 lattice develops a peak
around T =0.7, which is more pronounced in height and
width than the peak in the Monte Carlo data of Ref. 12
obtained on large lattices L XL (24 & L & 128).

(3) At low temperatures ( T =0.2) a shoulderlike struc-
ture is visible in the specific heat on the 4X4 lattice.

(4) The energy eigenstates show nontrivial degeneracies
which can be understood by mapping the 4X4 lattice
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onto the "more symmetric" 2 hypercube. This mapping
is a special example for the fact that the two-dimensional
AFH Hamiltonian on a finite lattice may be invariant un-
der "nontrivial" permutations of. the sites, which are not
associated with translations, rotations, and rejections.
Another example for a planar system with ten sites has
been given by Saito.

We have demonstrated that the behavior of the inter-
nal energy, specific heat, and uniform susceptibility in the

thermodynamical limit can be estimated by an interpola-
tion of these quantities on rather small lattices. On the
other hand, the staggered magnetization squared is an ex-
tremely size-dependent quantity, which needs further in-
vestigation.

Note added in proof. We were informed by E. Dagotto
that the staggered magnetizations quoted in Ref. 7 are in-
correct. The correct value on the 6X4 lattice is given in
Eq. (5.7).
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