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We investigate Gutzwiller-correlated wave functions as variational ground states for the periodic An-
derson model. We extend a recently developed technique for the Hubbard model to the case of two hy-
bridized bands with degeneracy N. We calculate expectation values in the following limits: dilute sys-
tem (single-impurity case), large degeneracy X, and large dimension d. The mean-field results using the
slave-boson approach of Coleman and of Kotliar and Ruckenstein are reproduced in the large-N and
large-d limit, respectively. These techniques, therefore, obey variational principles at T=O in the
respective limits and their applicability for T)0 is naturally limited to the Fermi-liquid regime. Evalua-
tions of Gutzwiller-correlated wave functions using the "Gutzwiller approximation" are seen to become
exact in the limit of large dimensions. A systematic expansion in 1/d can be performed for %=2. In
general, corrections are small, of order 1/(dX).

I. INTRODUCTION

Electrons on a lattice with a strong, short-ranged in-
teraction present a complicated many-body problem. It
is dificult to make reliable statements about the physical
contents even for simplifying model Hamiltonians like
the Hubbard' or the periodic Anderson model.
Among the few analytical tools to study low-temperature
properties of strongly correlated electron systems are
slave-boson techniques along the lines of Coleman, Read
and Newns, and Kotliar and Ruckenstein. ' ' . The
slave-boson techniques have gained renewed interest for
the description of high-T, materials. '

The two approaches, however, do not give the same re-
sults at the mean-field level. Besides this ambiguity, it is
not guaranteed within the approach that the dynamical
constraints are fulfilled at the mean-field level. For these
reasons a better understanding of the slave-boson mean-
field approaches is clearly desirable. In this paper we
show for the periodic Anderson model that both mean-
field results can be obtained from the same class of
Gutzwiller-correlated wave functions in the respective
limits of large degeneracy N and large dimension d.

The expansion parameter 1/N was readily identified
for the slave-boson approach to the periodic Anderson
model used by Coleman and by Read and Newns since
it represents the generalization of the single-impurity
technique to the lattice case. To lowest order there are
no differences between the results for the single-impurity
and the lattice case. Lattice effects show up in order
1/N for the specific heat, magnetic susceptibility, and
correlation functions, while the Wilson ratios in the lat-
tice and single-impurity case are the same to order
1/N. ' A 1/N expansion even without the use of slave
bosons is also possible.

Recently, Metzner and Vollhardt introduced the limit
of large dimensions d for itinerant lattice fermions, '

which allowed for the exact solution of the Falicov-

Kimball model on a d-dimensional hypercubic lattice
and a Bethe lattice with large coordination number.
Self-consistent calculations are now numerically feasible
in this limit. ' Furthermore, the expansion parameter
1/d is especially useful for the evaluation of Gutzwiller-
correlated wave functions. Variational wave functions al-
low for an approximative description of the ground-state
properties of a physical system. However, one frequently
had to use semiclassical approximations ("Gutzwiller ap-
proximation") for their evaluation. For the single-band
Hubbard model without degeneracy it is seen that the
Gutzwiller approximation becomes exact for d = ~. '
Furthermore, all Kotliar-Ruckenstein slave-boson results
for the Hubbard model without orbital degeneracy are
completely reproduced from the variational approach in
this limit. A compact formalism for a 1/d expansion
has been developed in Ref. 28 (hereafter referred to as I).

In this paper we extend the formalism in I to the case
of a two-band model with orbital degeneracy. In Sec. II
we present the periodic Anderson model and introduce
the class of Gutzwiller-correlated wave functions. In Sec.
III we sketch their evaluation where details of the calcu-
lations are given in the Appendixes. In Sec. IV we dis-
cuss the exactly solvable cases: the dilute system (single-
impurity problem), the large-X limit, and the large-d lim-
it. Furthermore, we discuss the inhuence of 1/d and 1/N
corrections. We summarize our results in Sec. V.

II. HAMILTON OPERATOR AND VARIATIONAL
WAVE FUNCTIONS

In this section we introduce the periodic Anderson
Hamiltonian, which is thought to include the essential
physics of dense rare-earth compounds (for an experi-
mental review, see Ref. 29). Then we specify the class of
Gutzwiller-correlated wave functions, which were fre-
quently used to study ground-state properties of the mod-
el.
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The derivation of the model and the simplifications
made are discussed, e.g. , in Refs. 3 —5. It describes N de-
generate bands of conduction electrons with dispersion
E(k) on a lattice with L lattice sites. Furthermore, there
are f orbitals at L lattice sites with a bare energy level
Eo. The f electrons are correlated by a Hubbard interac-
tion U and hybridize with the conduction electrons via a
matrix element Vk. The same degeneracy is chosen for
the c and f electrons so that the model has a 1/N expan-
sion. In second quantization the model Harniltonian
reads

H= g E(k)ci, ck +Efo g &f~+—g g 8;~6~+
k, a I, a i a, p

(asap)

Vke'"'(c j,Q; +H. c. ) . (1)
NL

Here, 8'; =f;Q;, and a,P are combined orbital and
spin indices running from 1 to X. In the case L =L one
obtains the periodic Anderson model, while in the case
Lf=1 the single-impurity model with an impurity at the
origin is recovered. Usually the limit of strong correla-
tions ( U~ co ) is considered, which implies

g (8'(~) ~1 for U= co (2)

at each individual site i. The treatment of the constraint
(2) is a crucial point in any analytical approach to the
periodic Anderson model in the strongly correlated re-
gime

Most likely the simplest way to formulate correlated
wave functions for a model Hamiltonian with a
Hubbard-type interaction is due to Gutzwiller. In the
case of the periodic Anderson model his ideas were gen-
eralized by Varma, Weber, and Randall, Brandow,
Fazekas, ' Rice and Ueda, and Vulovic and Abra-
hams. For arbitrary degeneracy X one considers the
class of wave functions

where IcFS) is a state where the f levels are empty and
all electrons fill the Fermi sea up to the Fermi wave vec-
tor kz. The parameters ak describe the degree of hy-
bridization between the conduction and f electrons and
have to be determined variationally.

III. EVALUATION OF THE WAVE FUNCTION

The task is to calculate expectation values with the
wave functions defined in Eq. (3), ( 0 )= ( 0's IO I%'g ) /( %s I'I'g ). The general formalism to deal
with this problem in a controlled expansion in 1/d (for
N =2) has been outlined in I. Here we present its gen-
eralization to the case of arbitrary degeneracy. We
sketch the important steps and discuss some technical
points in Appendix A.

As in I, we rewrite I+g ) in Eq. (3) as

(sa)

with

(5b)

The wave function I@o) is a one-particle product wave
Af Wffunction like I%'o) since the operator ICf Df is a o—ne-

particle operator. We choose I@0) to be normalized to
unity.

According to I, we have to subtract all trivial Hartree
contributions in the expansion of the correlation opera-
tor. We denote ( . )o as the expectation value with
respect to IC&0), and choose p; (v=1,2, . . . , N) and g;
so that

I+s&=g~ I+o&=Q & II+(g —1)n;.&~~]I+o&,
i a&p

(3)
(6)

I @0)=exp g e'"'a„ f, c„ I
cFS ),v'NL (4)

where D =g; «&; &+ is given by the interaction term
between the f electrons in Eq. (1), and I+o) is an arbi-
trary one-particle product wave function. O~g ~ 1 is a
variational parameter and the correlation operator in Eq.
(3) reduces configurations with multiply occupied f
electron levels in I%'~). In the strongly correlated regime
( U = ~ ) one has g =0 so that only empty or singly occu-
pied f levels at each lattice site are allowed.

I %0) is chosen as a lattice generalization of the
Varma- Yafet state (or lowest-order Gunnarsson-
Schonhammer state '), which was designed for the
single-impurity case. Starting from a filled Fermi sea of
conduction electrons, a one-particle operator simulates
the hybridization of conduction electrons and f electrons.
Explicitly we write

holds. Here, the x; . . . are symmetric under inter-
1 r

change of two indices, and the prime on the sum implies
the omission of terms where two of them are equal, i.e.,
a, WazW . Wa„. The number of parameters (x; J is
2 —X—1 so that we have 2 unknown quantities alto-
gether. In fact, Eq. (6) is a set of 2 equations since each
orbital v can be either occupied or empty. All parame-
ters are therefore uniquely obtained from (6). For N =2
there is only one x;=x; »=xi ». The solution for this
case is given in Appendix B. Of course, it is impossible to
give an explicit solution of this set of equations for X & 2
and arbitrary g, (8'; )o.

As we will see later, we do not need the information
provided by the [x; J in the limit of large dimension
and/or large degeneracy but only the quantities p; and

To determine these quantities, we take the expecta-
tion value of both sides of Eq. (6) with respect to

I No ) .
This gives
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2ZI
(@,Ig (7a)

Furthermore, we obtain N equations by multiplying both
sides of Eq. (6) with &;„and taking again the expectation
value with respect to I@0&,

(e,lR(~ 'Ie, & =&R( &, . (7b)

Equations (7) form a set of N + 1 equations to determine

p; and g
However, even this set of N +1 algebraic equations is

still too complicated to solve for N) 2 and arbitrary g,
(Rf„&0. For the strongly correlated ease we have g =0,
so that a closed solution is possible since each lattice
point can be only singly occupied or empty. In this case
one easily obtains

which is defined in terms of connected graphs.
The essential point of these considerations is the fol-

lowing: the self-energy uanishes in the limits of large di-
mension and/or energy large degeneracy. Explicitly,

f 0 for d=00
S-(i j)—= 0 for N (10)

To see this we consider the graph expression for S„(i,j).
There are on Hartree bubbles in the graph expansion of
S„(i,j); instead the lines are given by

p ' (i,j)=p„' (i, j)—5;,pI (i, i) .

Especially, PI (i, i}=0, which means that two lattice
points in a graph never coincide. For large dimensions
on a hypercubic lattice we have '

N

g (1—«',.&, )
a=1

P/' (i, j)=O((&l/d }"), (12)

(8a)

and

N(, N —1)r]; —2(N —
1)JM;'"Is =0

=(1—
& R( &.)

N

g (1—&R; &o)
a=1

where (6'(&0=+~,(R/ &0. Here, we have to assure
that ( R( & 0

~ 1, which is the generalization of the usual
"less than half-filling" condition to the case N & 2 and is
necessary to fulfill the constraint, Eq. (2).

We proceed as in I. We have to calculate the one-
particle density matrix for the c electrons
P;(i, j)= (c; c;„&,the f electrons P/(i, j )= (f; f; &, the
mixing matrix element P"„(i,j)= (c;„fj &, and the mean
f-electron double occupancy d (z,= ( 8(~R(&. 'Th'ese

~ ~

~

~ ~

uantities are evaluated through an expansion in terms of
; [see Eq. (6)]. One can apply Wick's theorem to calcu-

late the difFerent orders in the expansion because IC&o & is
a one-particle product wave function. The corresponding
contributions are represented graphically and it is possi-
ble to show that the linked cluster theorem applies (see I
and Appendix A for further details}. During this pro-
cedure one has to guarantee that there will be no Hartree
contributions at the external vertices. The corresponding
algebraic manipulations lead to the introduction of renor-
malization factors q;, which are defined in terms of the
p)~, 'g1 as

v'q;. =&c'Olg '"I+o&

Q;, =2 g '(R'; R;~ —p; R; p, ;p&; ~g+;)—f f f f
a&P

where r = Ii —j I
=gdl=, I i&

—jI I is the distance of i and j
measured by the number of nearest-neighbor steps from i
to j. There are always two points in a graph that are con-
nected by at least three separate paths. Two typical
lowest-order graphs for S/(i, j) are shown in Figs. 1(a)
and 1(b). As an example, consider the graph in Fig. 1(a).
Due to the special choice of lines, this graph is of order
1/d since there are four lines joining i and g. We have
iAg so that the dominant contribution comes from the
2d nearest neighbors of g. Therefore, it is of order
d (1/d) =1/d. Furthermore, each line is proportional to
the density of electrons per line, i.e., proportional to 1/N.
This means, e.g., that the graph in Fig. 1(b), which has a
free summation over an orbital index, is proportional to

+g'[(1—2p; )h/ p;„+2';] . — (9b)

The prime on the sums implies the omission of terms
with a =v or P= v. The one-particle density matrices
and the mean double occupancy are thea expressed in
terms of the noninteracting quantities, P,' (i, j), etc. , re-
normalization factors like q;„, and a "self-energy" SI(i,j)

(b)

FIG. I. Two diagrams for the self-energy; both are of order
1/(dN).
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IV. RESULTS FOR THE EXACTLY
TREATABLE LIMITS

As derived in the preceding section, the Gutzwiller-
correlated wave functions can be evaluated exactly in the
following cases: (i) the dilute limit where only one impur-
ity is considered; (ii) the limit of large degeneracy
(N= ~ ); and (iii) the limit of large dimension (d= ~ ).
In all three cases the self-energy vanishes and we get the
following expressions for the one-particle density ma-
trices for the c and f electrons, the mixing between c and
f electrons, and for the mean f double occupancy (see I
and Appendix A):

p'(i, j)=p; (i,j), (13a)

Pf(i,j )=Qq; Qq; Pf (i,j )+5;;(I—q; )(6fi )o, '

(13b)

P"(i,j)=Qq; P, (i,j), (13c)
2p ~+2p. 2Y/.

IXX
-g, o

IXV 1XV

(A,Wv), (13d)

where q; is defined in Eq. (9), d f& =(Rf& )o(R'f )o, and
we defined

N(1/N) and is therefore of order 1/N. These arguments
apply for all self-energy graphs so that Sf(i, j) vanishes in
the limits d = ~ and N = ~ separately, i.e.,
Sf(i, j)=O(1/(dN)). Note that there are no restrictions
on ~No) so that this result is valid for completely general
one-particle product wave functions ~4o).

Of course, there is another exactly solvable limit: the
limit of a single impurity since S (i, j) is zero by
definition. This limit may be viewed as the dilute limit of
the model where Sf(i, j) vanishes with some power of the
f-atom concentration.

Using Eq. (13) we obtain

(8)=E„,+aE,

hE 1+ g'a„
k

=—g' [ [Ef—s(k) ]a „—2v q V„a„],
1

( I/L)g'a k

n~= k

1+(1/L) g' a k/N

(17a)

(17b)

Here E„s=pi, ' E(k) is the energy of the unperturbed Fer-
mi sea, and the prime on the k sum implies summing up
to the Fermi energy.

The approach used here allows for a simple reinterpre-
tation of the variational problem. (8) is the variational
ground-state energy for a system of c and noninteracting
f electrons described by an effective single-impurity
Hamiltonian

degeneracy, N = (x). A detailed review on 1/¹expansion
techniques for the single-impurity model has been given
by Bickers.

For large U we have d (z =0, i.e., the f orbitals are ei-
ther empty or singly occupied. Denoting n f= ( R'f )
=N ( R'f ), we obtain from Eqs. (8) and (9)

1 n
qv

1 f/N

Note that ( n, ) = (R, )o holds. We can write Eq. (4) as

~&o)=Q I+&I/(NL)gakf ck ~cFS) . (16)

Z
z;~.=(eo~g "~eo)

ii v X (Ria (p piaRia pipRip+'Vi)
a(P

(14a)
Hs, =g E(k)ck ck +Efg fQ

k, a

& V, (c',&.+H. c. )
—«

NL
(18)

+2+" [(2—2p; )Rf p; p;i„+—2g;—] . (14b)

A. Single impurity

First we want to make sure that the single-impurity re-
sults are reproduced correctly. We limit ourselves to the
limit of strong correlations (U= oo ) and therefore set
g =0 in the variational wave function ~% ), Eq. (3). A
very successful variation approach to this problem has
been developed by Cxunnarsson and Schonhammer, ' who
proved that ~% o) becomes the exact ground-state wave
function for the single-impurity case in the limit of large

The double prime on the sum in Eq. (14b) implies the ex-
clusion of a=A, , v and P=k, , v. For N=2 we have
z;~~ = l.

We will now discuss the three different cases separate-
ly.

bE = —TK = (D + EF )exp (—EF+ ~Eg )
8'
V2

(19a)

The deviation from an integer value for n is

where the Lagrange parameter A, is implemented to
guarantee Eq. (17b). The correlation between the f elec-
trons shows up in the dependence of the effective hybridi-
zation, Vk =Vq Vk, and the effective f level, E =Eo +A, ,
on the f-electron density n

We will now minimize Eq. (17a). We are interested in
the Kondo limit. In this limit, Eo (0 lies far below the
Fermi energy c,F of the conduction electrons, which are
assumed to form a featureless band of width 6'=2D.
Furthermore, Vk

—= V is assumed to be small compared to
8'and Eo. Defining Ac. as the binding energy compared
to the case V=O [b,E=b,E+(Ez Eo )], we find (see Ap-—
pendix D)
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(19b)

and the position of the effective f level is slightly above
the Fermi energy at

k, a

V, &R"„.), —X /L,
N

(20)

E KF+ TE (19c)

Here, Tz is the Kondo temperature. This expression
provides a variational upper bound for the binding ener-
gy in the single-impurity model (at temperature T=0)
and becomes exact in the limit of large degeneracy
(N= &x ). ' The results (19) show that the q factor in Eq.
(15) for the effective Hamiltonian (18) gives the correct
results for the single-impurity case. This was questioned
earlier.

One may extend the above analysis of HsI to finite tem-
peratures as described in Appendix C (see I for the case
of the Hubbard model). A variational "spectrum" may
be derived by calculating expectation values of H~, with
single-particle wave functions like ~@o) in Eq. (16), where
the Fermi sea of c electrons is replaced by its excited
states (see Appendix C for a more-detailed discussion of
this procedure). The corresponding "partition function"
and "free energy" that are derived from this variational
approach are completely equivalent to the saddle-point
solution of the single-impurity model given by
Schonhammer, ' who used the slave-boson functional-
integra1 approach by Kotliar and Ruckenstein. ' This
saddle-point solution, therefore, provides exact upper
bounds for temperature T=0; its apphcability is, howev-
er, limited to "low" temperatures (Fermi-liquid regime)
due to its variational origin.

Finally, we would like to compare our results with the
slave-boson saddle-point treatment of the single-impurity
mode1 by Coleman and Read and Newns. This treat-
ment of the model becomes exact for 1ow temperatures to
lowest order in 1/X. ' It gives the same effective Ham-
iltonian as in Eq. (18) with q =1 n/ and its fre—e energy
is equivalent to the variational expression in the case of
large degeneracy. Hence, the variational approach also
covers the mean-field results of the slave-boson approach
by Coleman and Read and Newns.

(21b)

The effective Hamiltonian is the same as that obtained
from a mean-field treatment of the periodic Anderson
mode1 using the slave-boson approach by Coleman and
Read and Newns. It describes two quasiparticle
bands with dispersion relations

Ez =
—,'Is(k)+E +Q[s(k) —E ] +4Vk/N ] . (22)

If one strictly takes the limit N~ ~, Eq. (22) reduces to
Ek =s(k) and Ek =E, respectively. Furthermore, one
may easily verify that the lattice problem, Eq. (20), is
identical to the single-impurity problem, Eq. (17), in the
same limit. Hence, the binding energy, the Sommerfeld
coefficient for the specific heat, and the expression for the
magnetic susceptibility are the same as in the single-
impurity problem for X= ~. Corrections to these quan-
tities using the slave-boson approach have been derived
by Auerbach and Levin and Millis and Lee.

It is therefore seen that the limit of large degeneracy
not only supyresses the lattice effects arising from the
correlator g but also those that are present in ~@0).

C. Large dimensions

where q =1 n—/, n =Nn„and n/=(1/L) gz&R/z )o.
As in the single-impurity case, we have included the
Lagrange multiplier A, to establish the connection be-
tween n and ak. The momentum distributions &R( )o,
&Rk )o, and &R'k )0 are the Fourier transforms of the
no ninter acting one-particle density matrices, see Eqs.
(13). They are given in terms of the aj, as
& &f„)o=(ak/N)/(1+a k/N), &Rk )0=1—&R'k )0, and
&Rq )q=(ak/&N )/(1+a k/N), respectively.

Again, the minimization problem corresponds to the
diagonalization of an effective Hamiltonian with renor-
malized parameters,

(21a)

B. Large degeneracy

%'e now consider the periodic Anderson model, i.e.,
L =L. We want to compare our results to those of the
slave-boson approach by Coleman, Read and Newns,
Auerbach and Levin, and Mil1is and Lee, who studied
the strongly correlated case U = ~ (g =0).

It is well known that the limit of large degeneracy
A = ~ suppresses lattice effects and the physics of the
single-impurity problem is widely recovered. In fact,
the same happens in our variational approach since the
self-energy, which includes lattice effects in the eorre1ator

g, vanishes identically for X= ~. Assuming transla-kf
tional invariance, we obtain the following expression for
the variational ground-state energy:

The limit of large dimensions (d = oo ) provides another
limit in which the Gutzwiller-correlated wave functions

w f
~%'s) =g ~No) can be evaluated exactly. Again, the
self-energy vanishes so that the general expressions given
in Eqs. (13) hold in d= ~. We consider U= ~ and set
g =0, i.e., the f levels may only be empty or singly occu-
pied (for arbitrary g and N =2, see Appendix 8). The
variational problem for g =0 and d = ~ is given by the
same equation as for N= ~, Eq. (20). However, the re-
normalization factor for the hybridization is now given
by

(23)

Of course, Eqs. (13) not only cover the translational in-
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variant case but are completely general. For instance,
they may also be applied to the case of antiferromagne-
tism.

The variational approach used here gives the same re-
sults as the slave-boson saddle-point approximation by
Kotliar and Ruckenstein, ' which is therefore seen to
obey a variational principle at T =0 in d = oo. As in the
case of the single-impurity problem (Sec. IVA) or the
Hubbard model (see I), the saddle-point free-energy ob-
tained from their slave-boson approach is limited to the
Fermi-liquid regime due to its variational origin (see Ap-
pendix C).

Furthermore, Eqs. (20) and (23) prove results of
counting-type approximations for ~%~) ("Gutzwiller ap-
proximation"), which were applied to the periodic An-
derson model in the translational invariant case by Var-
ma, Weber, and Randall, Brandow, Fazekas, ' Rice
and Ueda, and Vulovic and Abrahams (for a clear
description of the method, see Vollhardt ). These ap-
proximate evaluations of ~4 ) are now seen to become
exact in d = ao. Recently, Oles. and Zaanen extended
the Gutzwiller approximation to the case of antifer-
romagnetism (N =2). Although the method yields the
correct q factors and the correct form of the effective
Hamiltonian, the results are strictly valid only for ~%'s)
in the form ~% ) =g ~Np) instead of ~mls }=g ~4p) aspf
stated in Refs. 33, 37, and 44.

The binding energy Ac, as compared to vanishing hy-
bridization ( Vk =0) may now be obtained as in the
single-impurity case (see Appendix D). We assume a
weak hybridization Vi, =—V and look at the Kondo regime
where the bare f level E/p lies well below the Fermi ener-
gy so that the f-level occupancy nI is close to unity. We
calculate with a constant density of states (bandwidth W)
instead of the exact Gaussian density of states in d= ~. '

From Appendix D we obtain for the binding energy per
lattice site

(D+e )ex—p — 1 ——(s + ~EI )
8' 1

F F 0

(24a)

For the deviation from an integer value for n we find

(24b)

and the effective f level lies slightly above the Fermi en-
ergy at

E =C'F+ TK (24c)

These results may be compared to the single-impurity
case, Eqs. (19). The exponent for the binding energy in
the lattice case turns out to be smaller by a factor
1 —1/N as compared to the single-impurity case, i.e., the
binding is strongly enhanced over the single impurity
(Tz. ))Tz). The origin of this discrepancy was attribut-
ed to the uncontrolled Gutzwiller-approximation tech-

nique frequently used to evaluate ~% ). In fact, we have
now proven that the result is correct in the limit d = ~
and therefore provides a variational upper bound in this
limit. Furthermore, the form of the q factors turns out to
be the same in the lattice and the single-impurity case.
The limit d = ~ may therefore be viewed as a "single-site
approximation" for the correlator and no lattice effects
are present in the form of the renormalization factors q; .

The reason for the appearance of the additional factor
1 —1/N in Tx is a genuine lattice effect that is present in
~ @p) . The binding increases in the lattice case because
the f electrons in ~@p) occupy Bloch states themselves,
which lowers their kinetic energy and therefore increases
the total binding energy. The validity of these considera-
tions is confirmed by recent numerical investigations of
the one-dimensional problem by Fye and Scalapino,
who find qualitative agreement with the results of Eqs.
(24). The additional factor 1 —1/N becomes equal to uni-
ty in the limit N~ oo, where lattice effects become unim-
portant and the physics of the single impurity is
recovered (see the discussion in Sec. IV B).

D. Magnetic instabilities and inhuence of corrections

In the preceding three subsections we have addressed
the limits in which the Gutzwiller-correlated wave func-
tions can be evaluated exactly. We found that the large-
X limit underestimates lattice effects and reproduces the
single-impurity results in lowest order in the 1/N expan-
sion. On the other hand, the limit of large dimensions
gives a much larger binding energy rejecting the
coherent motion of the f electrons in quasiparticle bands.

However, we confined ourselves to the paramagnetic
case. This is allowed in the limit of large degeneracy
since neither lattice effects are important nor are there
exchange effects that arise from the Pauli principle. The
situation changes when one goes to low degeneracy, for
example, X =2. In this case the Pauli principle is very
important. Opposite to the limit of large degeneracy, the
limit of large dimensions does not completely eliminate
lattice and exchange effects. Actually, only the lattice
effects present in the correlator g are eliminated but
not those present in ~4p); the f and c electrons still form
quasiparticle bands. The exchange effects show up in the
denominator of the renormalization factors for the
effective hybridization at site i, q; =(1—n/)/(1 —n( ).
The numerator 1 —n~ is simply given by the probability
for U = ao that there is no f electron at i to make the hy-
bridization process c; ~f; possible. It is also present in
a large-X approach. However, one has to calculate the
total renormalization factor for U= ~ relative to the
respective probability at U =0. This probability is given
by the denominator as 1 —&; since the process is already
forbidden by the Pauli principle for all values of U, if
there is an f electron with the same quantum numbers at
site i. A trivial limit to check these arguments is given in
the case of a total polarized band where there is no in-
teraction at all. In this case one has q; = I, which is cer-
tainly the correct result.

The dependence of the effective hybridization on the
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magnetization has severe consequences on the stability of
the paramagnetic ground state. In fact, as first shown by
Rice and Ueda, the paramagnetic state becomes unsta-
ble against ferromagnetic ordering in the Kondo regime.
As investigated by Oles and Zaanen, an antiferromag-
netic rather than ferromagnetic ordering is stable in the
Kondo limit for % =2. Rice and Ueda derived a lower
bound for the existence of paramagnetism from the ratio
of magnetic exchange energy and Kondo energy.

The limit of large degeneracy underestimates the
infIuence of lattice and exchange effects. On the other
hand, these effects are overestimated in the limit of large
dimensions. The calculation of 1 jd corrections is possi-
ble for N =2 (Ref. 46) and leads to a remarkable agree-
ment with numerical (variational Monte Carlo) investiga-
tions by Shiba even in d =1 dimension. In fact, these
corrections show that the binding energy, i.e., T&, is re-
duced from its value in d = ~. Furthermore, all calcula-
tions were done for infinite repulsion between the f elec-
trons. As shown by Vulovic and Abrahams, the effect
of finite U is to reduce the binding energy as well. It is
therefore seen that the tendency to magnetic ordering is
reduced for degeneracy N) 2 [see Eq. (24a)], finite-U
corrections, and finite-d corrections. ' Furthermore,
it is clear that lattice and exchange effects become less
important in a dilute system, which has been studied in
the framework of Gutzwiller-correlated wave functions
by Fazekas. "

V. SUMMARY

We investigated general Gutzwiller-correlated wave
w f w f

functions l'0 ) =g %0) =g l@0) for the periodic
Anderson model, especially in the limit of strong correla-
tions (g =0). The approximation-free evaluation of ex-
pectation values is a complicated many-body problem.
For this purpose we extend the formalism in Ref. 28 to
the present case'of degenerate bands. Simple and explicit
results can then be obtained in three cases: (i) the dilute
limit (single-impurity case); (ii) the limit of large dimen-
sions (N = ~ ); (iii) the limit of large dimensions (d = ~ ).

In the first case the wave function reduces to the
Varma- Yafet or lowest-order Gunnarsson-Schonham-
mer ' state since the Gutzwiller correlator acts on one
lattice site only. We obtain complete agreement with
their results. For the lattice case we completely repro-
duce the results of the slave-boson mean-field solution of
Coleman, Read and Newns, Auerbach and Levin, and
Millis and Lee in the limit of large degeneracy. In the
limit of large dimensions we completely reproduce the re-
sults of the slave-boson mean-field theory of Kotliar and
Ruckenstein. ' The two seemingly different slave-boson
mean-field results are therefore obtained from the
analysis of the same class of correlated wave functions.
The variational approach proves that the constraint of no
multiple f-level occupancy is strictly fulfilled at tempera-
ture T =0 and that the results provide variational bounds
in the respective limits. The extension of these mean-field
treatments to finite temperatures is restricted to the
Fermi-liquid regime due to their variational origin.

In addition, we prove formulas that were derived for

these wave functions from counting-type approximations
("Gutzwiller approximation") by several authors
to become correct in the limit of large dimensions. Our
approach shows that the results in fact belong to

l
4 ) in

the form
l
4 ) =g

i @0) instead of %'s ) =g
l @0) as

stated in Refs. 33, 37, and 44. Furthermore, an explicit
calculation of 1/d corrections and equal-time correlation
functions as in I is feasible and shows remarkable agree-
ment with numerical data given by Shiba.

Both in the large-X and the large-d limit, the effects of
the correlator are described by local renormalization fac-
tors Qq; for the hybridization. However, the limit of
large degeneracy eliminates all lattice coherence effects
and all exchange effects that arise from the Pauli princi-
ple. Hence, for large degeneracy the single-impurity re-
sults are widely recovered. The limit of large dimensions
does not suppress these effects. The result is a much
larger binding energy in the Kondo limit for the lattice
than for the single impurity. This finding is confirmed by
recent quantum Monte Carlo investigations on the one-
dimensional Kondo lattice. For small degeneracy
(N =2) the paramagnetic state is unstable against
(anti)ferromagnetic order in the Kondo limit. This ten-
dency is reduced by finite-d and finite-U corrections and
is generally weakened for large degeneracy and dilute sys-
tems. Although magnetically ordered states are realistic
for dense Kondo systems with an effective degeneracy
N =2, this effect is certainly overestimated in l%g ). The
one-particle product wave function l@0) is a quasiparti-
cle vacuum and does not contain excitations. Their in-
clusion stabilizes the paramagnetic Fermi liquid. A
treatment of those more complicated variational wave
functions lies beyond the scope of this work.
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APPENDIX A: CALCULATION
OF THE ONE-PARTICLE DENSITY MATRICES

The calculation of the one-particle density matrices is
performed as in I. As an example we evaluate this quan-
tity for the f electrons.

We have to calculate

(A 1)

for i%j. The numerator may be rewritten as [see Eqs.
(5b) and (6)]

m f
(e„l(g 'f,'~ ')(g f,.g ) ~ (1+r,)le, ) . (A2)

g (&1,j)

The product may be expanded as
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(A3)

where the prime on the sum implies that all lattice vec-
tors are different from each other. The number of opera-
tors f's involved is called the "order" of the expansion.

The restriction of the lattice sums and the expansion of
f's itself, Eq. (6), assures that there will be no Hartree

bubbles at any "inner vertex" g . We have to get rid of
the Hartree terms since they are always of order unity for
all dimensions d and degeneracies X. We now eliminate
these contributions at the "external vertices" i, j. First,
we write

(A4)

~ ~ Q;„where Q;„ is given in Eq. (9b). We formally expand g
as

N T'

g '"=Vq; + g — g 'y," . . . g (6'I —&R/ ) )

—:Qq;, (I+ i'; ) (A5)

in analogy with the expansion of g ', Eq. (6). This ex-

pansion of g
'" guarantees that there will be no HartreeQ;„

bubbles at site i. Equation (9a) can be proven by taking
the expectation value of both sides in Eq. (A5) with ~@0).
Using this definition we find, for the numerator in mth
order,

(A6)

We are now in the position to apply Wick's theorem.
Since all lattice points in Eq. (A6) are different and all or-
bital indices in f's are different, also we may introduce
"5-less" contractions

(Aj)

(A8)

Furthermore, since all Hartree contributions were sub-
tracted and all lattice sites and orbital indices were
different, we may replace all contractions by

are 2r+ I lines at i. According to the expansion of f's
there are always at least four lines attached to any inner
vertex g.

Now we have to deal with the restrictions on the orbit-
al and lattice sums, which prevent the application of the
linked cluster theorem. As in I, we may express the
terms arising from Wick's theorem as sums over deter-
minants. The restriction on the orbital sums may be
released since the determinants are zero when two rows
or columns are set equal. For X =2, the same argument
applies for the lattice sums and the linked cluster
theorem can be used. For N & 2, however, the restriction
on the lattice sum remains. A typical lowest-order
disconnected graph is depicted in Fig. 2. The restriction
g,g2 may be released since the lattice points are con-
nected by lines P, (g, , g2), which vanishes for g, =gz.
However, there are additional contributions for g&=i, j
and/or g2

=i, j. The resulting graphs are connected
graphs again, so that all additional contributions can be
absorbed into the vertices x . . . and y,' ' . . . . One

g &)

may introduce modified vertices x . . . and yg, a1 a
1 r

so that the restriction on the lattice sum may be released
and the linked-cluster theorem applies. Since there are
no disconnected graphs to order unity, the factors q;, q j
are unchanged by this procedure.

Finally, the one-particle density matrix is given as a
sum over all connected graphs,

~~' (g~ g2)=~' (gi g2) &~ —'(g& g )g), g2 v (A9)

without creating any new contributions (see I). Especial-
ly, & ' (g„g, )=0 holds. We represent the terms arising
from Wick's theorem graphically: (i) lines between two
lattice points g„g2 are given by P (g„g2); (ii) inner ver-
tices are given by x . . . when there are 2r lines at g;
(iii) external vertices are given by y "' . . . when there

1 r
FIG. 2. Disconnected diagram for the self-energy.
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Pf(i, j)=+q; Qq; f; f; (1+Y,' ')(1+Y,' ') 1+ g g I . I
m —I g, , . . . , g 0

(A10)

Pf(i,j )=+q; Qq, Pf (i,j ) (i&j) (A 1 1)

which may be expressed in terms of the noninteracting
one-particle density matrix Pf' (i, j) and a "self-energy"
S (g, ,g2). There are at least two vertices lil S (g„g2)
that are connected by three or more separate paths (see
I). For a vanishing self-energy, only the lowest-order
graph contributes. Thus we find

trons in f@0), respectively.
These expressions now allow for an explicit representa-

tion of the q factors, which give the effective hybridiza-
tion and the mean f-electron double occupancy for arbi-
trary g, &&f )0. To determine q; we have to eval-
uate Eq. (9). Equation {9b) reduces to Q; = {1 —2p, )

R'; —p; +2g;. Using the definition of q, , Eq. (9a),
and Eqs. (82), we finally obtain

for d = ~ or X= ~.
The calculation for the case i =j is analogous and gives

& R'; ) =
& R';, )0 in the same limits. The other one-

particle density matrices can be calculated along the
same lines. The result becomes obvious when one realizes
that the c-electron operators always commute with the

kf
correlation operator g ', which only acts on the f elec-
trons. The results for vanishing self-energy are then
given in Eqs. (13).

APPENDIX B: RESULTS
FOR NO ORBITAL DEGENERACY

g "'=1+x,-&Rf, &,&n(, &, , (8 la)

Here we present results for the case where we have
spin degeneracy only. In this case, one can easily solve
Eq. (6), which explicitly reads (see I)

q;

df(1 nf +d f—)2= 1 1.0 1

(&R', , &,
—d, )(&R,, &,

—d, )
(84)

These results are exact in d = ~ for general Gutzwiller-
correlated wave functions f'0 ). Formulas that were ob-
tained for these wave functions in the translational in-
variant case by using the Gutzwiller approximation are
therefore seen to become exact in the limit of large di-
mension. ' A detailed discussion of the results
{N=2, arbitrary g) can be found in Refs. 37 and 38.

(83)

The mean double occupancy fulfills Eq. (13d). For N =2
we have z;i, —= 1. Using Eqs. (82) and dropping
superfiuous indices Eq. (13d) finally becomes

g '(g ' —1)=—x &nf ), cr= 1 J,

2Vyi~ 2 2@iI 2Pi 1
2P i) 2Pi I

(Bib)
APPENDIX C: EXTENSION
TO FINITE TEMPERATURE

This set of equations is easy to solve. One obtains

1

2(1 g)d j0(1—n(—+0d ~0)

X [
—1+(1—g )(nf0 2d (0)—
++1+(g —1)[n f0(2 nj0)+g (m~—0) I

g f (82b)

(82c)
x, &nf

g
1 +XI' IIP

Here, n ~~ =
& Rft )0+ & Rfi )0, m (0 =

& Rft )0
—

& Rfi )0,
and dfi0=&Aft )0& 8'ft )0 denote the local density, local
magnetization, and local double occupancy for the f elec-

The variational principle allows us to calculate upper
bounds for the ground-state energy of a given Hamiltoni-
an H and is therefore naturally limited to temperature
T=O. On the other hand, one can make contact with
Fermi-liquid theory by calculating Fermi-liquid parame-
ters so that one can go beyond T=0 (see Vollhardt for
the application of the Gutzwiller wave function to nor-
mal fiuid He).

A formally diferent but conceptually equivalent way to
extend the variational approach to finite temperature has
been introduced in I. The ground state of H is approxi-

w f
mated by the variational wave function fq's) =g f@0)
to give a variational energy

&q, fafq, &

(Cl)

while the latter equality is only exact in the limits dis-
cussed in Sec. III. f@0) may be chosen as the exact
ground state of the noninteracting eftective Hamiltonian

ffH' (lattice case) or as an approximative ground state
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(singly-impurity case). From this point of view one may
argue that excited states for H may easily be constructed

nas I'Pg ) =g I&&„), where I@„)(n =1,2, . . . ) are excit-
ed states of H' . Since the formalism presented here is
completely general, we find in the limits discussed in Sec.
III that

Reinserting this into (D 1) gives

=1bE+Anf= —g'
E(k) —E +(bE+An )/N

Minimizing Eq. (Dl) with respect to A, gives Eq. (17b)

(D3)

(e"IIIIV" &E„= ' ' =(e„IH' Ie„& .
(@nIqgn ) fl n (C2)

—PE„ZKR= X e (C38)

An excited state I&&„) described in terms of the nonin-
teracting Hamiltonian H' therefore corresponds to an
excited stated I%" ) =g I4„) in terms of the original in-
teracting Hamiltonian H just like in the Fermi-liquid pic-
ture.

Therefore it seems natural to define the objects

( I/L)g'a q

nf=
I+(1/L)g' a qIN

k

(D4)

The conduction electrons are assumed to form a feature-
less band of width 8'so that we can work with a constant
density of states. ( I/L)gj, ' is then replaced by integrat-
ing in energy from the lower band edge D= ——W/2 up
to EF. The total number of electrons is given by
n =N(E++D)/W. Equations (D3) and (D4) can now
easily be evaluated. One finds

1fKR in+RR (C3b)
p 2

aE = —Xnf+ ln8
E E+(—b,E+An )IN

D E+ (
—b—E +An ) /N

where /3=1/T. The minimization procedure then has to
be performed using fKR for T)0 instead of Eo at T =0.
fRR is then exactly the "free energy" and is ZKR the
"partition function" which follows from a saddle-point
mean-field solution of H using the slave-boson treatment
of Kotliar and Ruckenstein. ' ' In the limit of large de-
generacy it becomes equivalent to the free energy and
partition function obtained from the saddle-point mean-
field solution of H using the slave-boson treatment of
Coleman and Read and Newns. '

However, it is clear from the construction that only
low-lying excitations might be described in the same
manner as the ground state. Higher-lying excitation,
especially charge excitations, which are always
suppressed by the correlation operator, cannot be de-
scribed properly. Its variational origin limits the applica-
bility of these slave-boson approaches to the Fermi-liquid
regime;

1 —nf
V (D+E~)

8
DE+ Anf

cF E+
(D5a)

AE+ A.n f

(Dsb)

0 FEf—E b.EIN —V (1—n) I(nf W—)

nf /N —1

so that we find

b,E =n f( Efo —eF )

(D6)

We may eliminate A, from Eq. (D5a) with the help of Eq.
(D5b). For small V/W we obtain from (D5b)

APPENDIX D: MINIMIZATION PROCEDURES
V (1 nf)—+ 8

V (1 nf)—
nf W(E~+D )

1. Single-impurity case

(bE+Anf) 1+ g'a1

NL

=—X' I I:E —«k) ~a ~
—2V~a~ 1

=1
k

(D 1)

We have to minimize Eq. (17a). We include (17b) by
introducing a Lagrange parameter A, . Then we have to
minimize

The term n (Eo —eF) in Eq. (D7) is independent. of V
and gives the energy of the occupied f level measured
from the Fermi energy. Strictly speaking c.F is altered by
an amount of order n /L since the f level was supposed
to be empty in our definition of cF. This plays no role in
the single-impurity case but will be important in the fol-
lowing subsection.

We are interested in the Kondo limit where 5=1—n
is a small quantity. Minimizing Eq. (D7) to lowest order
in 6 gives

with respect to ak, A, , and n . Here, Vz =&q VI„
q = ( 1 —n )I( 1 n IN), and E =E—

o + A.. Minimization
of AE with respect to ak gives

W(D +Ep. ) 86=1—nf=
p2 exp — (c, +

I
EF 0 (Dga)

ak= Ef—e(k) (bE+Anf) IN—(D2) and the binding energy b,e=b,E n(E, —e~) is—given
by
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bs—:—Tx = —(sF+D)exp — (eF+ lEfol )
W
V2

(D8b)

kak=—
E —s(k)+ Q [E —E(k ) ] +4 V „/N

(D10)

=E0+A, . Minimization of hE with respect to iik gives

The effective f level lies at Ef=Eo+A =a~+ Tk.
To make contact with the minimization problem in

Refs. 40 and 41, one has to reexpress
l q'g ) as

) =g
l %0). From Eq. (Sa) we have az =g"az,pf

which gives az=&qak for g =0. Using this one can
easily obtain the minimization equations of Gunnarsson
and Schonhammer if one identifies Vz =v'NL V(E ).

a q[Ef—a(k)] —2Vqa~
b,E+A,nfL =

1+i% q/N
(D9)

Again, V& =&q V&, q =(1—nf)/(1 n /N)—, and E

2. Lattice case

We have to minimize Eq. (20) with respect to az, A, ,
and nf. Defining (8)=EFs+b,E, we have to minimize

Taking the limit N= ~ in Eqs. (D10) and (D2) one may
easily see that both expressions agree in this case and give
the same value for AE, i.e., lattice effects become unim-
portant in this limit.

Minimizing Eq. (D9) with respect to A, gives

nf= 1

1+if k/N
(D 1 1)

We assume a featureless band of conduction electrons of
width W and Vk—= V« W. The total number of elec-
trons is given by n =N(eo+D)/W, which is the actual
definition of c0. Recall that we start from a filled c-
electron Fermi sea and empty f levels [see Eq. (4)] so that
c0 is equivalent to the Fermi vector kz. We insert the op-
timized form of ak, Eq. (D10), into Eqs. (D9) and (Dl 1)
and perform the elementary integrals. This yields

(hE)/L= An — (so——E ) —(D+E ) +(so E)Q(e—o Ef) +4V—/N+(D+Ef)+(D+Ef) +4V /N

4V2 (co E) Q(E—
O

E—) +4V —/N
ln

(D +Ef)+V'(D +Ef)'+ 4 V'/N
(D12a)

n = [eo+D+Q(EO E) +4V —/N )/(D+Ef—) +4V /N ] . (D12b)

We may eliminate A. from Eq. (D12a) with the help of Eq.
(D12b). For small V/W we obtain from (D12b)

E„=—,'[s(k)+E—+Q[e(k) —E ] +4V„/N] (D15)

A=E0 —Efo —( Wnf)/N+A, , V (D13)

where A,
&

is an unimportant correction that does not show
up in hE to order V . Retaining orders V and V lnV
we obtain for AE

W(nf)(bE)/L =
2N

nf(s —E—f )0 0

V 2

W
—1+in

V 2

Wnf(D +so —Wnf/N)

(D14)

The term ( W(nf) }/(2N) —nf(so Eo) in Eq. (D14—) is
independent of V and gives the energy of the occupied f
levels. Including E„s it may be written as
E( V =0)=N/(2W)[(so) —D ]+Eon, where so is
determined by n n=N(co+D)/W—. While so defines
the Fermi momentum, the Fermi energy in the case V =0
is glveii by Eo= eo Wn /N.

As soon as a finite hybridization is present, the f elec-
trons become delocalized and two quasiparticle bands
with dispersion relations

are formed. The Fermi energy cF lies in the lower band
and fulfills the equation

s~= —,
' feo+Ef—Q(so —Ef) +4V /N ] . (D16)

W(1 —1/N) W(1 —1/N)D+e exp
V2 F V2

X (sF + IEfo I ) (D 1»)

and the binding energy per lattice site reads

This equation may be used to eliminate c0 in favor of the
Fermi energy EF.

We are interested in the Kondo limit and therefore
minimize the binding energy per lattice site
b,s=[E(V) E(V=O)]/L w—ith respect to lowest order
in 5. This gives

S=l —nf
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Ac =——T~

= —(D+ EF )exp — (ez+ ~EO ~
)

IV( 1 —1/N)

For completeness we give the density of states at the Fer-
mi energy cF, which is directly proportional to the
effective mass

(D 1jb)

where we used the lowest-order expression for the Fermi
energy, EF=E =Ep+A =cp Wn /X. Including the
dominant correction in the Kondo limit, E reads

(D18)

BE 1=op+
E —=cF K

(D19)

The effective mass is clearly enhanced over the contribu-
tion for V=0, po=N/8'. The admixture of f-electron
states for V) 0 gives rise to the large contribution 1/Tg. .
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