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Bethe ansatz for the one-dimensional boson Hubbard model
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The Bethe ansatz (BA) for the one-dimensional boson Hubbard model is studied. Even though the
model cannot be solved exactly by this method, it is argued that it gives an excellent approximation for
densities p~ 1. This claim is substantiated by a detailed study of the internal consistency of the BA
solution, and by comparison with quantum Monte Carlo simulations.

The Bethe ansatz' (BA) has been an extremely success-
ful method to study and solve exactly one-dimensional
(1D) quantum many-body systems with a 8-function pair
potential (in the continuum) or an on-site interaction (on
the lattice). One of the big successes of the method was
the exact solution of the 1D Hubbard model, a fermionic
lattice version of the continuum Bose gas, solved by Lieb
and Liniger.

In the last few years, boson-type Hubbard models have
been investigated actively in the context of superfluidity in
constrained geometries and short-coherence-length super-
conductors. " The commonly used model is described by
the Hamiltonian

UH= —t g (a; a~+H. c.)+—gn;(n; —1),
(I,j)

where a; is a boson annihilation operator on site i
(i =1, . . . , L), and n; is the number operator
(g; i n; =N). As usual, I set t = 1; the other definitiolls
are standard. The model is especially interesting close to
integer densities p =N/L at which it undergoes a
superfluid-Mott-insulator transition for a finite value of
the interaction U, even in one dimension.

In one dimension, the boson Hubbard model equation
(1) is simply a lattice version of the model of Lieb and
Liniger, retaining the original statistics. The Bethe ansatz
for this model was first studied by Haldane. It was
found that there are subtle problems with the multiply
(i.e. , more than doubly) occupied sites, which are not
treated correctly in this approach. Perhaps because of
these shortcomings, work on the BA for this very rich
model was not pursued farther. The 1D model has recent-
ly been studied in numerical simulations by Batrouni,
Scalettar, and Zimanyi.

If the BA is only approximate for the boson Hubbard
model (except if U=~ or p 0, when multiply occupied
sites play no role), it is clear that the density of multiply
occupied sites will be very small in the insulating, solid
Mott phase at p=1. Therefore, the BA approximation
may be excellent and render the true qualitative and
quantitative aspects of the model for all but the smallest
values of U. The investigation of this hypothesis has been
the motivation of the present work.

In the following, a fairly complete analysis of the BA
approximation at densities p ~ 1 and comparison with ex-
act numerical simulations will be given. The general
finding is that the BA solution is "almost" consistent: it

has the presumably correct critical exponents for the
compressibility and the superfluid density p, /p as p 1,
satisfying the hyperscaling relation. At integer density,
the superfluid density is constant for low values of the in-
teraction U, and identical equal to zero above the transi-
tion point. At the transition, p, /p is discontinuous, as it
should be for a superfluid at a Kosterlitz-Thouless (KT)
phase transition. '' Close to the transition, however, on
the superfluid side, the BA approximation would predict a
diverging p, /p, thus violating the bound that p, /p ~ l.

Direct comparison with the numerical simulations is
very favorable. The energy and chemical potential are in
excellent agreement with the numerical results, which
were mostly obtained on systems of very small size
(L =16). Around U, , the simulations became plagued by
large finite-size eff'ects (due to the logarithmic interaction
at the KT phase-transition point), and it is very difficult to
obtain a good numerical estimate of U, Rather, I have
tested the consistency of the BA numerically at the pre-
dicted value of U, . Using our own exact quantum Monte
Carlo code, I find that the density of multiplicity occu-
pied sites is indeed very low. At the critical point,
p(n; ~ 3)-0.008.

Some of the calculations (divergence of the energy,
chemical potential) are rather standard, and I will only
quote the results here. The calculation of the superfluid
density, however, is interesting, as it needs a higher-order
approach to the BA equations. I have been able to do this
calculation analytically (see also Ref. 12 for a similar ap-
proach to the problem). The analytical work above U, . is
especially simplified by the fact that the BA integral equa-
tions can be solved exactly in the insulating phase, as
shown by Haldane. .

Consistency equations can be written in the usual way
to ensure that the BA wave function

N

&&exp i gkpt~ir~ (ri &r2& &rtv.)
j=l

is a correct solution of the Hamiltonian equation (I), even
if two of the arguments are identical. These BA con-
sistency conditions for the boson Hubbard model follow
straightforwardly from the continuum Bose gas: '

8,,~ = —2 arc tan [(2/U) (sink, ,
—sink j ) j
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and

(4)

( —) 'exp( —ikjL) =exp i g O,,j+e (3)
s 1

where the parameters O,J are related to the prefactors
a(p). The total energy of the system is E= —2P;
&&cosk;. In Eq. (3), which fixes the boundary conditions
(B.C.) of the wave function, e is zero for a stationary ring
(periodic B.C.) and takes on the value 6 =v/L for a ring
which is set into rotation with a velocity equal to v (twist-
ed B.C., cf. Ref. 13 for related work on the fermion Hub-
bard model). The superfluid density p, /p (at T=O) is
defined precisely by the change of the ground-state energy
with a small rotation. '

N
E(e) —E(0)

=L '/f(kj)+L g(kj) . (5)

Using the trapezoid rule, I get the following rule for the
replacement of sums by integrals:

In the thermodynamic limit, I assume e—O(1) and ex-
pect in this case no problem with the exchange of limits
N ~ and e 0. It is evident from Eq. (4) that the en-
ergy change per particle [E(e)—E(0)]/N of the system
then has to be determined up to order O(l/L ). In order
to achieve this precision, finite-size corrections are taken
into account.

For the ground state (with e =0), the (ordered) pseu-
domomenta in Eq. (3) are symmetrically distributed be-
tween values —n ~ K —cr/L and K+ o/L ~ n. The distri-
bution of momenta is written as

r K l K
1/L g z(kj) =„dxz(x)f(x)+L ' (z1+z1v)/2+af(K) —„dxz(x)A(x) +O(L ),

j=l
(6)

with z(kj) any sufficiently smooth function and with
A(x) f (x)g(x). To derive the integral equations for f
and A, we have to use

z(kj) Osj —
I Osj+1

= —2cosk. A(k, k,. )[L '/f(k )+L g(k )],
with

0 (x,y ) = 1/[U /4+ (sin x —siny ) ] .

The integral equation for f is

2nf(x) =1+Ucosx dy f(y) A(x,y) .

K is fixed by the condition p =J—n dx f(x), as can be
seen from Eq. (6) with z(x) 1. Equation (7) is an inho-
mogeneous Fredholrn integral equation which can easily
be solved by iteration. It is more convenient to consider
the transformation

2nf(x) = I+cosx[~cosx~ ' f*(sinx)l . —

f* then obeys the integral equation

f*(z)= (1 —z') ' ' —— dx n'(x, z)
2) I/2

Zp

dx f(x) n, '(x,z),

with xo=sinK and 0'(x,y) = [U /4+ (x —y) ] '. At
unit density p=l, the maximum momentum goes from
K =0 (at U =0) to K =n at U~ U,. =243. Above U, , an
explicit solution to the integral equation is given by

2nf*(x) = (1 —x') ' —[(U/2 —ix) +1]
[(U/2+IX) + 1]

For values just below U =U„sinK will be small, and the
solution of Eq. (8) can be simultaneously expanded in

U, . —U and z —K. The two small parameters are related
to each other by the condition 1

—=p =j "—x dx f(x). I find
K=n —2(3' /7'j )(U,. —U)'j. Using this result, it can

+ U„dycosyJ(y) Q(x,y) .

As before, this integral equation at p=1 and U & U, . is
transformed by incorporating the inhomogeneity into the
definition of J:
2n J(x) =n —2arctan[2/U(sinK —sinx)]+ UJ*(sinx) .

For U & U, at p =1,J is zero, and the chemical potential
is given by

Pn 2 .
p = —— dx sinx arctan —sinx + 2 .

~ 4 —z U
(10)

Equation (10) can be explicitly compared with the numer-
ical data of Batrouni, Scalettar, and Zimanyi, who
display results for the chemical potential in their Fig. 1. I

have plotted Eq. (10), and have found very good quantita-

be shown that the energy and its first two derivatives
remain continuous at U,

What is the nature of the system above U, . ? As ex-
plained in Ref. 4, the system, above U, , should be a Mott
insulator, i.e., have vanishing compressibility and
superfluid density. Furthermore, as the Mott insulating
state is approached (at fixed U) U, . ), the compressibility
and the superfluid density should have mean-field critical
exponents x =Bp/Bp —[p ( I ) —p (p) ] ' and p,. /p —

~
1—p~= ', with a= —.

' and z 2. All these properties can
be obtained within the BA approximation, as I will show
in the remainder of the paper.

In the BA framework the chemical potential p(N, L)
=E(N, L) —E(N —1,L) is calculated from the change of
the kj's as the particle number is incremented. Denoting
by a prime the momenta in the system with N —

1 parti-
cles, I can calculate the change in the individual quasimo-
menta as k'(j ) =k(j)+L 'P(J') with &=O(I). It is
easy to derive the integral equation for J(x)=1'(x)f(x)
as

2nJ(x ) = n —2 arctan [(2/U) (sin K —sinx ) ]
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(kj' —kj)L = —g (8.,', —8,,~)+e, (i2)

writing k~' kj+ro(k~)/L+ v(k~)/L, and expanding
8,'.~

—8,~ to second order in 1/L [cf., Eq. (2)] the integral
equations for co(x), depending on 6, and for v(x), which
depends on co(x), can be derived. Now one has to proceed
carefully, since in the derivation of the integral equation
for ro(x) the terms of order L ' [cf., Eq. (6)] have to be
kept. They contribute to the equation for v(x). There-
fore, the function A has to be evaluated first. An integral

tive agreement with their data. Close to the transition,
the diff'erences seem to be of the order of a few percent.
They may well be attributable to a combination of large
finite-size effects close to the Kosterlitz-Thouless transi-
tion, systematic errors (of the order of a few percent ),
and to the approximate nature of the BA solution.

The integral equation for J*(x) can be expanded into a
series in 1 —p for densities p close to 1 allowing the calcu-
lation of the chemical potential for p 1. This yields the
result

i —
p =ip(I) —p(p)~[I —4/(4+U') '"].

It then follows that the compressibility ir =8p/t)p diverges
with the (correct) mean-field exponent a = —,

' for all
values of the interaction U & U,

I now turn to the calculation of the superAuid density in
the BA approximation. Here, the change of the k~'s is due
to the introduction of a phase, rather than an extra parti-
cle. Denoting with a prime quantities in the rotating sys-
tem, I have to calculate

I+2af(K) = A(x)dx. (is)
It can be seen easily that the consistent solution of Eqs.
(13)-(15) is given by I +2of(K) =0, which implies
A(x) =0. I am unaware of a simple way of deducing this
result from general principles without the help of extra
hypotheses. It has two direct implications: (i) The finite
size corrections to K are linear k~ =K+ a/L with
a = —I/2f(K) anywhere except at U =U, , where f(K)
=0. (ii) The energy per particle is E/N =const
+ O(I/L ').

Now I can write down the integral equations for the
function P(x) =f(x)cu(x) and g(x) =f(x)v(x)

2zrP(x) =e+U dycosyP(y)0(x, y), (16)

2xg(x) =R(x)+U dy cosyg(y) Q(x,y),

equation of the familiar form can be deduced from Eq.
(6) and from the formula for 8,,~. —

~

—8,,J+ ~'.

~K
2zrA(y) =Z(y, o)+Ucosy „A(x)n(x, y),
with

Z(y, a) = —Ucosy[ Q(y, K)

+ n(y, —K) [1/2+of(K)]] . (14)

o has to be determined by the consistency equation for the
density to order 1/L: N/M=p+r/L Cho. osing r =0, I
get

R(x) = —U dy f(y)[[co(y)cosy —co(x)cosx] [siny —sinx]Q(x, y) +co (y)sinyQ(x, y)/2]

+ co'(x )tanx .
2' (x) —

1

2

As before, by incorporating the inhomogeneities into the
definitions of the functions P and g, these equations can
be solved analytically above U, Explicitly, I find

2~P(x) =e;

In Fig. 1, I show the numerically calculated values for
the superAuid density as a function of U around the criti-
cal point. For U U, , the superfluid density diverges (in
the BA approximation) in violation of the bound p, /p ~ 1,
which can be obtained by a generalization of the well-

2zg(x) =R(x)+ dy R(y)cosy n(x, y) .
2z " (19)

For any U, P(x) is an even function P(x) =P( —x),
therefore, there is no contribution to order O(I ) to the
change of the total energy, as it should be. The second-
order change in the energy is

E(e) —E(0) =2/L „dxf(x) [oi'(x)/2cosx

+ v(x)sinx] . (20)

Equations (19), (20), and (4) now yield a completely ex-
plicit formula for the superfluid density at U & U, , p=l.
I have not succeeded in determining all the integrals
analytically, but I find (with seven significant digits) that
E(e) —E(0) =0, therefore, the superfluid density van-
ishes. The two terms which contribute to the energy shift
diverge as U U, , but cancel exactly.

l I

FIG. I. Superfiuid density p.;/p in the Bethe ansatz approxi-
mation for N =~ (solid line) at density p= l and for a finite
system with 19 bosons on 19 sites (dashed line).
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known variational argument'" to the case of a lattice. To
check the result, I have also calculated the exact, numeri-
cal solution of the BA consistency equations for finite sys-
tems and the result for 19 bosons on 19 sites is also shown.
Even there, it can be seen that the predicted value is larger
than 1 close to U, This behavior is the only indication of
an inconsistency that I have been able to see in the BA ap-
proximation.

The critical exponent z for the superfluid density can
now also be determined from Eqs. (16)-(18). For simpli-
city, I have determined p,./p from the numerical solution
of the integral equations for small values of 1

—p. The re-
sults are consistent with the critical exponent z (to three
significant digits), even though the scaling region is very
small as U U, from above, as it should be. At U=4,
for example, p, (p) is linear for p~0.995 only. For larger
U, as those considered in Ref. 7, the scaling regime is
much larger also.

In conclusion, I have presented an analysis of the Bethe
ansatz approximation for the 10 boson Hubbard model. I
have calculated the chemical potential and the superfluid

density in this approximation, and compared it to recent
numerical work of Batrouni, Scalettar, and Zimanyi. p, is
determined by four connected integral equations (for f, g,
r0, and v). Above U„, the solution of all these integral
equations can be obtained explicitly, with the result p, =0.
The BA approximation would be exact if the probability
of multiply occupied sites were zero. Monte Carlo calcu-
lations of this quantity show that, at the critical point U„
this probability is very low, in support of the original hy-
pothess that the BA approximation is excellent.

It would be very interesting to be able to raise this cal-
culation to the status of a true variational calculation, by
calculating the expectation value and especially the vari-
ance of the BA wave function's local energy 0+/%', as is
usually done with a variational wave function. Another
interesting calculation would concern a direct calculation
of the probability of multiply occupied sites. Finally, I
would like to note that the large degree of consistency of
the BA approximation is somewhat mysterious and may
still hide some surprises.
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