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We present a numerical and analytical study of the accuracy and convergence properties of
multiple-scattering theory (MST) in three dimensions. The convergence with respect to the number
of angular momentum states, X „,of the solutions to the three-dimensional MST equations for two
muon-tin potentials is studied analytically and by means of numerical calculations. The rate of
convergence appears to be a universal quantity which depends, in the limit of E „~oo, only on
the separation between the scatterers relative to their radii. No evidence of error in the energy, the
wave function, or the derivative of the wave function in the limit E „—+ oo is found. In numerical
tests which use square-well potentials and truncated Coulomb potentials it is found that the accu-
racy of the calculated wave functions and their derivatives is limited by the precision with which
real numbers can be represented on the digital computers available to the authors (approximately
one part in 10 ) rather than by postulated errors inherent in MST. Analytic formulas, valid in the
limit of large E „, for the residual errors in the solutions of the MST equations indicate that these
errors vanish in the limit E „~oo. These results are inconsistent with the claim of Badralexe and
Freeman [Phys. Rev. B 37, 10469 (1988); 41, 10226 (1990)] that multiple-scattering theory does
not yield exact solutions to the wave equation for muKn-tin potentials.

I. INTRODUCTION

Although multiple-scattering theory (MST) has been
used for nearly a century to solve some of the fun-
damental partial differential equations of mathematical
physics, we know of no careful study of its accuracy
and convergence properties in the limit in which a large
number of angular momentum states are used to repre-
sent the solutions to the differential equation. This paper
contains such a study for the case of two muKn-tin scat-
terers in three dimensions.

There are several reasons why such a study might be
useful. One reason concerns ongoing research aimed at
eliminating the restriction of MST to muKn-tin poten-
tials. It is becoming increasingly clear, at least to the
present authors, that there is no diFiculty in princi-
ple with the extension of MST to general, space filling
potentials, but there are dif5culties in practice which re-
late to the the conditional and slowly convergent angular
momentum sums which may arise in such an extension.
A careful study of the muKn-tin case provides a useful
foundation and a baseline against which the convergence
and accuracy of the general case may be compared.

A second reason relates to the controversy that
has arisen concerning work by Badralexe and Freeman
who claim that MST is incorrect even for muKn-tin
scatterers. Although the Badralexe-Freeman paper has
been strongly challenged, its authors continue to defend

their position. In an attempt to shed some light on
this controversy one of us earlier investigated the valid-
ity and accuracy of multiple-scattering theory by using it
to solve the wave equation for one- and two-dimensional
model systems. In that study it was demonstrated that
MST is exact in one dimension and that any errors in
two dimensions must be extremely small (less than one
part in 10i for the wave function).

In the present paper we present what we believe is a
careful analysis of the bound states of three-dimensional
systems using multiple-scattering theory. The particu-
lar model system which we use to test MST consists of
two mufIin-tin potentials in free space. This particular
choice seemed appropriate to us because of its simplic-
ity and because it was in the context of this system that
Badralexe and Freeman derived their "proof" that MST
is incorrect.

By its very nature the MST representation for the wave
function is very amenable to numerical checks of it;s ac-
curacy and validity. This is because, as we show be-
low, the MST secular equation may be viewed as a self-
consistency condition which fits together two or more lo-
cal solutions to a partial differential equation in such a
way that the global solution satisfies the boundary condi-
tions and is smooth and continuous everywhere. If these
easily verifiable conditions are satisfied then the solution
is undoubtedly correct.

By careful attention to the numerical aspects of our
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calculations (including the use of quadruple precision,
i.e. , 128 bit, computer arithmetic) we are able to ob-
tain by direct calculation, upper bounds to possible er-
rors inherent in MST for the model systems which we
have considered. We find that these upper bounds are
zero within the numerical precision (approximately 28
decimal digits) available to us. We also report analytic
expressions for the ra/e of convergence of the angular mo-
mentum expansions associated with multiple scattering
theory for these systems. These expressions indicate that
the error in an MST calculation can be reduced to zero
by use of a suKciently large number of angular momen-
tum states. These expressions, and our numerical results
also indicate that the rate of convergence of the angu-
lar momentum expansions varies greatly with the ratio
of the distance between the scatterers to the muFin-tin
radius, a fact which may have an impact on strategies for
efBciently implementing full-potential MST.

Section II contains a brief recapitulation of the for-
malism necessary to treat two muFin-tin scatterers us-

ing multiple-scattering theory. Section III presents the
results of our numerical studies of the accuracy and con-
vergence of multiple-scattering theory when applied to
two test systems consisting of two square well potentials
and two truncated Coulomb potentials, respectively. Re-
sults for the convergence of the energy, the wave function,
and the derivative of the wave function are reported.

Section IV contains an analysis of how the errors in
an MST calculation decrease as the number of angular
momentum states increases. There we report analytic ex-
pressions, valid in the limit of a large number of angular
momentum states, for the rate of decrease of the errors
in MST. The convergence rate in this limit appears to
be a universal quantity depending only on the separa-
tion of the scatterers and their radii. Section V contains
a summary of our conclusions and a discussion of their
implications.

of two scatterers, is composed of two pieces, IA inside
potential A and IB inside potential B (Fig. 1).

The basic idea of MST is to solve the wave equation
separately in the region inside each scatterer (regions IA
and IB) and in the region outside all scatterers (region
II) and then to fit these partial solutions together into a
solution that is acceptable over all of space by matching
the pieces at the boundaries of each region. Thus we

write solutions for regions IA and IB as

and for region II as

@n —— ) ) bL he(z„)YL(r"„,) .
n=A, B I

(4)

and behave near the origin as r ~ . The "outside" func-
tions, hg, used in region II are solutions of the free space
radial equation [Eq. (5) with v„= 0]. Since we are

In the above two equations and below, L (which labels
the spherical harmonic YL, ) denotes the combination of
orbital and azimuthal quantum numbers (E, m) and a
sum over L is to be interpreted as P& 0 P &. The
notations r„and rn indicate, respectively, distances and
directions measured from the center of site n, while the
notation z„ is used as a shorthand for Kr„where K =

The "inside" functions R& used in region I are solutions
of the "radial" part of the wave equation for a single
scatterer,

II. THE TWO-SCATTERER PROBLEM
IN THREE DIMENSIONS

Our objective is to solve the time-independent
Schrodinger equation, which (in atomic units) is given
by

for the special case where the potential U(r) has the
"mu%n-tin" form; that is, it consists of a sum of non-
overlapping, spherically symmetrical potentials,

'AB

V(r) = ) v„(r —K„) . (2)

Since we will only be concerned with two potentials in
this paper it will be convenient to denote them by A and
B. It is helpful to think of space as being divided into
two regions in such a way that region I consists of those
points "inside" one of the potentials, i.e. , those points
where V(r) is nonzero, and region II consists of those
points "outside" all of the potentials, i.e. , those points
where V(r) vanishes. Region I, for the particular case FIG. 1. Two spherical scatterers in three dimensions.
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looking for bound states of the two-scatterer problem
we must look for states at negative energy relative to
the energy zero of region II. Consequently, the functions
he(z) are obtained by analytic continuation of the spher-
ical Hankel functions to imaginary argument. We choose
he(z) = —i he(iz). These functions behave as r„—+ oo
as he(z„) ~ e '"/z„. Near the origin these functions
behave as (2E —1)!!/ze+i.

The MST equations result from the requirement that
the wave functions 4j~ and 4~~ match smoothly and
continuously onto 4pp at the boundary between regions
I and II. In order to satisfy this matching condition it
is convenient to define auxiliary functions in region II,
4yy~ and 4yy@, that are single center expansions about
the centers of potentials A and B, respectively,

and if an analogous relation holds in the vicinity of scat-
terer B:

) me bLje(za)YI. (ra) = ) bl he(zg)YI. (rx) .
I

The final step in deriving the MST equations requires
the existence of convergent expansions of the form

"e'( a)YI. (ra) = ) ie(z~)YI. ("~)gl.,l.'(E &xa) (12)
L

"e'( zx) Yl(rw) = ) .je(za)YL, (ra)gl. , l. (E, Ra~),
L

@IIn —) ae je(z„)YL,(r"„)+ ) .bl. be( )YI,(" )
L I

n = (A, B) . (6)

Here jg is obtained from the analytic continuation of the
spherical bessel function to imaginary argument, je(z) =
i je(iz) The .function je(z„) behaves near the origin as
z„/(2E + 1)!!but is irregular as r„~ oo, behaving as
e'"/2z„.

It is a relatively simple matter to match 4p~ to 4pp~
and to match 4~~ to @I~~. The coefficient c& can be
used to match the magnitude of each partial wave at the
muFin-tin radius, r„, and the ratio of a& to bL can be
chosen to ensure that the logarithmic derivatives match.
This latter condition determines the t matrix, te(E), al-
though for our purposes it is more convenient to work
with the inverse of the t matrix which we denote by
me(E). i2 Thus if mL is defined by

al ——mI bI,
it will be given by

zo he(z„') —rope" he(zo)

z.'~e(z-') —C~e"~e(z.') '

where p& is the logarithmic derivative of the radial wave
function evaluated at the mufFin-tin radius, r„,

t'dRe (E, r„)/dr„l
R(E, -) r„. „.

where R~~ ——R@ —R~. It can be shown that such
expansions exist if r~ & R~a in Eq. (12) and ra & Ra~
in Eq. (13). The expansion coeKcients, gl, L, (E, R,) are
given by

gl, I.I(E, R,) = 4~(—1) ) C(L, L', L")he (KR)YL, «(R,),

where the Gaunt numbers, C(L, L', L"), are defined in
terms of real spherical harmonics by

C(L, L', L") = dr YL, (r)YI. (r)YI. (r) .

x he i(IMARI)(+1)

x(—1) g(2E+ 1)(2E'+ 1),
(16)

where the + (—) sign is taken if K lies along the +
(—) z axis and where the "reduced" Gaunt numbers,
d (E, E', E") vanish unless E+E'+I." is an even integer; in
which case they are given for m = 0 (o ) and m = 1 (x)
states by

If R~~ is chosen along the z axis, the z component of the
angular momentum is a good quantum number allowing
the expansion coeKcients to be simplified somewhat,

gl. I, (E, Rz) =gee, (E, R)6
z+e'

) (2l" + 1)d (E, E', E")

and where z„= Kr„.
It is clear that neither 4yg~ nor 4yy~ is an acceptable

solution for all of region II since they both contain terms
that grow exponentially as r„~oo. For the purposes of
MST, however, it is only necessary that they be able to
accurately represent 4pp in the vicinity of their respective
scatterers. This condition will be satisfied if the following
relation holds in the vicinity of scatterer A:

d (E, l', E") =

d (I, l', l") =

dz Pe(x) Pe (z) Pe (z)

d~ (1 —~') Pe(~) Pe (*) Pe (~)

gH'(I + 1)(E' ~ 1)

(17)

) me bl ge(zg)YI. (r~) = ) bL, he(za)YI. (ra)
L I

Substitution of these equations into Eqs. (10) and (11)
yields a set of homogeneous linear equations,
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me (E)be ——) ge eI (E,R~~)bel,

m, (E)be = ) gee, (E, R.~~)be (2o)

These are the MST equations.
The energies for which these equations have a solution

are the eigenvalues of Eq. (1) and the solution vector
bl determines the wave function through Eq. (4) in re-
gion II and through Eqs. (3) and (6) in region I. If the
scatterers are identical, un+ = rn+, further simplification
is possible, since, in that case, the wave functions for
the A and B scatterers are related by symmetry, being
either symmetric or antisymmetric with respect to inver-
sion through the midpoint of the line joining their cen-
ters. States that are symmetric wit.". r spect to inversion
are denoted as gerade by the spectroscopists and states
that are antisymmetric with respect to inversion are la-
beled ungerade, . Thus the coeKcients of the expansions
about the A and B sites are related by

(21)

where the (+) sign is appropriate for the symmetric (g)
states and the (—) sign is appropriate for the antisym-
metric (u) states. This simplification allows the MST
equations for a homonuclear diatomic system to be writ-
ten as

) [me (E)~e,el —
ge, el(E~ ~)(+I)( 1) lbej = 0

e'
(22)

xbe(E „)=0 (E=O I, . . . , l „) . (23)

III. RESULTS OF NUMERICAL STUDIES
OF CONVERGENCE AND ACCURACY

OF MST

We have solved the two-scatterer MST equations both
for spherical square-mell potentials and for truncated
Coulomb potentials. For a square-mell potential of depth
V, Eq. (9) becomes

v'E+ Vj'(QE+ Vr )/j (QE+ Vr ), (24)

Here we have used S to represent ~R~~~, the separation
between the scatterers. In practice, when these equations
are solved numerically, it is necessary to truncate the
infinite system of linear equations. When this is done the
energy and the wave-function coefIicients will depend on
1m~x the maximum value of E used in the solution of the
symmetric, homogeneous, linear system,

~meLx

) .[me (Ee .„)be,el —
ge, el(Ee .„,~)(+I)(—I)' ]

e'=o

where r is the radius of the square well. For the prob-
lem of two identical spherical square wells we can take r
to be unity without loss of generality if the separation S
is measured in units of r and if E and V are measured
in units of 1j(r )2. Table I gives some of the calculated
bound-state energies obtained by solving the MST equa-
tions. In most cases these energies were calculated with a
precision that exceeded 27 decimal digits, although only
16 significant figures are included in the table. For rea-
sons which we will discuss below, we believe that the
calculated energies are accura/e to 27 digits as well.

The 10& and 1o„states of Table I were calculated for
a potential of depth V = 5. An isolated potential of
this depth has only one bound state. The 2oz states and
lm'„states were calculated with a potential of depth V =
10. These states of the diatomic molecule are derived
from the second bound state of this potential. A third
state for the diat, omic molecule, the 2a„state, is derived
from the second bound state of the isolated potential, but
this state increases in energy and becomes unbound (for
our choices of ro and V) as the potentials are brought
together.

Figure 2 shows how the energy converges as a function
of the number of angular momentum states for various
values of the separation for the lo &, 1o„, 2o &, and 1m„
states. Figure 3 shows how the wave function and its
normal derivative converge for these same states.

In the case of the energy, the numbers plotted are the
differences between E(E „) and E(oo) which in practice
is obtained by increasing E „until E(E „) is constant
within the precision of the computer. For the wave func-
tion and its derivative, however, the plotted numbers are
the relative root mean square difI'erences between 4p~,
Eq. (3), and iIerr, Eq. (4), averaged over the surface of
scatterer A. The relative root mean square error of the
wave function referred to in Fig. 3, for example, is

"S~(@i~—@rr)

The corresponding quantity with the wave functions re-
placed by their normal derivatives with respect to r is
also plotted in Fig. 3.

If these difI'erences in the wave function and its nor-
mal derivative vanish at the boundary between regions
I and II we have obtained the correct solution to the
Schrodinger equation. Recall that the 4p„ is a super-
position of terms each of which satisfies the Schrodinger
equation by construction in region In and is regular in
that region. Similarly, each term of 4y~ satisfies the
Schrodinger equation in all of region II, is regular in that
region, and satisfies the boundary condition at r —+ oc.
Since the Schrodinger equation is a linear partial differ-
ential equation, a sum of solutions is also a solution. If
the wave function and its derivative are continuous ev-
erywhere then it must be an acceptable solution to the
Schrodinger equation. The only points at which the
continuity and smoothness of the wave function could be
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TABLE I. Energies calculated for two spherical square-well potentials. The depth of the potential, V, is 5/(r ) for the
las and lo„states and is 10/(r ) for the 2as and ls„states. T. energy is measured in in units of 1/(r )

2' g

2.0
2.4
3.0
4.5
6.0

—1.326 675 638 612 688
—1.144 684 789 098 379
—1.026 932 973 585 779
—0.946 974 739 131619 4
—0.932 413 720 472 693 4
—0.931426 119417 670 1

—0.507 986 435 475 966 5
—0.683 556 737 750 893 5
—0.821 949 198 199346 2
—0.915 127 306 308 885 1
—0.928 602 714 280 335 0
—0.931426 119417 670 1

—0.704 813 227 629 546 8
—0.389 781 254 990 707 5
—0.213 083 529 443 594 7
—0.095 170 907 449 155 17
—0.067 765 484 341 664 43
—0.049 665 725 017 485 42

—0.336 669 578 151853 3
—0.201 010 637 832 359 3
—0.122 088 180 300 462 5
—0.068 543 603 913377 09
—0.056 489 155 188 061 57
—0.049 665 725 017485 42
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FIG. 2. Convergence of the bound-state energy for a molecule consisting of two spherical square-well potentials. S labels
the separation between the centers of the potentials in units of the mufFin-tin radius r' so that S = 2 indicates touching spheres.
The ordinate is the logarithm (base 10) of the difference between Er „and the converged bound-state energy. (a) los state
for V = 5. (b) lo'„state for V = 5. (c) 2ag state for V = 10. (d) ls„state for V = 10.
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questioned are those at the surfaces that separate regions
I and II.

From Figs. 2 and 3 it can be seen that the energy, the
wave function, and the normal derivative of the wave
function all converge in an approximately exponential
manner. The error decreases by a factor that varies only
slightly every time f x is increased. There are, how-
ever, two exceptions to this rule. First, the slopes of the
curves in Figs. 2 and 3 sometimes vary significantly for
small values of Z~~ giving some curvature to the semilog-
arithmic plots. The detailed behavior of the curves for
small values of E may depend on the potential and
on the nature of the particular state. The second ex-

ception is the strange behavior of the convergence curves
for the 1o„state which is caused by the wave-function
coe%cients 6& changing sign at certain values of Z.

It is not surprising that the coeFicients I5& change sign
at certain values of I for states such as the lo„which are
antisymmetrical with respect to inversion in the plane
which perpendicularly bisects the line joining the cen-
ters of the potentials. In order to understand qualita-
tively how these sign changes can occur, it is interest-
ing to compare the wave functions for the 1'& and 1'„
states along the line connecting their centers. It is well
known that relative to overlapped atomic orbitals, the
symmetric states such as the lo& concentrate additional
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FIG. 3. Logarithm (base 10) of the relative root-mean-square error of the wave function (open circles) and of the normal
derivative of the wave function (filled circles) for a molecule consisting of two square-well potentials. The square of the relative
error in the wave function or normal derivative at the muffin-tin radius has been averaged over the surface of one of the
scatterers. It is the logarithm of the square root of this quantity which is plotted. (The parameters are the same as for Fig. 2.)
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charge density between the atoms while the antisymmet-
ric states such as the lo„expel charge. An Em ——0
calculation corresponds (for the loz and lo'„states) to
overlapping atomic orbitals, and so we can say that the
coeKcients of the E ) 0 par tlal waves must have the
proper sign to add additional charge between the atoms
for the symmetric states and to expel charge for the anti-
symmetric states. The physical reason for the difI'erence
in the two cases is the additional kinetic energy required
by the antisymmetric state which can be reduced by re-
lawing the wave function outward from the center of the
molecule.

The relationship between the increase or decrease in
amplitude in the vicinity of the scatterers and the sign
of the coeFicient 6& can be understood in terms of the
behavior of the functions hr(z). For all E, hr ~ e'/z as
z —+ oo, however, their behavior at the origin depends
strongly on E with the higher-order functions diverging
much more strongly, i.e. , h (z) ~ (2E —I)!!/zan+i as z ~
0. This means that if the coefFicients 6& all have the same
sign, each additional partial wave will concentrate more
amplitude near the scatterers and decrease the amplitude
at large distances. Thus it is clear that the coefIicients
b& for the lo„states must change sign. In fact, b& and
some higher E coefFicients differ in sign from b& for the
lu„state. The additional sign reversals occur at values
of E which depend on S and presumably are necessary to
ensure a perfect match of the wave functions.

As the value of 6& passes through zero one has a situa-
tion where an additional partial wave makes no difference
to the accuracy of the calculation. This leads to the dips
in the convergence curves of the lo„states for S = 2r,
2.4ro, and 3ro seen in Figs. 2(b) and 3(b). If this effect
is ignored, the convergence curves for the 1o.„states are
almost identical to those for the lo& states.

It is easily seen by comparing Fig. 2 with Fig. 3 that
the energy converges much faster than the wave func-
tion or its derivative. This is entirely in conformity with
our expectations since the MST equations were derived
from a variational principle by Kohn and Rostoker who
showed that the error in the energy is second order in
the relative error of the wave function. As a rough rule
of thumb we find that for the first few values of S „, the
error in the the wave function and its derivative varies
as (ro/S)™*while the energy converges as the square
of this quantity. The rate of convergence in the limit of
large S „will be discussed in the next section.

Most of the calculations were performed using 8
60. This value of 8 „was suf5cient to converge the en-
ergies to approximately 28 decimal digits which is the
approximate precision with which real numbers can be
represented on the computer that we used. For the larger
separations, Zm „&60 was sufFicient to reduce the rela-
tive root mean square errors in the wave functions and
their normal derivatives to zero within a tolerance of a
few times the computer's precision. For separations of
S = 2r and S = 2.4r, however, the discontinuities in
the wave function and normal derivative were still com-
putationally significant at E „= 60, so we extended
the calculations for those separations for the lo& state to
higher values of 8m~x. The results are shown in Fig. 4, and
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FIG. 4. Logarithm (base 10) of the relative mean-square
error of the wave function (open circles) and its normal deriva-
tive (filled circles) calculated for /m~„( 180 for the log state
calculated for S = 2 4r an. d 8 = 2r (touching spheres).

demonstrate that even for touching muFin-tin spheres,
there exists a value of 1 „ for which there are no dis-
cernible, computationally significant errors in the MST
wave function or normal derivative.

It may be useful to emphasize that 10 js a small
number. An accuracy of 1 part in 10 corresponds
roughly to measuring the distance from the Earth to the
sun with an error that, is less than one ten millionth of
the diameter of an atom. It should also be clear by com-
parison of Figs. 2 and 3 as well as from the discussion of
the next section, that the error in the energy is approx-
imately equal to the relative mean-square error in the
wave function. Thus the error in the energy is of order
one part in 10 when the error in the wave function is
of order one part in 10

VVe also calculated the bound-state energies and wave
functions for a truncated Coulomb potential. Since we
were interested in what effect the presence or absence of
a discontinuity in the potential at the muFin-tin radius
had on the rate of convergence of the MST equations, we
eliminated the discontinuity for this test to achieve max-
imum contrast with the square-well results. The discon-
tinuity was eliminated by shifting the potential so that
it vanished at r,

2Z(I/r —I/—r') if r ( r'
0 otherwise.

~

~

~

(26)

There remains, of course, a discontinuity in the slope of
the potential at r = ro.

The convergence curves for the energy, wave func-
tion, and wave function derivative for the 1+& state of
a diatomic molecule with such a Coulomb potential are
shown in Fig. 5. The particular parameters used for this
calculation were a nuclear charge Z of 2 and a muFin-tin
radius of 1 in atomic units. Thus the individual atomic
potentials were those of a helium nucleus, chopped off at
the Bohr radius of a hydrogen atom and shifted upward
by 4 Ry. The bound-state energies are given in Table II.

Although the curves of Fig. 5 are qualitatively very
similar to those for the lo.

&
states of Figs. 2 and 3 there
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is a significant improvement in the overall rate of con-
vergence of the energies, the wave functions, and their
normal derivatives for the truncated Coulomb potentials
in comparison with those for the square-well potentials.
This improvement is especially pronounced for the case
of touching muffin-tin spheres, S = 2. For the larger
separations the improvement is less dramatic and it ap-
pears that the ra/e of convergence, i.e. , the slopes of the
curves, are essentially the same for large values of S~~x.
The reasons for this behavior will be discussed in the next
section.

The convergence curves presented in Figs. 2—5 are qual-
itatively very similar to those obtained previously in a

2.0
2.4
3.0
4.5
6.0

10g

—0.577 460 001 893 329 8
—0.497 789 946 700 468 5
—0.433 057 999 207 138 9
—0.372 439 806 240 446 9
—0.355 616 310 673 397 3
—0.347 669 684 989 694 0

TAB LE II. Energies calculated for two truncated
Coulomb potentials.
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study of a two-dimensional model system and indicate
that MST can be used to obtain an extremely accu-
rate solution to the Schrodinger equation. Although it
is seldom necessary to calculate wave functions to higher
accuracy than 28 significant digits in condensed matter
physics, it is still an interesting exercise to investigate
the convergence of MST in the limit of 1 „~oo and to
determine whether or not MST is exact in that limit. An
analysis of these questions is presented in the following
section.

IV. ANALYTIC STUDY
OF THE CONVERGENCE PROPERTIES

OF MST

In this section we present analytic expressions for the
dependence of the errors of the MST bound-state ener-
gies and wave functions on the angular momentum cutoK,

Although our analysis is limited to bound states
and to the case of two scatterers, we believe that our es-
timate of the errors in the two-scatterer problem should
provide a good indication of the accuracy of MST.

We first consider the accuracy of the bound-state en-
ergy calculated with an angular momentum truncation,

~„. We denote the truncation error of this bound-state
energy by Ep —E~, where E~ is the bound-state en-
ergy given by the MST equations in the limit E „~oo.
It is convenient to rewrite Eq. (23) as

Mrmax (E S) g+ (g )
—(l

where B (Z „) is a vector consisting of br+(E „), and
M "(E,S) is a matrix with elements,

Mr TI (E& S):rrrr (E)br rl gr rg (E S)(+1)(—1)

-30
0 20

~max
40 60

FIG. 5. Convergence of the energy, wave function, and
wave-function derivative for the log state calculated using
truncated Coulomb potentials of form (2Ze /r) —(2Ze /r )
for r & r, and 0 for r ) r . The nuclear charge Z is taken to
be 2 and r is taken to be 1. Panel (a) shows the convergence
of the energy and panel (b) shows the convergence of the
wave function (open circles) and its normal derivative at the
muffin-tin radius (filled circles).

(E, E' = 0, 1, . . . , E „) . (28)

) Pg; Mr r;"(E,S) Pgl ~
= n™x(E)b;~,

z,e
(30)

Obviously, I3 (E „) is the eigenvector of M *(E,S)
corresponding to the eigenvalue 0. We now define an
EI ~„xS~~„matrix, P, which contains all eigenvectors of

"(E S). Since M *(E S) is symmetric, we have

p —1 pT
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where n, "(E) are the eigenvalues of Me x(E, S), and
elf)™~x(Ee „) = 0. The error in the energy can be esti-
mated through the expression

Ee .„—E~ = cep (Ee .„)
f'dno (E))

) E=Eq

z&e .„

(P+Me x)o e(M), xP)e p

M, e(E, S)

&max

) (—1)' &e,e (E S)be (& .)
Me e(E, S)

It now remains to find az {Ee .„). We partition the
matrix, M (E, S), into ) me Ibe ()).

' „)]
&&&max

(39)

f@ ~) ~

M "(E,S) Mf -)
b

and multiply it by the matrices P and P

(32) In order to estimate o,o, we need an estimate for
be (l~~„). Equation (23) which may be written

(
PT 0 f (Memxx(E S) Memxx (P 0)

O I~ ~
Me-- Me „ I~O

(Kr p)e (2E+ 1)!!

(40) ..

o emxx (E) PT Memxx
(333M~max Pb C

where I represents a unit matrix, and ne *(E) is a di-

agonal matrix containing n; "(E)b;z.
We show in Appendix A that for suKciently large Z,

the inverse t matrix, my, can be written as a product of
two factors, one which is strongly dependent on 8 and
on E, but is independent of the potential (except for its
radius) and a second factor which depends on the details
of the potential but is only weakly dependent on S and

suggests an ansatz of the form

z' 'Ye, o(—z)""(-x) = (2~- 2~,'+1)!!

, je(z)Ye, o(—z), (41)

where z is to be determined, So is the angular mo-
mentum of the corresponding single-scatterer state, and
b&4 (E~ „)= Ye, p( —z). For the moment we consider only
o. , (m = 0), states.

Substituting Eq. (41) into (40), we obtain

l(2I+ I)"]'
( rp)))2e+'p(/, E)

' (34)
e-e.

( „o)2e+ip(g E) de.

(2l —2E, + 1)!! K2l + 1)!!]' d
2e' he(~S —z)

For a square-well potential with depth V and radius r,
P(E, E) is (/po)2e+iP(g E) (2/+ 2g 1)ff

K2~+ I)"]' (~S —z)'+"+' '

(42)

and for the truncated Coulomb potential it is given by

Zro +2Z/ro —E
(2E + 1)(2E + 3)

+(higher-order terms in 1/l) . (36)

lac, e (E S) I « lr)ie(E)rr)e (E) I
. (38)

In other words, the matrix M(E, S) is nearly diagonal
for high angular momentum states. This allows us to use
perturbation theory to evaluate ng(E). We note that
o.o *(E „)= 0, and use Eq. (33), to obtain

Similarly, it is shown in Appendix B that when E and
E' are both large, the structure factors, gee~(E, S) may
be written as

(E S) (—1)'+ 2 l(~+& ll (2&+2& 1)"
KS)e+e +i

(37)

Clearly, for large E, we have

Now the rhs of this expression vanishes as X —+ oo as
a low power of I/E The lhs, h. owever, either grows or
vanishes exponentially depending on whether the quan-
tity f, (S/ro —f,') is smaller or larger than unity. This
inconsistency can be resolved only if f, has a very weak
E dependence. Therefore, the solution for z or f,

" is given
by

(S/2ro)~ —l 2~e. -(44)

In solving Eq. (43) for f,
' we have assumed that P(Z) is

where we have used the expansion property of hg YL, . We
have also omitted terms containing be+(E „) for E, & Ep,

since these terms scale as (ro)~e+i/Se+i, a much smaller
ratio than that on the right-hand side (rhs) of Eq. (42).
If we denote z/(rr ) by f,', we can write this approximate
equality as

(e e.(S/„o ()e+e.+i ( )
2S+ 1
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~o (Ee ..)- —1 - j~e(2l + 1)
47rir, r o P(I)

1which can be used to estimate the error in the energy.
If SS ) 2r, (' becomes independent of E for sufficiently0

large E~,„In this .case Eq. (45) can be summed with the

1.0

proportional to I/E in the limit of large E, and that a
constant c raised to the power I/E can be approximated
by unity. We have also assumed that the expansion prop-
erty of he Y~ used in Eq. (42) remains valid despite the
very weak Z dependence of z. For the case of the trun-
cated Coulomb potential and (we presume) other poten-
tials that have no discontinuity at the mufFin-tin radius,
the exponent of E in Eq. (44) should be —3/E rather than

2/I. —
If S/2ro is greater than unity, ansatz (41) with z =

ter r, given by Eq. (44) provides an accurate representa-
tion of the leading terms describing the 8 dependence of

If S/2r is greater than unity and E is very large,
the term E ~~~ under the radical may be approximated
by unity, making ( independent of E. The E dependence
of ( is also described well, for sufFiciently large values of
I.. These results are illustrated in Fig. 6 which shows g(l)
as calculated, i.e. , beA(2' + 1)!!/(aro)e, and as predicted,
for the lo~ state of the spherical square wells.

If S/2r is equal to unity, the E dependence of ( be-
comes significant ~ However, in this case, even though
g always varies slowly with E, Eq. (43) would still hold

approximately if g were approximately equal to unity be-
cause the summation of Eq. (40) into a Hankel function
has its major contributions from the terms near /'

when ( = 1. Since, however, ( is smaller than unit E
,'44,'j~overestimates its size. This can be seen in the upper-
most curves of Fig. 6 where the calculated and predicted
values of g are shown for the loz state calculated us-
ing touching (S=2) spherical square-well potentials. For

„between 80 and 180, Eq. (44) overestimates t, by an
essentially constant factor of approximately 1.1.

Combining Eqs. (44), (41), and (39), we have

result that the error in the energy is predicted to decrease
exponentially with Xm~,

Ee .„—E oc (™xas l „-+oo .

In the special case of S = 2r, Eq. (44) reduces to

(46)

—g2 inege (47)

although, as mentioned above this result overestimates t,
'

and understates the convergence rate. Using this result
in Eq. (45) yields

~o (Ee .„)- —1 e ~+2e '"e(2l + 1)
4ir~ro P(l)

which indicates a slower than exponential convergence.
The series does converge however since it is easily
bounded by the series

gl/2g5/2 e-2&2e-*

&&&max

(49)

This result should not be used to estimate the conver-
gence rate since the true convergence rate is much faster.

In the case of antisymmetric states, 6&A can change sign
with increasing l'. This complicates the expression for
be . However, we found in our calculations that Eq. (44)
still gives a good estimate of the magnitude of 6&A in the
large / limit, and therefore Eq. (45) can also be used
for the antisymmetric states. The effect of m g 0 is the
introduction of a factor of (—1) on the right-hand side of
Eq. (42). The effect of this factor would be to interchange
the behavior of the ge~ude and ungerade states. Thus the
1'& and 1vr„states and the 1o„and 1m& states behave
similarly in their convergence properties.

The error in the wave function can be expressed in
terms of the mismatch between iltiA [Eq. (3)] and iIrii

[Eq. (4)] at the surface of muffin tin A. Since iItiiA [Eq.
(6)] matches @iA identically, term by term and both value
and derivative at the mufIin-tin radius, we can write the
error in the wave function as

Ox5

S=2

A@(E,„)= @iiA(E .„)—4i&(E „)
&max

~Am,A,,(«„)~,(r- )
e=o

&max

—) tahe (~r~)Y~ (rzi) .
e=o

(50)

Ox2 After expanding the Hankel function using Eq. (12) we
have

0.1
5 30 55 80

&max

+@(~max) = ) me ~e 2e(+rA)+L(rA)
e=o

max

FIG. 6. Predicted (s~lid circles) and calculated (open cir-
cles) values of g, the parameter which describes the rate of
convergence with 8 „ in MST.

—) je(~rA)Vg(rA) ) ge e, tg . (51)
E=O &e =o

The MST secular equation [Eq. (19)) (truncated at E „),
can be used to eliminate the sum over E' and allows the
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cancellation of the first (E ~„+1) terms in the sum over
S leaving

A@(E „)= ) jr(Irr~)YI, (r~)m~br" (I. „) .
e&e .„ (52)

The average of the square of E4(E „) over the surface
of mufFin tin A is

which on substituting forms valid for large 8 becomes

A@ (Em ) = ) &gI(lcrw)YI, (r~)ml be (~ ) (55)
e&e .„

so that in the limit of large E „ the mean-square error
in the normal derivative of the wave function is

([Ae'(l .„)]')= (4~r')-' ) (28+1)I.'("/P(E)'.
e&e .„

(56)

Thus the predicted convergence rates of the energy, the
mean square error of the wave function, and the mean
square error of the derivative of the wave function are all
the same in the limit of 8 „~oo. These predictions are
compared with the results of the numerical calculations
in Fig. 7. If we define R„(E) to be the ratio of successive
terms in the series defined by Eqs. (45), (54), and (56),
we have (ignoring factors of [E/(I. + 1)]")

%(&) = K(&))"/K(&+ 1)]"+' (57)

These predicted ratios are plotted as the solid curves
without symbols in Fig. 7 and may be compared with
the corresponding ratios calculated numerically and de-
fined by

z( )
&(& ) —E(& - —1)
E(l .„+1) —E(E,)

for the energy, by

(58)

(59)

for the wave function, and by

(6o)

([A@(l „)]')= (4~pro) ' ) (2l+ I)("/P(E)' .
e&e .„

(54)

Thus the rate of convergence of the mean-square error of
the wave function to zero is quite similar to the conver-
gence of the energy to its asymptotic value, being slightly
slower because Yl, (—z) E while P(l)

The rate of convergence of the normal derivative of the
wave function can be obtained from Eq. (52),

V. CONCLUSIONS AND DISCUSSION

We have shown by direct calculation that MST can
be used to obtain an extremely accurate solution to the
Schrodinger equation for the case of muKn-tin potentials.
We have also derived analytic formulas for the rate of con-
vergence of these solutions as a function of1,the total
number of angular momentum states used in the calcula-
tion. Both the numerical and analytical results indicate
that the errors in the wave function and its derivative de-
crease exponentially with En, ~„ in the limit in which Em~„
is large provided there is a finite separation between the
mufIin-tin potentials. According to our analytic results
the error in the wave function or its derivative evaluated
at the muKn-tin radius decreases by the factor ( given
by Eq. (43) when /~ „ increases by unity. The error in
the energy decreases by the square of this factor when
Sm~„ increases by unity.

In the limit of large E „, the convergence factor ( is a
function of S/ro, the ratio of the separation between the
potentials to the mufFin-tin radius, and thus depends only
on geometry, not on the details of the potential. The de-
tails of the potential do, however, afI'ect the rate at which
the actual convergence rate approaches the asymptotic
rate,

S/2ro)2 —1 .
2ro (61)

The approach to the asymptotic convergence rate is also

for the normal derivative of the wave function. Results
are shown for the lo.z state and the lx„state for the
sperical square wells and for the 1o& state for the trun-
cated Coulomb potentials. For the latter case E s~r was
used under the radical sign in calculating t,

' via Eqs. (44)
and (47) for the reasons described above.

The agreement between the analytical predictions of
the convergence rates and those calculated is quite good.
Generally, the observed convergence rates are slightly
higher than those predicted. The predicted convergence
rate is particularly conservative for the case of touching
spheres, a result which may be traced back to the fact
that Eq. (44) overestimates ( for this case. Note that
larger numbers in Fig. 7 mean faster convergence. A ra;
tio of 10, for example, means that each succeeding term
is decreasing by that factor. Constant ratios indicate ex-
ponential convergence which is observed asymptotically
in all cases except for touching spheres.

The observation that exponential convergence (i.e., er-
ror e ~r " where a is a constant) is not obtained for
touching spheres raises the question of what happens to
the convergence of the MST equations when the spheres
overlap. We have not done a careful study of this case
since MST does not rigorously apply to this situation.
We expect, however, from Eq. (44) that the MST bound-
state energies will not converge with 8 ~ for overlapping
spheres. We have performed a limited number of calcu-
lations which indicate that this is in fact the case. The
asymptotic nature of the procedure only becomes appar-
ent at fairly high values of Z ~„ if the overlap is small.
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strongly dependent on the value S/r . As S/2r ap-
proaches unity (the case of touching muffin tins), higher
values of Z „are required to attain the asymptotic
regime. For the case of S/2ro = 1, the asymptotic
regime characterized by exponential convergence is never
attained. MST is, however, exact and convergent even in
this case.

Our results do not appear to be consistent with recent
claims by Badralexe and Freeman that MST does not
yield correct solutions to the Schrodinger equation for
mufFin-tin potentials. It is our opinion, however, that
these claims are unfounded. Badralexe and Freeman
reached their conclusions concerning the errancy of MST
through the following line of reasoning: They treated two
muKn-tin potentials by representing the wave function
as a multipole expansion about the center of potential
A and also as a multipole expansion about the center
of potential B. By requiring that these expansions be
equivalent in the interstitial region they were able to de-
rive the MST equations. When they attempted to derive
the MST equations by matching expansions inside one of
the potentials, they were unsuccessful and from their lack
of success concluded that MST is incorrect. They did not
show any inconsistency between the expansions, merely
an inability on their part to demonstrate the expansions
to be equivalent. In our opinion, nothing of consequence
concerning MST can be concluded from their lack of suc-
cess in this endeavor.

In the most recent Badralexe-Freeman paper special
emphasis is placed on errors which they believe to exist
in the derivative of the wave function. According to our
calculations and analysis there is no problem peculiar
to the derivative of the wave function. Its convergence
properties are qualitatively very similar to those of the
wave function.

Te" = z "'e(z')/"e(z') = ~ '"e+i/"e ~ (A2)

Ve' = "ie(z')i~e(") = ~+ "je+i/je (A3)

= z, ge(z, )/je(z, ) = E —z,je+i(z, )/je(z, ), (A5)

where z, = QE+ Vr .
The analogous relation for the truncated Coulomb

potential is obtained from the analytic continuation of
the standard Coulomb wave functions to imaginary ar-
gument. The radial wave function for this potential
which we represent by fe(z) is related to the the regular

oulomb wave functionis by

fe(z) = Fe( i Z/~„ iz),— (AG)

where Z is the nuclear charge in units of the charge on
a proton and z2 = 2Z/ro —E, the energy relative to the
shifted potential. Thus, using g = Z/K, and z, = z, ro

we have

Ve" = z.fe(z )/fe(z. )
= t + zg/(l+ 1)

fe+i(z. )/fe(z ) . (A?)

In the limit of large L these logarithmic derivatives can
be approximated by

For square-well potentials the logarithmic derivative of
the radial wave function, is given by
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APPENDIX A

The inverse t matrix defined in Eq. (8) may be simpli-
fied if 1 is suKciently large. In order to demonstrate this
simplification it is convenient to write Eq. (8)as

E —E(ro)'/(2E+ 3), E » ~so; (A9)

and for square-well potentials

7p E —(E+ V)(ro)'/(28+ 3), E» QF. + Vro;

(A10)
while for the truncated Coulomb potentials

~P -~+ ~+ ("—~)"'("+~)"'/(2~+1)
E » ~,ro; (A11)

where y = z,g/(E+ 1).
The approximate expression for my for square-well po-

tentials given in the text [Eqs. (34) and (35)j follows from
substituting Eqs. (A8)—(A10) in Eq. (Al). The analo-
gous expression for the truncated Coulomb potential is
obtained by using Eq. (All) for y+ and is given by

Ag
a

mg )ie' (Al)

K2&+ 1)"j'
|'@(") (z~ V) (z~+ p) &

( o)re+i
q 2~+ 3 + p+ 28+1 J

KP

where the various logarithmic derivatives are defined by (A12)
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which in the limit of large 1 can be approximated by Eqs.
(34) and (36).

APPENDIX B

The structure constants gee, satisfy the following ex-
)

pansion property:

gr™e(R ") = ) .~e,e"(")gP",e'(R)

Now we use

(~r)r
jr(i(:i ) —+ as r —~ 0

(2E+ 1)!!
and

(
Q(E —m)(E+ m)
(2E —1)(2l + 1)

to obtain

(B3)

(B4)

where both vectors B. and r are along the z axis and the
matrix f/&, (r) is defined by

A, ~ ( ) = (-1)' ' V'(2~+ 1)(2~'+ 1)
e+e'

x ) (2E" + 1)d (l, I', E")jrii(Kr) .

dfPg (~)
dp

i' (i!—m)(E+ m)

)
'i'

&(2~- 1)(2~+ 1)

(l' —m)(E'+ m) l '~

(2E' —1)(2E' + 1)p

(B5)

(B2) We take the derivative of Eq. (Bl),

dgr r, (R)
dR

dgP~, (R —r)
dp r=O

e'E.+& df m

dp

( (E —m) (/+ m) ) '~

&(2~-1)(2~+1))

grii ri(R)
r=O

(BG)

((l —m+ 1)(l+ m+ 1) (
'~'

gP i,r ( ) +
lk (28+1)(2E+ 3) &I

geyi, e ( )

to obtain a recursion relation for ge e, ,

(2E+ l)(2E+ 3) ~ dgP& (R) ( (2l+ 3)(l —m)(l+ m)'+" (P' —m+ 1)(l+m+ 1) d(KR) (, (2E —1)(E —m+ 1)(E+m+ 1)p

We have for E = m, and therefore we obtain the approximate expression

g &, (R) = (—1) g(2m+ 1)(2E'+ 1)
e'+m

x ) (2E + l)cP'(m, l, E )hr»(KR)
e"=e —m

((2P + 1)!!(2E'—1)!!(2m+1)!!)
(E'+ m)!(l' —m)!(2m)!! )

(ir R)r'+in+1 (B10)

from which all ge e, can be obtained. In the large-8 limit,
i

with the azimuthal quantum number m fixed, the domi-
nant term in the above equation comes from S" = E'+ m,
for which

d (m, E', E'+ m)

(—1) (2&' —1)"
(2E' + 2m —1)!!

X ((2E'+ 1)(2m+ 1)!!(E'+m)!
(2g + 2m + 1)(2m)!I(g m) I y

!

In the limit E )) m, the recursion relation for ge e, yields
)

((2E 1)(2l+ 1)i dgP i r'(R)
E(~- )(&+ )r d( R)

(2E —1)!! f (2E + 1)(2m)!
(2m —1)!!(, (2m+ l)(E —m)!(E+ m)!J

~

~

dE —in rn

d( R)r- (B11)

Substituting in Eq. (B10) and using the Stirling formula
for the factorials, one immediately obtains Eq. (37) for
ge e/ ~
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