
PHYSICAL REVIEW B VOLUME 44, NUMBER 17 1 NOVEMBER 1991-I

A-8 interface of superAuid He in a magnetic field
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The 3-B interface of superAuid 'He was studied with use of Ginzburg-Landau theory, The effect of a
magnetic field on the interface structure was calculated. The surface tension of the interface was found
to vanish rapidly when approaching the weak-coupling limit. By doing perturbation theory around this
limit, an analytic expression for the interface tension was found that presumably is accurate for arbitrary
physical values of the strong-coupling parameters. The effect of the dipole interaction was studied in
both low and high magnetic fields. The rotation axis of the 8 phase was found to deviate substantially
from the direction of the magnetic field near the interface.

I. INTRC)DUCTION

The interface between the 3 and 8 phases of superAuid
He is unique in the sense that it can be analyzed theoret-

ically in great detail. Several papers have been devoted to
the dynamical properties of the interface. Here we will
concentrate on the equilibrium properties instead. The
stationary interface has been studied theoretically by
Osheroff'and Cross, ' by Kaul and Keinert, and most ac-
curately by Schopohl. Some calculations have also been
made by Salomaa. The effect of the dipole-dipole in-
teraction has been included by Yip. All these studies are
limited to zero magnetic field, in which case the interface
exists only at pressures above the tricritical one. The
present paper studies the interface in a nonzero magnetic
field. We have solved the order parameter in the inter-
face using the Ginzburg-Landau theory. We especially
address two questions. Firstly, what is the equilibrium
orientation of the two phases relative to the magnetic
field and to the interface? Because the magnetic field and
dipole interaction compete with each other, the phases
take di8'erent orientations in low and high fields. Second-
ly, what is the structure of the interface at low pressures?
The interface behaves singularly and its surface tension
vanishes in the weak-coupling limit (which might approx-
imately be realized at low pressures). This might be used
to obtain information about strong-coupling parameters
if a measurement of the surface tension' could be made at
low pressures. An analytic solution for the interface ten-
sion is found by expanding around the singular point.
The accuracy of the result seems to be good at arbitrary
physical values of the strong-coupling parameters.

This work was initially motivated by the experiment of
Kyynarainen et al. who studied the attenuation of ul-
trasound under a strong magnetic field. They observed a
reversible extra attenuation during the A-B transition. 3
priori, this might be explained if, near the A-B interface,
the I vector of the 3 phase were deflected from its equi-
librium orientation, which is perpendicular to the direc-
tion of sound propagation. (In the experiment, the field is
in the direction of the sound propagation. ) On the con-
trary, we found that I is essentially perpendicular to the
field for arbitrary orientation of the interface. It is also

unlikely that the attenuation could arise from the 8 phase
near the interface, although no calculation of attenuation
has been done in the strongly distorted 8 phase. There-
fore, it seems more probable that the attenuation arises
from phase cancellation due to diA'erent sound velocities
in the two phases, as has been suggested very recently.

Some necessary background information for the rest of
the paper is given in Sec. II. The numerical solution is
discussed in Sec. III and the analytic one in Sec. IV. The
effect of the dipole-dipole interaction is considered in Sec.
V.

Our notation closely follows the presentation of the
Ginzburg-Landau (GL) theory given in Ref. 8. Instead of
reproducing sections of this reference here, we generally
refer to it for all quantities not properly defined here.
Note especially that the coherence length used here
[g(T)=&K/a] is by a factor of &3/5 shorter than that
used in Refs. 1 and 2. This also makes the unit of the in-
terface energy different from Refs. 1 —3.

We are going to study the 3-8 interface in the bulk
liquid far from any surfaces. The energy of the A-8 in-
terface is on the order of f, (0)g'(T), where g(T) is the
GL coherence length and f, (H) the (field-dependent)
superAuid condensation energy of the bulk 8 phase. In
comparison, the contribution of the dipole energy to the
interface energy is smaller by the factor g( T)/gD = 10
and we will neglect it until Sec. V.

The interaction of the order parameter with the mag-
netic field H is described by two energy terms, one linear
and the other quadratic in the field. We recall some
properties of the bulk phases neglecting the linear term.
The A phase has the order parameter

A =b, „d(u, +iuz), (1)

where u&, u2, and d are arbitrary real unit vectors except
that u, u2=0. A unit vector I is defined as l=u~Xu~.
The phase angle is equivalent to the rotation angle of u,
and u2 around I. The magnetic field orients d perpendic-
ular to the field, but the order parameter amplitude
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energyb, „=Qa/4P245 and the condensation

f, =a /4P345 are not affected.
In the 8 phase the order parameter has the form

(H=H/H)

This condition fixes the field as a function of pressure and
temperature. In a strict sense we can study the interface
only at pressures below the tricritical one because the in-
terface cannot be stabilized in the GL region at higher
pressures.

Here P is an arbitrary phase angle and 8 is an arbitrary
rotation matrix parametrized by an angle 0 and a rota-
tion axis n. The amplitudes A~ and A~~ depend on the
magnetic field

bi=be 1+
P345

2pi2+P345 &zH'

P345

III. THK INTERFACE
ON THE CONDENSATION ENERGY SCALE

We studied the A-8 interface by numerical solution of
the Ginzburg-Landau equations in one dimension. ' '

The resulting order parameter is shown in Fig. 1(a) in
zero magnetic field. We agree with previous calcula-
tions' that the minimum interface energy is achieved
when I is prependicular to the interface normal s, and

Aii =a/(6P, 2+2P345) .

The condensation energy is given by

1.4

1.2—

4 ( 3P i 2 +P345 )

2 2 2

2 &zH 2pi2+P345 gzH
X 1 —— +

3 cz 3P345 CX

(4)

In high field, the 8 phase can be deformed so much
that A~~

=0. This version of the 8 phase is called the pla-
nar state. We note for later use that there is a continuous
transformation between the planar and the 3 phases via
the so-called axi-planar states. ' Setting the magnetic
field parallel to z, the most general axi-planar state has
the order parameter
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A =b,, (g)[(x—iy)(u, +iu3)+(x+iy)(u', +iu2)], (5)

where (u„u2, 1) and (u'„u2, 1') are two arbitrary ortho-
normal vector basis and 2y is the angle between I and I'.
The A phase (1) is obtained when I and I' are parallel and
the planar phase when they are antiparallel. The conden-
sation energy equals

f;~(g) =~&,'p(y)

P245 P45s'n X+( Pi+P345)sin X]
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For the /3; coefficients in the numerical calculations, we
used the values suggested by Sauls and Serene. " They
tabulated the p, 's at a number of pressures above 12 bar,
and at intermediate pressures it is reasonable to use linear
interpolation. These coe%cients give the tricritical point
[f, (H =0)=f, ] at 28.5 bar, which differs from the true
tricritical pressure. To avoid confusion, we have used the
symbol Pss to denote the pressure according to the
Sauls-Serene coe%cients. In addition, we arbitrarily as-
signed Pss=0 to the weak-couPling values of P;. These
assignments are consistent with the standard
identification of the bulk phases (1) and (2) at any Pss )0.

In order to study the equilibrium interface, the free en-
ergies of the two phases must be equal [f, (H)=f,"].

0.0

-0.2
20 40

I
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FIG. 1. The order parameter in the A-B interface at (a) the
tricritical pressure and (b) at Pss =1 bar. The order parameter
is represented in the form A =h&R A, and all the nonzero
components of A are displayed. The field is in the direction of
R -z in (b). There is the A phase on the left and the B phase on
the right, and the x axis is chosen perpendicular to the interface.
Note the different scales of x in the two figures. In the weak-
coupling limit (Pss~0) we get that A„and A,„vanish every-
where and A„'„(x)= [Img„,{x)]2+g~x(x) = —'.
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e'&R s=d(u, +iu2) s .

The latter condition is equivalent to d=+R s and the
continuity of the phase angle. Because the phase angles
across the interface are strongly coupled, so are the circu-
lations. Therefore, we conclude that, on the scale g(T),
all vortices must continue through (or at oblique angles
within) the interface, contrary to Ref. 13. However, con-
siderable changes in the vortex structure have to take
place further away from the interface because the vor-
tices are rather different in the two bulk phases.

There is a spontaneous mass current within the inter-
face. It has the magnitude 0.29Ap, /Zm3 and direction
s X l, where s is taken to point towards the B phase and
p, is the superfiuid density of the 8 phase. (The direction
is opposite to that one would naively expect for a surface
current resulting from a local angular momentum ~ l in
the A phase. ) Also spontaneous spin currents fiow along
the interface. The spin-current tensor is given by

B
j'"'"= [0.68(R l)(sX I)—0.70(R sX/)1 j .

10

The magnetic properties in low field are described by a
spontaneous magnetic rnornent and by magnetic suscep-
tibility. The former has the magnitude 0.84g,'b, sg(T) and
direction R.l. The susceptibility tensor is diagonal in the
vector basis formed by R.s, R l, R sXl. The suscepti-
bility is highest in the third direction and it is smaller by
3.2gzhz(( T) in the second direction.

We want to study the distortion of the interface in a
magnetic field. Comparing the magnetic energies above,
we notice that a sizable distortion requires such high
fields that the susceptibility dominates the spontaneous
moment except at temperatures very near T, . Therefore
the linear magnetic interaction proportional to g,

'
will be

neglected in the following. The numerically calculated
order parameter is displayed at the pressure Pss = 1 bar,
in Fig. lb. The boundary conditions mentioned above
remain valid at all Pss )0. In addition we find a condi-
tion for H-R: the three vectors s=+d.R l and H-R
have to be orthogonal to each other. For example, at
Pss=12 bar the state with l=+H-R has the energy
0.79f, (0)g'( T) compared to the energy minimum
0.60f, (0)g( T). The interface was found to change
smoothly as a function of pressure. The energy of
the interface can be fitted to the formula
2.5$(&) 1/ f, (0)[f,"—f;~(vr/2)]. The error here is at
most a few per cent. At the tricritical pressure this gives
the energy 0.92f, (0)g( T) in agreement with Ref. 3.
(Note the difFerence in units as discussed in Sec. II.) At
low Pss, the energy equals 0.15+Pss/bar in units of
f, (0)g(&).

An interesting point is that the energy of the interface
vanishes in the weak-coupling limit. This singularity can
be traced back to the following conditions:

2/3, +/33=0, /34~=0,

which are satisfied in the weak-coupling approximation.
It follows from these that 6~~=0 (3) in the field that is re-
quired to reach equilibrium between the A and B phases,

i.e., the B phase reduces to the planar phase. Moreover,
all the axi-planar states (6) are degenerate. ' Thus, there
exists a continuous transformation between the 3 and B
phases such that all the intermediate states have the same
energy. It follows that only gradient energy is lost in the
interface, and that can be reduced to an arbitrary small
value by increasing the thickness of the interface. Thus,
the A-B interface has zero energy, infinite thickness, and
its structure becomes undetermined.

It would be interesting to know how well the weak-
coupling approximation describes the superAuid at low
pressures. Some information has been obtained from
measurements of the specific heat, ' magnetization, "and
phase diagram. ' ' While the intrinsic properties of the
B phase seem to be in fair agreement with the weak-
coupling approximation at zero pressure, deviations ap-
pear in other properties. We want to point out that the
surface tension of the 3-B interface, which is a measur-
able quantity, ' is simply equal to the interface energy cal-
culated above. Measurement of the surface tension at
low pressures could be a sensitive test of the strong-
coupling effects because of the vanishing of the tension at
small values of the parameter Pss.

Let us brieAy discuss the weak-coupling limit at arbi-
trary temperature. The GL calculations should be accu-
rate only at temperatures near T, . However, it can be
shown that the axi-planar states remain degenerate at all
temperatures. ' Thus the interface tension remains at
zero in a finite-temperature interval below T, . Only
below temperatures =0.8T, does the tension become
finite, because in this region the parallel gap of the B
phase (b,

~~)
becomes nonzero. ' There the interface is

made up of two parts: a finite-thickness interface be-
tween the B and planar phases and an infinite-thickness
interface between the planar and 2 phases. We must
point out that, experimentally, a finite tension may also
result from magnetic field gradients or small geometries
because they limit the thickness of the interface.

IV. ANALYTIC SOLUTION AT THE SINGULAR LIMIT

Let us study in more detail the behavior of the inter-
face near the singular limit. We will show below that an
analytic solution of the interface is possible near this lim-
it. This has the great advantage that the dependence on
all the five P, 's can be seen immediately. This may be im-
portant in setting experimental constraints on the /3, 's.

We want to study the interface at some arbitrary
values of /3;. For that purpose we choose another set of
values /3,

' ', which satisfy the condition (7). (These are not
necessarily the weak-coupling values. ) Our aim is to cal-
culate the energy density of the interface to linear order
in 5P, where 5P measures the deviation of P, 's from P', 's.
Usually, this is achieved by calculating the free-energy
change 6F with the unperturbed order parameter 3' '.
This is because the response 6A does not contribute to
the energy in first order due to stationarity of functional
F( A ). The first complication in the present case is that
the unperturbed state is vastly degenerate, and we have to
select the state giving the lowest energy in response to 5/3.
The second complication is that, in order to keep the 8
and B phases in equilibrium, the field has to be changed
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by 6H ~&6p. Because 6H is large, the response of the
order parameter has to be taken into account in calculat-
ing 6F. What makes the whole problem manageable is
that these complications appear in different regions: the
field affects only the nearly planar state, not the general
axi-planar states. The calculation is presented below in
more detail.

In the zeroth approximation, the problem consists of
the bulk energy with p'; ' and a field energy just enough to
stabilize the planar phase among the B phases. No gra-
dient energy is included in the zeroth order. The solution
of the zeroth-order problem is an arbitrarily varying axi-
planar state (5) with h,p(y)=b, 0=+a/(4p2 '). The en-

ergy of the interface vanishes in this approximation. The
deviations 6/3,. =p, —/3', . ' produce, in the first order, the
energy

F i
=2b, ()f dx [26P2q5 —2P4~sin y

+ (2P, +P,4, )sin y j .

A second perturbation is the gradient term of the GL en-
ergy functional. It restricts the spatial dependence of the
zeroth-order solution within the states (5). Examination
of the various possibilities reveals that the lowest energy
is obtained with the form

that the coefficient of the term proportional to i/ in (11)
is nonzero and positive even if 5H=0. It means that i/

has to decay near the junction of the planar and axi-
planar states. This is in agreement with Fig. 1(b). Thus,
it is enough to keep only the leading correction to (11)
arising from yam. /2. It has the form

F =4p', )5 f d i/ cos y . (13)

Finally, we have to include the gradient energy of the
parallel component

2

FS=Kb0f dx
d

whereas the gradients of the perpendicular components
can be neglected in the present approximation.

The problem now consists of finding the functions y(x)
and g(x) that minimize the sum of the energies
F, . F~. This problem can be divided into two parts.
In the erst part we solve the problem consisting only of
F, +F2. The Euler-Lagrange equations for this part have
the first integral

dr==b0siny+(2/K)[ —2P45+(2P)+P3$5)sin y] .2

1 0
A ' '(x ) = b.0 0 sing

0 0

l cos+
0 (9) Here the constant of integration is fixed by requiring

dy/dx =0 in the bulk A phase. The contribution to the
energy from the first part can now be calculated from

F =KA fdx (10)

We express the energy of the B phase as a functional of
the parallel gap 6~~=60)/). Near the planar limit (b,

~~

——0)
we get

F, =ad() f dx —1+ 5(H ))/)

p(0)(p(0) + 3p(0) )

8(p(0) )2

where g depends on the coordinate x perpendicular to
the interface. This form is also obtained from the numer-
ical solution, see Fig. 1(b). The gradient energy of (9) is
simply

2

F, +Fr=2Kb() f dy

where we have cut off the x integration at point
g(x) =~/2.

The second part of the solution consists of minimizing
the sum of all the energies F

&
F5 in the region

g=~/2. In order to avoid counting the same energy
twice, we have to subtract the energy

Fd, =")/ 8Kb 0(2p, +p3 /34, )fdx-Gg

that is already included in (16). Interestingly, the second
part is mathematically identical to the well-known prob-
lem of the normal-superconductor interface. The GL
parameter K in this problem is given by

The condition that the 3 and B phases should be in equi-
librium gives, from (8) and (11), the condition

p(0) (p(0) + 3p(0) )
K

4p(0)p(0)
(18)

(0)( (0) + 3 (0)
)

(12)

It follows from (11) that the J3 phase develops a finite
parallel gap proportional to 5P' . The parallel gap ap-
pears as the component A„=b,0)/) in our axi-planar an-
satz for 3' ' (9). In order to study the parallel com-
ponent in the axi-planar states (yW~/2), we have to gen-
eralize the calculation leading to (11). Doing this we find

I =1.89 —1.98&)(—0.3la. . (19)

We can now write the final result for the surface ten-
sion (=free energy) of the 3 Binterface in superfiuid He-

as

Since we could not easily And a published numerical solu-
tion, we have calculated it here. Let I2 denote the energy
of the superconductor-normal interface in units of the
CiL coherence length times condensation energy density.
We find that, below the critical value (a. & I /&2), the re-
sults can be well fitted by
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g( T)a I] I2 4a
4/3(0) +2~(0) 2 /3(0)/3(0)(/3(0) + 3/3(0) )

where

&a+c + ln
&c

&a+c +&c
&a

if c&0

(21)
&a+c +

&—c
arcsin(v' —c/a ) if c (0,

a =2/3]+/35 —
/345 and c = —(2/3]+/3345). We have impli-

citly assumed that a & 0 and a +c )0, which guarantees
that the A phase (1) has the lowest energy among all axi-
planar states (5).

The two terms in (20) can be associated in Fig. 1 as fol-
lows. The first term comes from the changeover of
Red~~ and Im A«and the latter from the foot of ReA„.
They have the orders of magnitude of &5((3 and 5P, re-
spectively. The difference arises because the former has
the length scale ~5/3 ' and the latter ~6/3 ' . The
difference in the length scales justifies the separation
made in the calculation above.

We note that only four combinations of the five param-
eters /3, /a appear in the thermodynamics of bulk A, A „
and 8 phases in magnetic field. (Here we assumed that
the linear magnetic interaction can be neglected in the B
phase. ) The surface tension (20) provides, at least in prin-
ciple, a fifth combination of these parameters.

Let us discuss the accuracy of the expansion (20). Nat-
urally, the accuracy should be better the nearer the ex-
pansion point (/3'; ') is the point we want to calculate. As
far as we know, there is no unique way of defining con-
cepts like "distance" and "orthogonality" in the space of
/3 s, and thus there is no unique way of defining the best
point of expansion. Therefore, we have tested a couple of
reasonable choices. In the difFerent choices we have
varied the overall magnitude of /3'; 's but have kept the
relative magnitudes the same as in the weak-coupling
theory, i.e., (/3' '/3' '/3' '/3' '/3' ') ( —1,2, 2, 2, —2). [It
follows from (18) that ]r=0.559 for all choices. This is
rather near the critical value 0.707, which partly explains
the fact that the latter term in (20) seems to contribute
only about 5%.] At Pss = 1 bar, none of the choices
differs from the exact value more than the numerical un-
certainty (=1%) of the exact result. The differences ap-
pear at higher pressures and are compared below at the
tricritical point (on the Pss scale). Using for /3( ' the ab-
solute weak-coupling values gives a result that is 42% too
small. Looking for better choices, we noticed from (20)
that the most crucial parameter is /3(2 '. Assuming

pz '=/32 gives only slightly better result than the absolute
weak-coupling point. The crucial efFect of /3(2

' is that it
determines the amplitude of the order parameter (9) in
the zeroth order. Therefore, it seems to us that the most
reasonable choice for /3(2

) would be such that it produces
either the amplitude of the planar phase or the average
(squared) amplitude of the A and planar phases. These
lead to the conditions /3'2 '=/3]2+/3345/2 and

//2 /245+(/12+/345/2)

respectively. These choices lead to energies that are too
smail by 3'7o and too high by 9%, respectively. General-
izing slightly, we conclude that the expansion (20) seems
to be rather accurate at any physical choice of the
strong-coupling parameters provided that the expansion
point is properly chosen.

The expansion (20) predicts that the interface tension
at the melting pressure is about 12% higher than at the
tricritical pressure. This implies that the excellent agree-
ment between the measurement at the melting pressure'
and the theory at the tricritical pressure is slightly ac-
cidental.

V. INCLUSION OF THE DIPOLE ENERGY

The orientations of the bulk phases around the inter-
face are not completely determined by the boundary con-
ditions obtained in Sec. III. Therefore, we also have to
consider the efFect of the tiny dipole-dipole interaction.
The general expression for the interaction energy is

fD=gD[ITrA I'+Tr(A A*)] .

In the bulk A phase (1), it takes the form

fD = —2gD ~ ~ (I d)'

(22)

(23)

O=arccos —,n=+H .II (25)
45~

If, at some point, the dipole energy is not minimized, it
will heal towards the minimum on a length scale I. deter-
mined by minimizing the sum of the gradient energy
( =KB L ') and the dipole energy ( =fDL). In the A

phase and for the angle 0 in the B phase, this gives the di-
pole length L =gD =+K/gD. However, as can be seen
from Eq. (24), the part of the dipole energy that depends
on h (or equivalently on n) is smaller by the factor e. It
follows that, in small fields, n heals on a considerably
longer length scale =gD/&e. More exactly, this healing
length is either 2/2]z or V2$Dz depending on the way n
approaches H. The magnetic coherence length gaz
varies from approximately 5.4 (melting pressure) to 12
(zero pressure) in units cm G Q 1 —T/T, /H

In the following we consider the direction of the A-B
interface as fixed externally. This is because the small
orienting energy (on the order of gDb, gD in high fields)
on the interface arising from the dipole interaction is, in
practice, overwhelmed by the effect of container walls
and gradients of the magnetic field. We divide the discus-
sion of the interface in three parts: we first consider zero
field, then a weak field, and finally, and most extensively,

which tends to align d and I parallel (or antiparallel). In
the B phase (2), the dipole energy (22) gives

fD =2gDbi[ 2(1+@)cos8+4cos20
—e(3+4 cos8)H. h+ e (H h) ], (24)

where @=1—b~)/Ai and h=H R. In the bulk 8 phase it
fixes
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the limit of large fields.
In the absence of the magnetic field, the superAuid con-

densation energy is minimized when s.l =0 and
1=+8 .s. The dipole interaction fixed, in the two
phases, 8=arccos( —

—,')=104 and d=+1. These can all
be satisfied simultaneously if n has any of the following
four values: (+1,+1,&3)/~/5 or (+1,+1,—V3)/V5
expressed in vector basis s, I, and s X I. This
configuration still has the freedom of rotating around s.

The behavior in the magnetic field is determined by the
competition of two magnetic energies [ =gz hei Hg( T)
and =gzbsH g'(T)] and the dipole energy ( =gDbiigD ).
Comparing their magnitudes we can distinguish low- and
high-field limits. The dipole energy dominates in the
low-field limit, which has the range 0«600 G at the
melting pressure, but it practically disappears below the
tricritical pressure. The quadratic field term dominates
in the high-field limit, which is achieved when H))600
G at the melting pressure or H ))SO G at zero pressure.
The Geld region between the limits is complicated because
all three terms are comparable, and it will not be dis-
cussed here.

In the low-field limit the zero-field configuration
remains valid except that d is fixed perpendicular to H,
so that the rotation degree of freedom is lost in magnetic
field (unless H =+s). It follows trivially that

n. H = (cosI3+ i/3sinP) /v'5, (26)

straints, a problem which can conveniently be solved nu-
merically.

A representative result of the simple model is shown in
Fig. 2. This graph is obtained using parameters
a 6 z = 1.4b b z and e =0.2. We have used a )b because
the average healing length in the 3 phase (i/5$D/2) is

larger than the healing lengths in the B phase (2$D/i/15
and i/8/15$D ). Other physical choices (differing by fac-
tors of 2) did not produce essentially diff'erent results.

It can be seen that I deviates, at most, a few degrees
from being perpendicular to the field. It also can be not-
ed that the deviations of I from d and I9 from 104' are rel-
atively small for all directions of the interface. The case
13=30 is a special one where the dipole energy takes its
absolute minimum value, and the orientations of the
phases are identical low and high fields. Curiously, in
this case also, the rotation angle 0 exactly equals
arccos( —

—,
'

) for any degree of depression e of the B phase.
Figure 2 also displays the deviations of h and n from

the field direction. [These are interrelated by the equa-
tion

h H=cos8+(1 —cos8)(n H)

which simply follows from the properties of rotation ma-

120

where P is the angle between s and H. Thus, n cannot be
in the direction of the field at the interface. Instead, the
interface has a tail towards the 8 phase, in which n heals
from its direction at the interface towards n=+H. The
tail is rather long, on the order of the magnetic coherence
length gDz. There is no tail on the 2-phase side.

In the limit of high fields, the condensation and the
field energies have to be minimized first, and the dipole
interaction can be treated as a perturbation. The first
part was done in Sec. III: 8 .s=d, R.I, and 8 have to be
orthogonal to each other. Considering the dipole energy,
we note that the contribution coming from the "hard" in-
terface [length scale g(T)] can be neglected in compar-
ison to the contribution from the "soft" interface of
length scale gi, or gaz. [We do not consider the limit

90

CA

%30

P ( =10 bars(1 —T/T, )

where this assumption breaks down because of the expan-
sion of the interface. ]

We studied the effect of the dipole interaction using the
following simple model. We assume that the total dipole
energy is given by a linear combination of the expressions
(23) and (24).

I'D =afD +bfD, (27)

where the variables (d, I, 8 and h) refer to their values
just at the interface. We minimize this energy with the
constraints set on the condensation-energy scale, and also
that the interface normal s has a given angle P with the
field H. In proper coordinates this 1eads to the minimiza-
tion of a function of two real variables without con-

-30 (

30
(3 {deg )

i

60 90

FIG. 2. Approximate orientations of the bulk phases near the
A-B interface in the limit of high fields. All angles (in degrees)
are given as a function of the angle P between the magnetic field
and the interface normal s. D&,«(l ) and D&,„g(l ) denote the de-
viation of I from d in the polar and azimuthal angle, respective-
ly, in a coordinate system where H is the pole. All other curves
represent angles between vectors indicated on the labels. Note
that dlH and lis exactly, also at low 6elds. For comparison, in
the limit of low fields the corresponding results are as follows:
D& tt(I ) and D&,„g(I ) vanish identically, 0—:arccos( —

4 ),
n s —= 1/&5, and (26) and (28). Both limits of the field give iden-
tical results at P= 30 .



A-B INTERFACE OF SUPERFLUID 3He IN A MAGNETIC FIELD 9691

trices. ] It can be seen that h and n are in the direction of
the field only in the case where the field is in the plane of
the interface. For all other orientations of the interface
there is a tail of length = (Dz on the B phase side at high
fields also.

A special limit is obtained when 6~~=0. In this case, l
and d are strictly parallel, but the angle 9 takes is maxi-
mal variation from 90' (at P=90') to 120' (at P=O'). h
and n are essentially unchanged from Fig. 2.

The simple model (27) would be exact if, on both sides
of the interface, the healing takes place with a single heal-
ing length. Because the vector h has longer healing
length than the others, the energy of this degree of free-
dom appears underestimated in the model (27). This will
lead to only a tiny error in our results because, as can be
seen from Fig. 2, the vector h is very near its minimum-
energy direction that is consistent with it being perpen-
dicular to s.

rotation angle equals 104' and I=+d, but deviations
from these appear in higher fields, as shown in Fig. 2.
The interface has, on the 8-phase side, a tail, where the n
vector strongly deviates from its direction in the bulk.
The only exception to this rule is the case of a high field
parallel to the interface. The dimension of the tail is on
the order of the magnetic coherence length and should be
observable by nuclear magnetic resonance. The surface
tension of the interface is found to vanish steeply in the
weak-coupling limit. An analytic expression (20) was
found for the tension as a function of general strong-
coupling parameters near the singular limit (7). This
might be useful in obtaining information about strong-
coupling parameters at low pressures.

Note added in proof. The singular behavior of the in-
terface has been studied by G. E. Volovik (Zh. Eksp.
Teor. Fiz. 97, 1198 (1990) [Sov. Phys. JETP 70, 672
(1990)]), but his conclusions difFer from ours.

VI. CONCLUSIONS

We have studied the structure of the 3-8 interface on
the energy scales of both the superAuid condensation en-
ergy and the dipole energy. We found a simple ortho-
gonality rule for s, I, and 8 R. At low fields, the 8 phase
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