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Dynamics of granular superconductors at zero and large magnetic fields: Glassy behavior
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We calculate the transport properties of a model granular superconductor in zero magnetic field and
in a strong random magnetic field. The Hamiltonian is taken as the sum of two terms: a Josephson in-

teraction coupling neighboring phases and a diagonal charging energy. The noncommutativity of charge
and phase is neglected (classical, or large-grain, limit), as is dissipation occurring through shunt resis-
tances connecting neighboring grains. The dynamical properties, including current-current correlation
functions, conductivities, and voltage noise, are calculated as a function of temperature via molecular-
dynamics techniques. For a simple-cubic lattice in zero magnetic field, the model exhibits the expected
insulator-to-superconductor transition near T, =2.2FJ/k&, where EJ is the Josephson coupling energy.
The frequency-dependent conductivity has a strong fluctuation peak near T, . Its behavior above T, is
qualitatively reproduced by a simple Aslamasov-Larkin-like model. The voltage noise has a time corre-
lation function, which oscillates below T, but falls oF nearly monotonically above T, . Its low-

temperature behavior is explained analytically in terms of a model of voltage fluctuations due to propa-
gating phase waves. A disordered system in a strong magnetic field is modeled by grains on a simple-
cubic lattice with random magnetic phase factors on each bond, following Huse and Seung. Evidence
for a vortex-Auid-to-vortex-glass transition is found from the increasingly slow decay of the current-
current correlation function above T~ =0.45EJ/k&, and from its nonergodic behavior below Tg. The be-
havior is similar to that found by Leutheusser from an analytic model of a structural liquid-glass transi-
tion.

I. INTRODUCTION

The physics of composite or granular superconductors
has been extensively studied for many years. ' Many po-
tentially practical superconducting materials are compos-
ites of superconducting and nonsuperconducting constit-
uents. Among low-T, materials, 3 15-structure super-
conductors embedded in Cu are the materials of choice
for high-field magnet wire, while among the high-T, ma-
terials, composites of Ag-sheathed YBa~Cu307 s (Ref. 3)
have shown promise as useful materials at T )77 K. On
the other hand, reliable or even useful models for estimat-
ing the transport properties of such materials as a func-
tion of temperature are still very much needed.

In this paper, we describe a simple model to describe
transport in a mode1 granular superconductor consisting
of Josephson-coupled superconducting grains embedded
in an insulating matrix. The model neglects dissipative
(one-electron) tunneling between grains, and hence may
be quantitatively applicable to real superconducting ma-
terials only in very exceptional circumstances. Neverthe-
less, it has the advantage of being numerically soluble. It
may therefore serve as a starting point for more realistic
treatments of granular materials which include dissipa-
tive tunneling and low-temperature quantum efFects.

The model consists of a collection of Josephson-
coupled grains. The charging energy of the grains is in-
cluded in the large-capacitance limit where this energy
may be treated classically. The omission of dissipative
effects corresponds to the assumption I3)) l, where P is
the analog of the well-known McCumber parameter in-

troduced from single junctions. We treat this model by
standard molecular-dynamics techniques in two regimes:
zero magnetic field, and strong random magnetic fields.
In the former case, we find an insulator-to-
superconductor transition with a conspicuous fluctuation
conductivity on either side of the transition. Below T,
we find a significant high-frequency voltage noise which
can be treated analytically. In a strong random magnetic
field, which we treat by an extension of a model due to
Huse and Seung, we find evidence of a vortex-fIIuid-to-
vortex-glass transition, ' signaled by a very slow decay
of the current-current correlation functions above the
glass transition temperature T, and a nonergodic,
history-dependent behavior below T~.

The remainder of this paper is organized as follows.
The model is described in Sec. II. Our numerical tech-
niques are presented in Sec. III. The results for zero and
strong magnetic field are given in Sec. IV and V„ followed
by a brief discussion in Sec. VI. An Appendix describes
the limits of applicability of this model to real composite
super conductors.

II. MODEL

We consider a system of X superconducting grains.
The superconducting order parameter on the ith grain is
assumed to be

g, = ~P, ~exp(iO;),

and the system is assumed to be described by the Hamil-
tonian

9643 1991 The American Physical Society



9644 Z. Q. WANG AND D. STROUD

H =
—,
' g C;~ V; V~.

—
—,
' g Ez.;,cos(0; —0 ),

lj lj
(2)

where V; is the voltage on the ith grain; C; is the capaci-
tive coupling between grains i and j,' EJ.,

" is the Joseph-
son coupling energy between grains i' and j; and the sums
run over all grains i and j.

The physics behind the terms in Eq. (2) is straightfor-
ward. The first term represents the Coulomb energy of
the charges distributed on the various grains, as deter-
mined by the capacitance matrix C,"." The second term
is the Josephson coupling energy between grains i and j.
It is related to the critical current I, , between those
grains by Ez ;, =2eI, ..; /A'.

With the help of the Josephson equation, 0; =2eV, /A,
Hamiltonian (2) can be rewritten as

H= — g 0;C; 0~
——g EJ;Jcos(0, —0j) .1 A 1

(3)

Introducing a generalized momentum p; by

p; = —BH/BO, = —(A' /4e )QJ C~.O. and substituting into
Eq. (3), we obtain H in the canonical form

H=
2 gp;U;.p~

——gEJ. ;,cos(0; —0 )
2e 1

lJ lJ

(4)

where the charging energy matrix U is the inverse of the
capacitance matrix, U~ =(C ');~.

The canonical equations of motion for this system are
0, =OH/Bp;, p, = —BH/00;. Evaluation of these equa-
tions using the Hamiltonian in the form (4) gives

~ 4e
X U&JPJ (5)

P; = —g Eq. ;~sin(0; —0.),
J

(6)

which are the classical equations of motion determining
the evolution of the phases in the granu1ar superconduc-
tor.

Equations (5) and (6) involve, of course, a number of
approximations. First, they omit quantum effects associ-
ated with the noncommutativity of 0, and p;. Such quan-
tum effects are small in the regime

E, —=e'/(2C) «EJ, (7)

where E, is a charging energy associated with a typical
element C of the capacitance matrix, and Ez is a typical
Josephson coupling. Secondly, they leave out dissipative
transport of charge through shunt resistances. The
current through such a shunt resistance R; in the ijth
junction has the form I,'"""'=Pi(0;—0 )/(2'. ;J), which
could readily be included, if needed, in the classical equa-
tions of motion. ' But this dissipative term can be
neglected when the dimensionless McCumber parameter

4e R CEJ
g2

»1,
where R, C, and EJ represent typical shunt resistances,
capacitances, and intergranular couplings.

In order for Eqs. (5) and (6) to be applicable, both of
the inequalities (7) and (8) must be satisfied. The applica-
bility of these conditions in a real granular superconduc-
tor is further discussed in the Appendix. Although the
range of rigorous applicability may be limited, the predic-
tions of this model are still of interest as the limiting case
of a more realistic treatment which includes both dissipa-
tion and capacitive tunneling through shunt resistances.
An analogous calculation, involving dissipation but no
capacitive kinetic energy, has been presented elsewhere. '

In the present calculations, we consider a cubic lattice
of grains with diagonal charging energy matrix
U; = U5;, and only nearest-neighbor coupling. The
Hamiltonian (3) then becomes

0; = —g sin(0; —0 ),
J

(10)

where the sum runs over nearest neighbors to i.
The dynamical model (10) is suitable for an ordered

composite in zero magnetic field. To introduce a magnet-
ic field, we replace the phase difference 0; —0 by the
gauge inuariant -phase difference y; =0;—0 —2; where

=(2~./No) f1 A dx, A being the vector potential and
4 Q Ac /2e the Aux quantum.

To treat a disordered granular system in a field, we
adopt a simplified model, according to which the lattice
of grains is ordered, with nearest-neighbor coupling EJ,
but the 3; 's are taken as a random variables uniformly
distributed on the interval [ —m, ~], such that the phase
factors 3; on different bonds are uncorrelated. The Aux
4 through a given plaquette is given by the sum of the
phase factors 3;. around a plaquette, i.e.,

Hence, this model corresponds to having a random Aux
passing through each plaquette of nearest-neighbor bonds
of the cubic lattice. Although the lattice of grains is or-
dered, the model may still be reasonable for a positionally
disordered collection of coupled grains in a strong but
uniform magnetic field ("strong" meaning a field much
larger than one fiux quantum per typical plaquette), since
in both cases the phase factors 3;. will be random vari-
ables. In fact, it has been shown numerically that the I-V
characteristics of a such a positionally disordered array
of grains coupled by resistively-shunted Josephson junc-
tions is very similar to that of the corresponding Huse-
Seung glass, in the limit of strong magnetic fields. '

The variables 3;. are taken to be "quenched, " that is,
determined by an externally applied field. This implies a
neglect of the fields produced by the screening currents

ACH= g (0, ) — EJ g—cos(0; —0. )
e l lJ

where EJ is the nearest-neighbor coupling.
In this model, it is convenient to adopt natural units,

i e., energy in units of EJ and time in units of
so=(A/2e)QC/EJ. The equations of motion then take
the form
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themselves. The model is therefore appropriate only
when the Josephson screening length is large compared
to the size of the sample considered in the simulation.

III. METHOD OF CALCULATION

J (t)=d QI, sing, (12)

We have treated the model by standard finite-
temperature molecular dynamics techniques, using an
Ld XLd XLd cubic lattice (d = lattice constant) with
periodic boundary conditions and generally L =7. We
use the Verlet leap-frog algorithm'"' to solve the equa-
tions of motion. The generalized velocity 0, is scaled so
that the total kinetic energy term is equal to Xk&T/2,
where X =L is the number of grains. For each tempera-
ture, we have run 2X10 time steps At. In general, we
used a time interval At =0.01~0.

We have calculated several relevant quantities. The
first is the current-current correlation function, defined as
(J (0)J&(t)), where ( ) denotes a canonical average.
J (t) is the ath Cartesian component of the current den-
sity multiplied by volume at time t. It is given by

ni g
2

Reo. (co)=Re g
k ~z 1/vk+lco

(17)

equivalent to the three-dimensional XY(n =2) model,
which is known from Monte Carlo simulations and from
high-temperature series expansions to have a phase tran-
sition at T, =2.21E&/kz. ' This transition may be inter-
preted as a superconductor-to-insulator (SI) transition
from a state with long range to short range phase coher-
ence.

The SI transition is reAected in the current-current
correlation function (J(0)J(t)), shown in Fig. 1 at
several temperatures, and in the corresponding Fourier
transform, Reo(co) [Eq. (14)], shown in Fig. 2. There is a
strong peak in o (0) near temperature T =2.4EJ /kz, the
maximum value falling ofF on both sides of the transition.
A similar peak is also evident in ( J(0),J (t) ) at t =0.

The behavior of Reo. (co) for T ) T, can be qualitatively
understood from a crude fluctuation model, analogous to
the Aslamasov-Larkin picture used to understand homo-
geneous superconductors. ' We write the fluctuation
conductivity, for T & T„as a sum of Drude-like contri-
butions,

where I, =(2e IA)EJ is the critical current between grains
i and j, and we have used the Josephson current-phase re-
lation

I,-~ —IC s'ny

where nk is the Fourier component of a superAuid densi-
ty of wave vector k, ~& is the corresponding relaxation
time, q is the charge of a charge carrier, and the sum runs
over the first Brillouin zone of the grain lattice. Next, we
assume

the sum runs over bonds oriented in the 0. direction. The
current-current correlation function is related to the
frequency-dependent conductivity o &(cu) by the Kubo
formula, ' which in the classical limit takes the form

1 1

ae+bk b(g~ +k )

1==c(ae+bk ), (19)

o' ~(co) = 3 f (J (0)J&(t))cos(cot)dt
(Ld) ks T

(14)
0.3

at temperature T. In the present model, the conductivity
is isotropic, so that o &(co)=o (co)6 &. To reduce numeri-
cal fluctuations, we calculate o(co) as an average over
three directions, i.e., o.(co)= —,'g3

r ro (co). Likewise, we
calculate

3

(J(0)J(t))—= —,
' g (J.(0)J.(t)) .

a=1

We have also computed a measure of the voltage noise
between grains i and j, namely

S~~(t) —= g (( V, (0)—VJ(0))( V;(t) —Vi(t)) )= 1

b (~~)

and its Fourier transform

I—
CQ

0.2

A
0.1

CO

V

Current-current
correlation function

Sv~(co) = f Svv(t)cos(cot)dt, (16) t (units of ~0 = e E„)
where Xb is the number of bonds and the sum (15) runs
over distinct nearest-neighbor pairs.

IV. ZERO MAGNETIC FIELD

In zero magnetic Geld, since kinetic and potential ener-
gies commute, the present model has static properties

FIG. 1. Current-current correlation function
(J(0)J(t) )/((Ld)'k~T) for a simple cubic 7X7X7 granular
superconductor (I. =7) with no magnetic field, plotted as a
function of time for several temperatures. T, for the infinite lat-
tice is 2.21EJ/kz. Units are such that d =1 and I, =1. Tem-
perature is in units of EJ /k&, time in units of
~o=(6/2e)QC/E~.
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where e=(T —T, )/T„a, b, and c are constants and g is
the phase coherence length in the gaussian approxima-
tion. Substituting (18) and (19) into (17), and making a
Debye approximation by transforming the sum into an
integral over a spherical volume of radius d, where d is
the grain lattice constant, we obtain

I i I i I i I

1/6 k
Reo(co) =Co

~ ~ 2dk
c (aE+bk ) +a)

(20)

where Co is a temperature-independent constant. It is
readily verified that, for co=0 and e«1, this form pre-
dicts Reo.(0) ~e ', whereas for sufficiently high fre-
quency Reer(co) = A co with a constant of proportionali-
ty A which is independent of e. This latter prediction is
in agreement with our simulations; the former cannot be
confirmed without approaching T, more closely using
larger molecular-dynamics (MD) cells. Equation (20)
does disagree with the simulations in one respect: it pre-
dicts a conductivity which decreases monotonically with
co at any positive e.

To account for the peak in Reo(~, T) which appears in
our simulations at nonzero frequency, we arbitrarily add

0
0

I I I I I I I

0.5
03

1.0

to the contribution (20) a term arising from a damped
Lorentz oscillator:

FIG. 3. Model fluctuation conductivity [Eqs. (20) plus (21)] at
temperatures e'=( T —T, )/T, =0.05, 0.1, and 0.2. Frequency in
units of 1/~o.
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Figure 3 shows Reo(co, T) calculated as the sum of Eqs.
(20) and (21), with the arbitrary assumptions
a =b =c =1, Co=1, C=0.6, and coo=0.2. No effort has
been made to fit these parameters to the computer data,
but the simple analytic model shows all the essential
features of this data. Namely, all curves collapse onto
the same (I/co ) behavior at high frequencies, and there
is a peak at finite frequency, which moves to smaller and
smaller frequencies and eventually disappears as T, is ap-
proached from above.

Figure 4 shows Reo(co, T=2.35EJ/k~), very close to
the infinite-lattice T„ for several lattice sizes. Evidently,
the larger lattices behave as if they are effectively nearer
T, than the smaller lattices. This can also be understood
from our analytic model, eqs. (17)—(21). First, note that

0 ~ 20

Il
i T = 2.2
t
i

0.15 ~

T = 2.Os
0.10

Q)
CC

I I I i
I

I I I i
I

I I I I

3 IiiIIiiiiIIiii) iiiiII ii

T = 2.35

0.05

0
0 10

0'—

FIG. 2. {a) Real part of the frequency-dependent conductivi-

ty, Reo {co),plotted as a function of frequency for the tempera-
tures T =2.4, 2.6, 2.8, 3.0, and 4.0 (in units of EJ /k&). (b) Same

as (a) but for temperatures T=2.0 and 2.2. Frequency in units

of 1/wp.

01
0 2 4 6 8 10

FIG. 4. Real part of the MD conductivity o.(co) for an
L XL XL cubic lattice at temperature T =2.35J/k&, for L =5,
7, and 9. Frequency in units of 1/7 p.
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Reo(to, g )=@+ F+(cog), (22)

the phase coherence length is related to the temperature
by g ~e ' . Sufficiently near T„g~ will exceed the size
of the MD cell. Thus, in evaluating expression (20) at
T=T, for aconite cell, one should replace g by L, and
hence, replace ae by I. . A large I. therefore corre-
sponds to an infinite system very close to T„with a
larger peak in the Auctuation conductivity. This predic-
tion is in qualitative agreement with the computer results
shown in Fig. 4.

Several authors ' have proposed a scaling form for
the conductivity of a superconductor near T, in zero
magnetic field. This prediction takes the form

-1
0

T = 2.0

= 2.2

= 2.4

F+(x)=Cp I . . ., , du .cb(1+u )+x (23)

In principle, our simulations should allow us to test scal-
ing at a level beyond mean-field theory, and hence, to ex-
tract a non-mean-field value for the dynamical exponent
z. In practice, this would require simulations with much
larger cells than those we have used, at temperatures very
close to T, . Thus, we have not been able to verify the
scaling form numerically.

Figure 5 shows the behavior of the voltage noise func-
tion S~z(t), as defined in Eq. (15). The Fourier transform
of this quantity [Eq. (16)] is shown in Fig. 6 for several

where g is a correlation length, F+(x) is a scaling func-
tion, which may have di6'erent forms above and below
T„and z is a dynamical critical exponent. In the vicinity
of the phase ordering temperature T„g is expected to
vary as a power of e —=

~
T —T, ~ /T, : g„~e, where v is

the correlation length exponent for the d =3 xy model
and is expected to be around —', . At co=0, therefore,
Reo'(co) is expected to diverge as e

The analytic form (20) is consistent with the scaling
form (22) with v=0. 5, z =2, and

FIG. 6. Fourier transform S«(co) of the voltage noise for
temperatures k~ T/EJ =2.0, 2.2, and 2.4. co is in units of 1/70.

temperatures both below and above T, . At low tempera-
tures, Svv(t) shows a clear oscillatory behavior as a func-
tion of time. These oscillations correspond to the propa-
gation of "phase waves, " in this model —that is, of exci-
tations involving small Auctuations in both 0 and 0 which
are analogous to lattice vibrations in a conventional crys-
tal. The frequency of these oscillations is of the order of
(2e/A)QEJIC. At higher temperatures, the phase ar-
rangement in the granular lattice "melts, " and the time-
dependence of Svt,(t) resembles a decaying exponential
with some oscillatory residue. Svv(t) behaves rather like
the velocity autocorrelation functions of conventional
crystals, ' which oscillate in the crystal but tend to fall o6'
monotonically in the liquid. However, in contrast to con-
ventional melting, the present phase "melting" is a
second-order transition.

The behavior of Si,t,(t) and of its Fourier transform
St,v(co) can be deduced analytically at low temperatures,
where the harmonic approximation is expected to apply.
In that regime, the Hamiltonian (9) in natural units is

H= —,
' g 8;+—' g (8.—8 )

(ij)

The noise [Eq. (15)] is a sum over factors of the form

St,v ,)(t)= (8, (t)8J(0. ) )

= g e ' ' (8„(t)8 „(0)) .
keBZ

(24)

(25)

) 2)
40

0—

0

kpT = 22
'~

4

kBT = 2.0

I i I i I i I

2 4 6 8 10
time t (units of ~o)

12

In the harmonic approximation, each Ok propagates in-
dependently with frequency tok rp =Q Uk where
Ut, =gR( 1 —cos(k R ) ), the sum running over nearest
neighbor lattice vectors R. Since by the equipartition
theorem ( I Hk(t =0)

~ ) /2=k& T/2N where N is the
number of grains, it follows that

k, T
(8k(t)8 k(0) ) = exp( itokt) . —

2%

FIG. 5. Voltage noise S~v(t) [Eq. (15)], plotted as a function
of time for temperatures kz T/EJ =2.0, 2.2, 2.4, and 3.0, where
EJ=fiI, /(2e) is the coupling energy.

Hence in the harmonic approximation

(27)
kB T ik {R,. —R. )

Siv J(t)= g e ' ' exp( itokt)—
keBZ
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and the sum Si,i,(t) takes the form

k~T
Si,v(t) = g Ukexp( —icokt) .

2X

Similarly, the frequency transform is

ik (R,. —R. )

Svv;;, (~)= X e ' ' ~(~—~k)
keBZ

and the corresponding Si,i, (co) takes the form

k~T
Svv(co) = g Uk5(co —cok )

k
(30)

4

2

G$

2

)
4

I
f

I I

(a) :

-6
0

I I I I

5
time t (units of ~o)

IO

10
i

I I ! I
i

I I I

V)
8—

s
O

CQ

O
0

FIG. 7. (a) S«(t) as calculated in the harmonic approxima-
tion, Eq. (28). (b) S«(co) as ca1culated in the harmonic approxi-
mation, Eq. (30); units of frequency as in Fig. 6.

where we have used Eq. (16).
Equations (28) and (30) are plotted in Fig. 7 for temper-

ature T =2.0J/kii. Evidently Si,i,(t) of the simulations
(Fig. 5) is reproduced very well by this harmonic approxi-
mation at temperatures as high as T=2.0J/k&, quite
near the melting temperature, including the positions of
the first dip and first peak. The ratio of the height of the
first peak to Si,i,(t =0) is smaller than predicted by the
harmonic approximation, presumably because the har-
monic modes are damped. Si i (co) shows only a qualita-
tive agreement with the computer experiments (Fig. 6)

even at T=2.0J/k~, which have a central peak absent
from the harmonic approximation. Note also that the
"phonon peak" in the computer Si,i, (co) shifts to lower
frequencies at higher temperatures. This is consistent
with the softening of the phase waves near T„as would
be expected near a second-order phase transition.

The extremely small values of the harmonic Si,i, (co) at
small co follow from density of states arguments. At
small frequency, the harmonic modes satisfy co =ck, while
the matrix element U& varies as k . These factors com-
bine to give Si,i, (co) ~co"/c at low frequencies. The ex-
tra factor of co appears only in nearest-neighbor voltage
noise and would be absent in the harmonic expression for
the noise between more distant grains.

V. STRONG RANDOM MAGNETIC FIELD

A strong random magnetic field is expected to lead, not
to a conventional superconducting transition (analogous
to the ordered three-dimensional XY model), but instead
to a glass transition corresponding to a randomly frus-
trated XY model. Such a glass transition is signaled
by unusual behavior in the current-current correlation, as
we discuss in this section.

The results involve several types of averages. A
thermal average of the quantity F(0)G (t) for a particular
choice of the bond variables c4 j and of the initial phases
of the order parameters (i.e., of the initial conditions) is
denoted by triangular brackets, i.e., (F(0)G(t)), Be-
cause of the ergodic hypothesis, which implies that an
average over a thermal ensemble is equivalent to a time
average, (F(0)G(t) ) is given by

(F(0)G (t) ) = lim —f F(t')G (t + t')dt' . (31)
~~oo 7 0

In the present calculations, we use ~=2000~~.
A disorder average over the variables A, for a particu-

lar choice of initial conditions is denoted [ ]. A thermal
and disorder average, assuming particular initial condi-
tions, is denoted [ (F(0)G (t) ) ]. Finally, an average over
thermal ensemble, a disorder ensemble, and initial phase
conditions will be denoted [(3 (0)B(t))];,. Clearly, it is
equivalent to average a quantity over many realizations
of the disorder, for a single initial phase configuration, or
to average over initial configurations, for a single realiza-
tion of the disorder.

Figure 8 shows [ (J(0)J ( t) ) ] for an average over twen-
ty difFerent realizations of the phase variables 3;, as ob-
tained using two diA'erent random initial phase
configurations, shown as full lines and as dotted lines.
For T )0.8 the two are indistinguishable on the scale of
this plot, but below a temperature of about 0.6EJ /kz,
the difFerence is noticeable. This is near the temperature
at which a glass transition is predicted for a static version
of this model (the predictions ' range from about
0.6'/kz to 0.45Ezlks). Note also that, compared to
the analogous quantity for zero field (cf. Fig. 1),
[(J(0)J(t) ) ] decays much more slowly even well above
the hypothetical Tg. This is typical of frustrated systems,
in which time decays are generally slowed down, in com-
parison with ordered systems where the decay of order



DYNAMICS OF GRANULAR SUPERCONDUCTORS AT ZERO AND. . . 9649

0.8 0.04

I—
~ 0.6

a

p 0.4

C)
0.2

V

nt
ction,
tic field 0.03—

C)
~l 002-
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t (units of ~0)
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FIG. 8. Current-current correlation function
[(J(0)J(t))]/((Ld) ksT) for a dynamical Huse-Seung vortex
glass, averaged over twenty different realizations of the random
phase factors A;J, for two different initial phase configurations,
denoted by full and dashed curves. Units as in Fig. 1.

0
0 0.2

8
i i 0

0.4 0.6 0.8 1.0
temperature Eq/kB

1.2

FIG. 9. s(t)=—[(f,(t) —fz(t)) ], where f(t)=(J(0)J(t))/
((Ld)'ks T). The square brackets [ ] denote a disorder average;
the triangular brackets ( ) denotes a thermal average, and the
subscripts 1 and 2 refer to two different initial conditions. We
plot s(t =0), which denotes the sensitivity of the correlation
function f(0) to initial conditions. Units as in Fig. 8.

parameters is not impeded by energy barriers.
In order to make clearer the initial-condition depen-

dence shown in Fig. S,we have calculated the quantity

s (r) —= [(fi(r) —fz(&) )'], (32)

where f(t)=(J(0)J(t))/[(Ld) ksT], and fi and f2
correspond to two different initial phase configurations.
The disorder average [ ] is carried out using twenty reali-
zations of the disorder, and f, and f2 correspond to two
different initial phase configurations. We find that s (t) is
nearly independent of time, a result already suggested by
the fact that the full and dashed curves in Fig. 8 differ by
constant values at each temperature. Figure 9 shows
s(t =0) as a function of temperature. This quantity be-
comes nonzero (for our choice of r) near T =0.55EJ/ks,
below which the properties of the glass are history depen-
dent. This history dependence can be viewed as addition-
al evidence for a glass transition in this granular super-
conductor.

The explanation for the history dependence is clear.
At sufticiently low temperatures, because of the frustra-
tion inherent in the model Hamiltonian, there are an
enormous number of equally plausible metastable energy
minima. Below a temperature of about 0.55EJ/k~, the
phases tend to be locked in the vicinity of one of the ener-
gy minima. This implies that the calculated correlation
function (J( )J0(t) ), for a given realization of the disor-
der, will depend on the initial phase configuration. This
dependence is refiected in s(t), as defined in Eq. (32).
Note that s (t) actually depends on the length of the time
interval ~ over which the time average is evaluated: the
longer the time, the smaller the initial-condition-

dependent Auctuations, because the frustrated system can
more nearly equilibrate over a long time interval.

The behavior of (J(0)J(t) ) is very similar to that pro-
posed by Leutheusser on the basis of an analytic theory
of the glass transition in conventional glasses.
Leutheusser's theory is a nonlinear integrodifferential
equation for the dynamical correlation functions of a
nonlinear oscillator with history dependent response. As
in the present calculation, it leads to a (J (0)J (t) ) which
decays more and more slowly as the transition is ap-
proached. Exactly at the critical value of the control pa-
rameter A. (corresponding to temperature in our case),
(J(0)J(t)) falls off algebraically with time,
(J(0)J ( t) ) ~ t where a =0.395 in Leutheusser's
theory. Below the critical point, (J(0)J(t) ) becomes
nonergodic. While our results are only numerical, it is
intriguing that they show many of the features of his
model. This seems to be further evidence that this ran-
domly frustrated model might undergo a phase transition
near Tz =0.45EJ/kg.

Finally, in Fig. 10, we show the noise function Si,v ( t )

defined earlier for several temperatures above T . Even
though Si,i,(t) is calculated in the "vortex liquid" phase,
it shows a very solidlike, ordered behavior over the
length and time scales shown in Fig. 10, closely resem-
bling the 8 =0 results for T below T, . Hence even in the
"liquid" phase at high fields, there is a great deal of
short-range order in the phases, which gives rise to an os-
cillatory behavior in Si i,(t) The melted p. hase thus
shows an almost elastic response on short time scales,
similar to what has been envisioned in theories of "entan-
gled Aux liquids. "
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I I I I direction, and with a magnetic field applied along an arbi-
trary direction, it would be a suitable, if idealized, model,
for treating Aux motion and resistivity in an anisotropic
superconductor in a magnetic field. Disorder can also be
readily introduced into the model. Thus one could calcu-
late directly the conductivity as a function of magnetic
field and current direction, continuously following the
crossover from the 8 =0 (three-dimensional XY) transi-
tion to the high-8 (vortex glass) transition.

I I I I I I

5 10
time t (Units of go)

FIG. 10. S&z(t) for a 7X7X7 cubic lattice in a strong mag-
netic field at temperatures kz T//EJ =0.8, 1.0, and 1.2. Units as
in Fig. 5.
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APPENDIX

VI. DISCUSSION AND SUMMARY

Using molecular dynamics techniques, we have calcu-
lated the current-current correlation functions,
frequency-dependent conductivity, and a measure of the
voltage noise in a model three-dimensional granular su-
perconductor. The model is suitable for a granular su-
perconductor in the large-grain, high-resistivity limit. It
might also be viewed as a highly simplified model for the
dynamics of a homogeneous superconductor, provided
that the "grains" are interpreted as volumes go of super-
conductor, where go is a length scale comparable to the
zero-temperature coherence length of the superconduc-
tor.

In zero field, our results imply an insulator-to-
superconductor transition accompanied by a large Auc-
tuation conductivity which probably diverges at the tran-
sition temperature T, . Below T„ the voltage noise has a
peak at frequencies where there is a high density of states
of propagating phase waves. Our results are not ade-
quate to test the scaling behavior predicted for this tran-
sition in zero field. However, a simple Aslamaso l-
arkinn-like theory for the fluctuation conductivity above
T, is in qualitative agreement with the numerical results.

In the presence of a strong random magnetic field, our
results are consistent with a vortex-liquid-to-vortex-glass
transition. As the transition is approached from above,
the current-current correlation function decays more and
more slowly with time, and below the presumed transi-
tion it becomes nonergodic, as predicted by the analytic
theory of Leutheusser for a structural liquid-glass tran-
sition. Even above the postulated T~, the voltage noise is
very solidlike, suggesting a great deal of short range or-
der even in the vortex liquid phase.

The present model could be used to treat other trans-
port problems in high-temperature superconductors. For
example, with different couplings in the xy plane in the z

In this section, we discuss the experimental conditions
where inequalities (7) and (8) may hold in a real granular
superconductor.

The Josephson coupling energy between grains is
EJ=fiI, /(2e) where I, is a typical intergranular critical
current. At low temperatures limit (T «T,o, where T,o
is the critical temperature of the grains), the
Ambegaokar-Barato6' expression for the critical current
is I, (T)=irk'( T)/(4e R„) where R„ is the intergranular
normal-state tunneling resistance (assumed to be
temperature-independent), and 6( T) is the superconduct-
ing energy gap. Hence, the coupling energy is

EJ= 2 b, (T) .
4e R„

(A 1)

Similarly, we estimate C =ed where e is an appropriate
dielectric constant (comparable to that of the material in
which the superconducting grains are embedded) and d is
an appropriate length (of the order of the intergrain spac-
ing). If we assume that the tunneling resistance equals
the shunt resistance, these estimates can be used to
rewrite inequalities (7) and (8) in the form (at T « T,o)

R b(0)
Ro U,

R 4 U,))
Ro ~2 6(0)

(A2)

(A3)

where

e
(A4)

Am

4e
(A5)

For reasonable estimates appropriate to high-temperature
superconductors, e.g. b, (0)=200 K; a=10, we find that
these inequalities cannot be simultaneously satisfied un-
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less d=SOO —1000 A or greater. The allowed values of
Ro are then in the range of Ro =5000 0; the correspond-
ing resistivity is very large: p=Rd =25 m Q. Thus, this
model is quantitatively appropriate only for a granular su-

perconductor in which the grains are relatively large, and
the resistance between the grains is high. For smaller
grains, quantum effects enter; for lower-resistivity com-
posites, dissipative effects must be included.
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