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Irreversible magnetization efFects in a network of resistively shunted tunnel junctions
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We investigate the magnetic behavior of a two-dimensional network of resistively-shunted (zero-

capacitance) Josephson junctions, treating magnetic screening effects in a self-consistent manner. By
this, we obtain stationary distributions of magnetic Aux and hysteresis effects typical of single crystals or
ceramic samples of high-T, superconductors, depending upon the magnitude of the magnetic penetra-
tion depth XJ.

I. INTRODUCTION

One of the characteristic properties of high-T, super-
conductors is the strong irreversibility in their magnetic
behavior. This irreversibility manifests itself, e.g., as a
difFerence in magnetic moments of zero-field-cooled and a
field-cooled sample and was found in single crystals as
we11 as in ceramic samples.

To explain this phenomenon Miiller, Takashige, and
Bednorz' proposed the so-called "superconducting glass"
model where a ceramic sample is described as a position-
ally disordered system of grains coupled via Josephson
weak links. Extensive Monte Carlo simulations, indeed,
reproduced many qualitative features of the experimental
data. ' Further it was argued that, owing to a very
short coherence length in the high-7; crystals, twinning
planes and other defects act like intrinsic weak links and
lead to "glassy" behavior of magnetic domains, similar to
the case of ceramics but on a much shorter length scale.

On the other hand, following the observation of an
Abrikosov lattice of vortices in YBa2Cu307 samples,
Yeshurun and Malozemoff came to the conclusion that
irreversible eff'ects in high-T, superconductors are clue to
a fIux creep phenomenon taking place with exceptionally
low activation energies. Recently, numerical simulations
within a Aux creep model allowing for some distribution
of activation energies reproduced the time dependence of
magnetic relaxation and the current-voltage characteris-
tics of high-T, superconductors. '

In many respects the models referred to above are
complementary, since, as pointed out by Tinkham and
Lobb (see also Ref. 10), they focus on opposite limiting
cases of the physics of strongly inhomogeneous type-II
superconductors. In the superconducting glass model the
role of disorder and frustration is stressed while screening
effects due to the magnetic field of the Josephson currents
are usually neglected. ' In the Aux creep model, howev-
er, the sample is treated as a type-II superconductor, and
inhomogeneity is only accounted for through the pinnig
energies. In this work we show that both of these views
of inhomogeneous superconductors are combined within
a granular model taking screening eAects into account.
Specifically, as a model for a finite superconducting sam-
ple subjected to an external magnetic field, we consider a

system of grains placed at the sites of a two-dimensional
square lattice oriented perpendicular to the external field;
see Fig. 1. Each grain is characterized by a supercon-
ducting order parameter, whose magnitude is a constant
for all grains, and neighboring grains are coupled via
Josephson junctions. We demonstrate that a self-
consistent treatment of the order parameter phases, the
local magnetic Aux, and the induced screening currents
yields a wide spectrum of magnetic properties, ranging
from a vortex lattice to spatial magnetic patterns similar
to the Bean" model. By this we are able to reproduce the
essential features of magnetic measurements reported for
single crystals as well as for ceramic superconductors.

II. MODKI-

As our model we consider a square lattice of Josephson
junctions, displayed in Fig. 1. Generally, each junction
may be characterized by its critical superconducting
current Io, its normal resistivity R, and its capacitance C.
Since we are interested only in slow relaxation processes,
we neglect the capacitance and use overdamped dynam-
ics. To establish the corresponding equations of motion
of our network, let us introduce the "horizontal" and
"vertical" gauge-invariant phase difterences 0; and 8;,
respectively. In the absence of external currents, the
current through a particular link is given by a superposi-
tion of elementary circular currents I, , see Fig. 1,
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FIG. 1. A schematic view of a network of weak links used as
a model of an inhomogeneous superconducting medium.
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difference in neighboring lattice loops, as seen from Eq
(5). At the left (i = 1) and lower (j= 1) edge of the lattice
we have the boundary conditions:

1j R text
1j 2j 1,j+1at L jo

+8, . —Psind,
and a similar expression for 6; . Here, Ay," is the
difference in phases of the superconducting order param-
eters in neighboring grains, Po=h/4me, A is the vector
potential, and the integral is taken across the link. In this
paper we are interested in the properties of the zero-
field-cooled samples at temperatures well below the tran-
sition temperature for the bulk superconductor (i.e., sin-
gle grain). From Eq. (3) it then follows that the magnetic
flux P," through a single mesh is given by'

V =8; +8;,+,—6;+, , —9;, .
0

(4)

On the other hand, P;. depends linearly on P,„t and all
currents Ikl, i.e

0'ij Next g L&j,klIk'
kj

As an approximation we only retain the self-inductance L
of each lattice mesh,

(6)

d@,- =—(ti;, j
—28; +6;+,

+8, —9, , +9, , j+,—8, +, —Psindj),
(7)

dO,"' =—(9; +, —29; +8;

+6,, —8,j,+8,+.. .—6;+, j f3 sin8;j ) . —

Here we have introduced the dimensionless parameter
P=LIo/Po which determines the maximum flux

In describing bulk materials, the neglect of mutual induc-
tances L,jk&, (ij)W(kl. ), would correspond to a system
which is uniform along the direction of the magnetic
field. Under more realistic conditions of a finite sample
we expect that the approximation (6) involving a phe-
nomenological parameter L still remains physically
correct. This is supported by explicit calculations
presented in the Appendix, where we discuss the effect of
nearest-neighbor and next-nearest-neighbor mutual in-
ductances.

Elimination of I, from Eqs. (1)—"(4) and (6) leads to a
system of ordinary differential equations for 0, . and 6,- .
In the present work we only consider ordered lattices,
where all links are identical. Then we obtain

d9i R +8;, —8;+, , + 9;2—9;,—P sin9, ,
0

(10)

These are obtained from Eqs. (1)—(4) and (6) by putting
I, - =0 outside the system. Analogous conditions hold for
the other two boundaries. Let us remark that these con-
ditions can be regarded as the lattice equivalent of the
boundary conditions at surfaces usually assumed in the
electrodynamics of continuous media. Equations (7)—(10)
describe the long-time relaxation phenomena in our net-
work. All stationary solutions depend only on the value
of p and, via the boundary conditions, on the external
magnetic flux P,„t.

III. RESULTS AND DISCUSSION

We solve Eqs. (7)—(10) numerically for different P,„t
with 9,"=8,"=0 initially (t =0) and obtain the distribu-
tion of magnetic flux from Eq. (4). For an N X N network
with %=30, which we consider here, all solutions usually
reach their stationary values after times t (500 in units
of L/R.

It is important to note that there are two characteristic
length scales in the problem: the lattice constant (or
grain size) a, and the magnetic penetration depth
A,+=a/'t/p. An estimate of the self-inductance L of one
lattice mesh shows that our definition of Xz essentially
agrees with Refs. 9 and 10.

For p«1 (i.e., for large AJ) our system behaves simi-
larly to type-II superconductors. ' In small magnetic
fields fiux does not enter the sample and the values of tf;
fall exponentially with distance from the boundary, with
the characteristic decay length XJ. In stronger fields Aux
penetrates into the system and forms there a regular lat-
tice. Penetration of magnetic fiux into the sample causes
some energy to be dissipated and the whole process is ir-
reversible. Thus, if after some time the external field is
switched off, some Aux remains trapped in the system.
Figure 2 shows the distribution of the remanent Aux cor-
responding to /3=0. 1 and initial external flux P,„t=Po.
Much of the structure of a Aux lattice consisting of well
separated vortices is still present as a result of the mutual
vortex repulsion and the local pinning barriers due to the
discreteness of the system. The overall cross-like form
seen in Fig. 2 is due to the system symmetry. Note that
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obtained under quasistationary conditions with changes
of the external field by the order of —,

' of its maximum
value after each time step. According to the previous dis-
cussion, for P=O. 1 our system behaves like a homogene-
ous type-II superconductor, and indeed, the correspond-
ing curve in Fig. 4(a) is qualitatively very close to the ex-
perimental results for YBa2Cu307 single crystals in fields
parallel to the c axis. Data by Swartzendruber et al. ' are
shown in the inset for comparison. In sintered
YBa2Cu307 samples, irreversible effects observed in very
small magnetic fields are dominated by the behavior of
superconducting currents through the intergrain Joseph-
son junctions while the grains remain in the Meissner
phase. The shapes of measured hysteresis curves' ' are
very similar to our results for P=2. An illustrative exam-
ple is shown in Fig. 4(b), together with measurements by
Male' et al. The choice @=2 is quite representative
since the corresponding values for ceramic samples vary
between 0.5 and 30 (estimated from the data in Refs. 18
and 19).

In our analysis we considered here only a regular net-
work of identical weak links and disregarded possible ir-
regularities in the coupling constants and positions of the
superconducting grains. These effects may be introduced
as distributions of values of p and p,„,respectively. Weak
links with large P act like strong pinning centers, while
variations in P,„, are equivalent to the type of disorder
considered in the superconducting glass model. These
extensions are now the subject for further investigation.

In summary, we investigate here a network of weak
links as a model of inhomogeneous superconductors. The
magnetic fIux due to the induced currents is taken into
account via a self-inductance coefficient. By this we are
able to qualitatively reproduce a broad spectrum of ir-
reversible effects observed in high-T, superconductors.
Our model and its generalizations discussed above are ex-
pected to provide a consistent basis to analyze the main
physical effects usually considered in the phenomenology
of high-T, superconductors, in particular phenomena
that are between" the scope of alternative models: the
superconducting glass model and the giant-Aux creep
model.
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To evaluate the effect of mutual inductances, we adopt
here the approximation where L,","=L,L,"k&=L& for
nearest-neighbor plaquettes, L,,- kI

=Lz& for next-
nearest-neighbor plaquettes, and L, kI

=0 otherw ise.
Then (5) takes the form

P,j =P,„, LI,j L—tt(I—. ..+I,+, j+I, j+,+I.. .)

(A 1)

In the case of i'«1 the circular currents I, vary on
length scales AJ ))a. Neglecting terms of order (a /A, j),
the parentheses in (Al) can be replaced by 4Ij. This
yields

(A2)

with the efFective inductance

L =L+4(Ltt+Lttiv ) . (A3)

In the opposite limit P)) 1 our argument relies on the
linear magnetization profiles observed in Sec. III, which
correspond to a linear variation of I, with distance from
the surface. By this parentheses in (Al) can again be re-
placed by 4I; showing that (A2) is consistent also for
P» l.

Next we perform a quantitative comparison of the two
approximations (Al) and (A2) for arbitrary P. The ex-
tended problem defined by (Al) is solved numerically, us-
ing representative values L~ = —L/20 and L~~ =0.8L~.
There is excellent agreement of the total magnetization
with that obtained from the local approximation (A2) and
(A3) in the cases P=0. 1 and 10. For P=2 both results
agree within 5%.
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