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Vortices and critical current in disordered arrays of Josephson junctions
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The breakdown phenomena of disordered arrays of two-dimensional resistively shunted Josephson
junctions driven by dc external current are studied numerically at zero temperature and zero magnetic
field. First we report on perfect arrays with large linear defects (rows of missing junctions). We show
the formation of vortices on the defect tips, the depinning of these vortices at the critical current, the
production of Josephson oscillations by the motion of these vortices and additional transitions as break-
down occurs row by row in adjacent rows. Next we study the funnel defect to show that, in this model,
local confined (nonspanning) regions of the sample cannot become normal until an entire spanning or
global region or vortex path across the sample can be found. In randomly disordered samples, global
breakdown means that the most critical defect region of the sample cannot become normal until a con-
nected global path of such regions across the sample can become normal and develop a voltage. This
point of global breakdown defines the critical current i, in randomly disordered arrays. At currents just
below I.„large regions of the sample may be critical or near critical, with vortices ready to depin from
their defects in a form of self-organized criticality. It may be possible to stimulate this near depinning by
external probes in this situation. We also study the statistics of an ensemble of 800 arrays of 2SX25
junctions at p =0.90 to observe the failure distribution F(i) (or critical current distribution) within the
ensemble. We find consistency with the modified Gumbel form for F(i), as in the case of linear prob-
lems, despite the nonlinearity. Finally we observe the average voltage ( V) versus applied current i for
the samples in the ensemble and find that ( V) varies as (i —i

& r& )', where x =3.10+0.10.

E. INTRODUCTION

Breakdown processes in various randomly disordered
systems have been the subject of extensive study over the
past few years' and are now becoming quite well un-
derstood. The electrical, dielectric, and mechanical
breakdown strength and the overall failure probability
distribution function of these systems have been calculat-
ed by numerical simulations and are consistent with the
predicted scaling laws using the statistics of extremes.
In this theory the breakdown is caused by the most criti-
cal defect, or region of defects, and understanding the
statistics of these most critical defects or regions is vital
to understanding the statistics of breakdown. Similar re-
sults apply to the critical current in linearized models of
superconductivity. In all these models there is a linear
relation between the load and response, up to a critical
breaking point; thus we shall call them linear models.

For many examples in nature, nonlinearity is impor-
tant and affects the breakdown process. This is the case
for superconductivity where the nonlinearity dramatical-
ly effects the breakdown phenomena at the critical
current. In order to understand the effects of this non-
linearity, we have chosen to study the case of supercon-
ductivity in disordered arrays of Josephson junctions at
zero temperature and zero external magnetic field.
Granular superconductors consists of superconducting
grains connected by intergrain proximity-effect tunneling
through weak links. These weak links can be modeled by
arrays of tunnel junctions. For overdamped systems,
such as superconducting thin film, these links can be
modeled by resistively shunted Josephson- (RSJ-) junc-

tion arrays. Recently, it has been found that high-T,
ceramic superconductors, especially in their polycrystal-
line form, behave in many ways like random arrays of
weak links.

In this paper we continue the study reported earlier. '
We shall consider here only the case of two-dimensional
arrays of superconducting grains which are located on
the sites (nodes) of a square lattice. Each node is con-
nected to its nearest neighbors by bonds occupied by RSJ
junctions. The RSJ junctions (bonds) are assumed to be
identical, and disorder is introduced by randomly remov-
ing junctions (bonds). The numerical techniques used
here are similar to those of several previous authors.
Since it has recently become relatively routine to study
the properties of such Josephson junction arrays experi-
mentally, ' many of the results and phenomena reported
here should be observable in real systems.

In Sec. II we introduce the model and describe the nu-
merical method used to solve the dynamical equations of
motion for the inhomogeneous arrays. In Sec. III we de-
scribe our results for a perfect array with a single defect
of varying size and shape. Understanding these simple
systems is critical to understanding the randomly disor-
dered systems. Part of the section is an elaboration of the
brief description given previously. In Sec. IV we present
and discuss our results for randomly disordered systems
of various models. Section V contains our conclusions.

IE. MODEL

The superconducting grains are assumed to occupy
uniformly the sites (nodes) of a square lattice. Each grain
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ik" is the normalized externally applied current at site k.
Equation (2) can be written in the generalized matrix
form

)( )( (3)
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FICx. 1. (a) 5X4 junction array with a single defect (single

missing junction). (b) Each resistively shunted junction can be

considered as a microbridge and a resistor in parallel.

(site) is described by a complex superconducting order
parameter A=Aze'+, where Ao is constant for all grains
and y varies from grain to grain. We assume that each
grain is coupled only to its nearest-neighboring grains by
the resistively shunted Josephson junctions (bonds). Fig-
ure 1(a) shows a small 4X5 array with a single missing
bond. The applied external current I'" flows in at the
top and out at the bottom of the array. Each junction, as
illustrated in Fig. 1(b), can be considered as a resistor and
a microbridge in parallel. For sufticiently small current it
is obvious that all the current is in the form of super-
current and there is no net voltage across the sample. As
the current in any junction exceeds the maximum super-
current Io that can Aow (as defined below), some current
must flow through the resistor and thus produces a net
average voltage and dissipation. Here the charging effect,
which would produce hysteresis in the junctions, has
been neglected; this approximation is valid for
proximity-effect junctions. ' This approximation certain-
ly makes the computations much easier and well defined
because the hysteresis causes the computer to arbitrarily
jump between the various metastable solutions. The
current-conservation rule for a single junction is

h
Iosin(y, —y2)+ 2eR

where Io is the maximum supercurrent that can flow
through the junction between grains 1 and 2, and y& and

y2 are the phases of the respective grains; R and I&2 are
the normal resistance and total current flowing between
the two grains. On the left-hand side of Eq. (1), the first
term is the Josephson supercurrent' and the second term
is the normal current due to the voltage caused by the
time-dependent phases between the grains. After defining
a dimensionless time ~=2eRIot/h and current density
i '"'=I'"'/Io, the dimensionless phase equation of the kth
grain of an array with identical junctions is given by

d V'k

I

where the summation is over nearest-neighbor sites l and

External currents are only supplied or withdrawn from
the top and bottom rows, so that ik"=0 except for k's at
the top and bottom of the array. The set of Eqs. (3) for
each site are then solved by multiplying Eq. (3) by the
matrix-integration factor G and integrating numerical-
ly using a fourth-order Runge-Kutta integration scheme
with appropriate initial phases y;(0). This technique,
which was used by Chung, Lee, and Stroud, is equivalent
to that used by Shenoy and by Mon and Teitel for perfect
arrays. " The disordered arrays, discussed later, are ob-
tained by randomly removing a finite fraction of junc-
tions and therefore creating random defects. As a check,
we consider the case of a perfect square array of identical
junctions with uniform initial condition for Eqs. (2). In
this case the array behaves like a single giant junction
i.e., for the external current density i less than i, =1.0,
there is no voltage across the sample; for i greater than i„
the voltage across all junctions pulse in unison with the
phase difference across any junction behaving like a stair-
case of steps versus time with a regular period' between
steps:

h~
(

2 2) —1/2

eR

The time-averaged voltage over several periods is'
V=XR (i i, )',—where X is the number of junctions in
the vertical direction. As the external current becomes
very large, the steps become smaller and smaller and
merge into a steady ramp so that the I-V curve shows
ohmic behavior of an array of normal resistors.

III. PERFECT ARRAY WITH SINGLE DEFECTS

A. Linear defects

The situation is substantially different when there are
defects present. To study this effect we first introduce a
horizontal linear defect or slit by taking one [Fig. 1(a)] or
several adjacent vertical junctions out of the central rom
of the uniform array. The current thus must flow around
the defect, and therefore the current density near the de-
fect tips is enhanced. When the external current is below
the critical current of the sample, the phases of the grains
are constant in time, although inhomogeneous in space
(rejecting the current enhancement near the defect tips),
and all the currents are in the form of supercurrents, and
thus there is no voltage across the sample. When the
current is small the supercurrent distribution is approxi-
mated by a dipole distribution about the defect as in the
linearized problems. ' Because of the current enhance-
ment at the tip of the defect, the junction closest to the
defect will first reach its maximum current io=1.0. We
define i„ to be the applied current for which the super-
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FIG. 2. Supercurrent i /io in the vertical junctions in the cen-~ ~ ~

tral row vs distance r from the tip of the defect.

current in the most critical junction(s) (i.e., those carrying
the most supercurrent, which in this case are at each end
of the defect) reach to=1.0. As the external current is
increased above t„we find that this nonlinear system (un-
like the linear models) does not show any dissipation, but
rather the current is redistributed outward, away from
the defect by the formation of a vortex (or antivortex) at-
tached to each end of the defect. The formation of vor-
tices at each end of the defect is the result of the coher-
ence and nonlinearity present in this model. This feature
was absent in the linear model studied by Leath and
Tang and others. The physical consequence of the5 1 —3

vortex formation is that the vortex current tends to can-
cel the supercurrent in the junction closest to the defect
and add to the current in the junctions farther out. This
makes the current distribution near the defect more Aat
as current is shared with the farther neighbors. In Fig. 2
we show the supercurrent distribution versus position
away from the defect tip along the axis of the defect, both
below (where it approximates a I /r dipole distribution)
and above i„ for a 35X16 junction array with defect
length A = 10a, where a is the lattice spacing.

Once the pinned vortices are formed at the tips of the
defect, they will experience a Lorentz force F ~ J /L Vo c
perpendicular to the external current, where yo is the
vortex quantum, which is 2~ in this case, and J is the
external current density at the center of the vortices. '

Wh en the external current reaches i„ the Lorentz force
on the vortex equals the pinning force and the vortex
breaks free and starts to move under the inhuence of the
Lorentz force and thus, through d y/d ~, produces a volt-
age across the sample. Therefore, i, is the critical current
at which a voltage first appears. Of course, the vortex
and antivortex move away from each other in directions
perpendicular to the transport current. In Fig. 3 we plot
the magnitudes of the horizonta1 component of the super-
current versus lattice position at difterent times for junc-
tion arrays with periodic boundary conditions in the hor-
izontal direction. The length of the defect is 10a; the

5' =680 T =7$O

7 =790

7 =890

AIM

FIG. 3. (a) —(f) Snapshots of vortex movement in a 35 X 34 ar-
ray with a single linear defect (3 = lOa) at i &i, at diA'erent

times indicated by ~. Picture {f) is identical to {a)„and the
(a) —(f) process repeats indefinitely. The plot is of the super-
current in the horizontal bonds vs position in the array.

width is a (one lattice spacing). The graphs in Fig. 3
represent snapshots of a 35X34 array at different times
(in units of r) with external current I=0.50) i, =0.472.
One can see clearly the periodic creation and motion of
the vortices (because of the horizontal periodic boundary
condition, the vortex and antivortex actually annihilate
each other at the boundaries). In the present problem the
external current is kept steady, and therefore there are
constant creation and depinning of the moving vortices
with a period T, which determine the spacing between
moving vortices. The rate of phase change, dy/d~, mon-
itored here at a site in the top row of the array, pulses
periodically, corresponding to the periodic motion of the
vortices in the central row (see Fig. 4). That is, when a
defect is present the Josephson oscillations are created by
the motion of the vortex lines. Since the voltage is, by
definition, proportional to the time average of the phase
change over a period, it is inversely proportional to the
period T between pulses. %'e find that the period is iven

( -2 ~ 2 —I/2„(i —i,), similarly to Eq. (4), for t above
e perio is given

and sufficiently close to i, and where T~ depends on the
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size of the defect. Furthermore, as can be seen in Fig. 4,
the individual pulses have a shape that is reflective of the
structure of a passing vortex line. As indicated from the
numerical simulation, when the current is above and
close to the critical current i„ the core of the vortex is
just one lattice plaquette, and thus the moving vortices
produce a voltage drop only over each junction in the
central row. In Fig. 5 we show the region of the sample
(i.e., the central row} which carries a normal current and
hence a voltage when the current is just above i, . In Fig.
6 we plot the log of the critical current i, versus the log
of the defect size A for difFerent system sizes. A straight
line with slope of —

—,
' is also drawn. The physical origin

of the straight line will be discussed in the next para-
graph. One can see that the data points approach the
straight line as the defect size A becomes larger and
larger. The deviation for very large A is primarily due to
the boundaries of the sample since the data points ap-
proach the straight line as the sample size is increased. It
would be useful to see if this behavior persists to still
larger defects and samples, but 51X34 was the largest
sample we studied here. This behavior is important for
predicting the critical behavior of randomly disordered

l( I( l( I( I( l( l( l( I( l( I( I( I( l( I( l( l( l( l( l( l( l( l( I(

FIG. 5. Perfect 35 X 34 array with a single linear defect of
A =12a. The X's mark those bonds that carry a normal
current and that are transversed by the moving vortex lines for
current i just above i, .

FIG. 4. Phase y(r) vs time r [(b) and {d)]measured at a single site at the top center of a perfect array with a single vertical missing
bond (3 =2a) in the center of the array. The rate of change dp/dr vs time r I(a) and (c)]. Curves (a) and (b) are for a current i, just
above i„curves (c) and (d) are for a current i 2 & i &.
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arrays.
To obtain the scaling relation between i, and A (the

straight line in Fig. 6), we first estimate the pinning force
on the vortex due to the defect and antivortex at the oth-
er end. The interaction between vortex and antivortex
will be small when compared with the defect pinning en-
ergy if the defect is sufficiently long and, normally, can be
neglected. Although it is extremely difficult to calculate
the pinning force for a vortex outside a rectangular de-
fect, it is reasonable to assume that the pinning force is
more or less constant as the length of a long thin defect is
changed, while the shape of the end of the defect, near
which the vortex is bound, is kept constant. The current
enhancement at the tip of the defect, however, is very
sensitive to the change of defect length because the exter-
nal current must all Aow around the defect. For a long
defect, i, tends to zero and the Poisson equation can be
used to estimate the current enhancement at the defect
tip. The current at the tip is given by
i„=i t

I+(A/2d)'~ ] for A ))d, where i„ is the
external current at the boundary. Using the fact that at
i, the Lorentz force equals the pinning force, which is ap-
proximately a constant, we have

E, =i '=const/[I+( A /2d)'~ ] —A (5)

5X16
5X34
1X34

for 2 &)d. This scaling relation is the same as that of
the random fuse network problem. '

Rzchowski et aI. ' have demonstrated that the discrete
nature of a perfect Josephson-junction array is sufficient
to pin individual vortex lines in the interstices between
sites at low current densities i -0.1io. Thus, for arrays
with sufficiently long defects, corresponding to a vortex
depinning current density less than about 0. 1io, the de-
pinning vortex line would move outward away from the
defect tip until the enhanced local current density falls
below the perfect array pinning current density i', at
which point the vortex would pin again in an interstitial

position of that perfect portion of the lattice. We would
not see this phenomenon in our simulations here since,
according to Fig. 6, we would have had to study defects
of size A /a -200 for i, to fall below O. lio. It would be
very interesting to study this phenomenon. The impor-
tant question, relating to whether Eq. (5) is the proper
asymptotic form of i, for discrete Josephson-junction ar-
rays, is what happens next when a vortex line depins
from a defect and subsequently is pinned again by the
perfect lattice. Would the successive vortices released by
the defect pile up behind this first vortex which has been
pinned by the perfect lattice? And, assuming so, would
this line of vortices extending away from the defect tip
act as an extended defect deAecting excess current out to
the end of that line of vortices, thereby depinning that
last vortex to move still farther out until a path is blazed
across the sample? And how will this perfect lattice pin-
ning acct the asymptotic form of Eq. (5)7 Of course,
this effect will not occur in continuous superconductors,
but it would be very interesting to pursue the single de-
fect critical current to very large values of 3 in discrete
arrays, to a few hundred lattice spacings, to test this re-
gime.

When the external current is increased further, we ob-
serve that the I Vcurve j-umps abruptly again at i,3 (see
Fig. 7). This abrupt jump in the I Vcurv-e is simply due
to the creation and motion of additional vortices in the
adjacent rows. Thus, as illustrated in Fig. 8, the adjacent
rows of junctions immediately below and above the cen-
tral row develop voltages. These additional vortices are
seen, in Fig. 9, near the ends of the defect at different
times (in unit of r) and at i =0.7065)i,3=0 7045 o. n a
35 X 16 array. The junctions in the central row near the
defect carried the most current, and hence the central
row was the first to develop voltages (or break down).
The next most critical junctions lie immediately above
and below in the adjacent rows, and hence the creation of
additional vortices here cause these rows to break down
next. So, at current i,3, the vortices in the adjacent rows
begin to move and produce additional voltages in the

&c &0
LD

10 10 10

FIG. 6. Critical current i, /io is plotted vs linear defect size
A /a. The data points are from numerical calculations, and the
solid line has a slope of —2. The linear defect in the center of
each rectangular sample was aligned parallel to the long axis
and perpendicular to the external applied current.

C)
O

0,4 0.5 0.6 0.7 0.8 0.9

FIG. 7. I-V curve of a perfect array with a single defect of
length A =10a.
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FIG. 8. Perfect 35X34 array with a single defect of length
3 =12a. The X's mark those bonds that carry a normal
current and that are transversed by moving vortex lines for
current i just above i,3.

FIG. 10. Rate of change of the phase dy/d~ vs time ~ for a
perfect array with a single missing bond (3 =2a), for current E

just above i,3. The chaotic appearing phase corresponds to the
time when there are moving vortices, not only in the central
row, but also in the adjacent rows.

V = 2963 & = 2967

sample. In the cases where the vortices are formed and
depinned at diferent frequencies in the three rows, we
find that dye/d~, monitored at the top of the system, will
have a diA'erent and complicated oscillating pattern at
each diA'erent external current i. At i very close to ig3,

de/d~ will have a oscillating pattern which switches in-
termmitently in time; i.e., a plot of dg/dw shows a train
of periodic oscillations which is disrupted by chaotic ap-

pearing intervals as is shown in Fig. 10. Such oscillating
patterns occur because the periodic oscillations due to
the vortex motion in the central row are superimposed
with the oscillations from the vortex motion in the adja-
cent rows. The fact that the bursts appear to be chaotic
instead of periodic is due to the interaction between the
vortices in diA'erent rows. As the external current i is in-
creased further, the periods of the vortex motion in the
adjacent rows become shorter. The oscillating patterns at
larger values of current i are periodic if T, /T2 is a simple
rational number, quasiperiodic if T& /T2 is close to a sim-
ple rational number, and chaotic otherwise, where T,
and T2 are the periods of vortex motion in the central
and adjacent rows, respectively. Presumably, there are
similar and smaller jumps in the I-V curve as additional
rows produce vortices and voltage drops, but we could
not resolve these features, although we did observe at
higher currents that additional rows develop voltages be-
fore the whole system breaks down.

= 2968
7 = 2970

FIG. 9. Snapshots oI vortex movement in a 35X34 array
with a single linear defect (3 =10a) at i )i,3 when vortices ap-
pear the central row and adjacent rows. The plot is of the su-
percurrent in the horizontal bonds vs position in the array.

B. Funnel Qefegtg

Next, we studied the funnel defect as shown in Fig. 11.
This defect has been proposed as a critical defect in the
fuse network breakdown problem. ' This defect is
shaped cleverly to funnel large currents through the cen-
tral neck and therefore to cause the neck to break down
at lower external currents. Our initial interest here was
to see if we could make the neck region become normal
(by the production and annihilation of vortex-antivortex
pairs in this region). If this were possible, the signature
would be Josephson oscillations or pulses in dy/d~ vs ~,
similar to those shown in Fig. 12, having ( d p/dr ) =0 or
zero average voltage (since there would still be a super-
conducting path across the sample). In fact, this
phenomenon does not happen because of the nonlinearity
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FIG. 11. Perfect 34X51 array with a funnel defect of size
A =10a.

except when forced by boundary conditions (as shall be
discussed later). At lower external current the linear
model is correct, the funnel works, and current enhance-
ments produce an incipient vortex-antivortex pair at the
inner central points of the funnel as can be seen in Fig.
13(a). But as the external current is increased, the
current enhancement on the central points in the neck
saturates, near the critical value at which the central vor-
tices would depin, and all additional current is diverted
around the entire funnel until the vortices on the external
corners become critical [see Fig. 13(b)], and finally both
the interior and exterior vortices depin simultaneously in
one grand symphony of vortex motion. In the snapshots
of Fig. 14 one can see the internal vortices repeatedly de-
pinning, annihilating, and regrowing, while the four

0.05—

external vortices are behaving similarly, as a result of the
periodic boundary conditions in the horizontal direction.
Thus, at the critical current i„ the voltage (vortex path)
appears across the bonds in five locations simultaneously,
as is shown in Fig. 15(a). We were able to resolve another
transition at a higher current i,3 to the state shown in
Fig. 15(b), where parades of vortex lines are marching
across the bonds indicated, which carry the sample volt-
age. This behavior, where the breakdown in the neck is
held back, by nonlinearity, until there are vortex paths
across the entire sample, is obvious in retrospect, but fun-
damentally very unlike the local breakdown seen in linear
problems. We shall call this phenomenon global break-
down. Clearly, if the neck of the funnel were to become
normal before the region on the outside of the funnel,
then the outside region would be a superconducting short
and all the current would go that route, which would
cause the neck to become subcritical and superconduct-
ing again. There may be circumstances or models where
this situation would cause oscillations in the current be-
tween the interior and exterior regions, but at least in this
RSJ-junction model, as the external current increases, the
interior neck region simply approaches criticality, a form
of self-organized criticality, and waits with the vortices
about to depin, while all the increasing excess current is
detoured around the outside until a critical path of vor-
tices across the sample can break loose at once. Finally,
we attempted to measure the dependence of the critical
current i, on the size of the funnel defect. The numerical
results for i, vs 2(A/a) are shown in Fig. 16, where
(A/a) is the number of columns with missing vertical
bonds on one side of the funnel. For example, the defect
shown in Fig. 15 has 3 =4a, or four columns have miss-
ing bonds on one sides of the funnel, and so 2( A /a) =8
columns counting both sides of the funnel. The straight
line has a slope of —

—,', showing that Fig. 16 is not incom-
patible with Eq. (5), although it is also not incompatible
with a slope of —1. It was not possible at this time for us
to carry out calculations on larger systems than 25X25,
and so this result is not definitive, for the value o, of the
slope.

IV. RANDOMLY DISORDERED ARRAYS

-0.05—

20 40 60 80 100

FICs. 12. Example of a plot of dy/d~ vs ~ which shows
Josephson oscillations, or pulses, but with (after relaxation on
initial conditions) zero average voltage. This curve was pro-
duced for the case illustrated later on in Fig. 22.

In this section we shall consider an ensemble of ran-
domly diluted arrays of RSJ junctions. In this model
each bond in a perfect square lattice is occupied with
probability p, above the percolation threshold p, (i.e.,
p, (p (1.0), by RSJ junctions. All junctions are identi-
cal. The remaining fraction (1—p) bonds are missing.
All samples reported in this section were 25X25 at the
concentration p =0.90 occupied bonds. A typical,
computer-generated, randomly diluted array is shown in
Fig. 17. Next, we apply a uniform external current i"'
into the top nodes of the array and out of the nodes at the
bottom, and the dynamical equation (3) is solved numeri-
cally. In each case, for current below the critical current
i'"'(i„we find current enhancements (incipient vortex
lines) pinned to each random defect in the array. Thus as
can be seen in Fig. 18, we see an entire forest of incipient
vortex lines, regardless whether we plot the supercurrent
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(b)

CD

CD

FIG. 13. Snapshots of the supercurrent in the horizontal bonds for smaH i (i, in a 25X25 perfect array with a modest-sized
{3 = Sa) funnel defect. Curve (a) is for i =0.01, curve (b) is for i =0.5, and i, =0.565. These curves are constant in time 7..

in each horizontal bond [Fig. 18(b)] (as we did in the sin-
gle defect cases of Sec. III above) or whether we plot the
net current around each nearest-neighbor square or pla-
quette [Fig. 18(a)]. As the current i is increased and
reaches the critical current i„vortex and antivortex lines
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FIG. 14. Snapshots of the supercurrent in the horizontal
bonds in a 25 X 25 perfect array with an A =Sa funnel defect for
various times 7., at current i =0.60, just above i, =0.565.

FIG. 15. For the 2 = Sa funnel defect in a perfect 25 X25 ar-
ray, the X's mark the paths of the moving vortex lines, or the
bonds with normal current, for {a) current i just above i, and {b)
current i just above a higher transition current i,3.
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T = 110 & =CO 7 =355 7 =380

T =390 T =405 'T =430

Il~-—

T =450 & =490 'T =510

FIG-. 19. Snapshots of the normal current in the horizontal bonds vs position in the 25 X25 array of Fig. 17 at p =0.90, for i )i„
for various times ~.

FICx. 20. Approximated path of the vortices or breakdown
path for i )i, in the 25X25 array of Fig. 17. The solid square
in the third column marks the point of the first vortex motion
which spreads across the sample in an irregular manner.

and starts with great variations or noise in the magnitude
of the normal current at any given time. This feature
gave rise to very irregular voltage or (d p/d ~) versus time
curves as monitored at a single site. A typical example of
dred/dw vs ~ for a randomly diluted array at p=0. 9 is
shown in Fig. 21. These irregular curves should appear
in real experiments as noise, rather than the periodic sig-
nals with well-defined frequencies, as are produced by
vortices in perfect systems with a single defect, for exam-
ple. It would be interesting and important to study the
frequency dependence of this noise and its variation with
the applied current. These calculations and the previous
ones above for the funnel defect make clear the impor-
tance of global breakdown in randomly disordered super-
conductors as opposed to the local breakdown that
occurs in fuse networks or other linear systems. Because
of the nonlinearity, the most critical defect does not sim-
ply break down first, but instead waits in a state of criti-
cality for a higher external current i when there can be a
breakdown path entirely across the sample. That is, as
the external current is increased, one region of the sample
after another goes critical or nearly critical (critical here
means simply that vortices are ready or nearly ready to
depin from their adjacent defects), the excess current (as
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the external current is increased further) then avoids
these critical regions as long as possible until the critical
regions percolate across the sample at which point they
can no longer be avoided by the current, and breakdown
occurs with a voltage appearing in a path (the percolating
cluster) across the entire sample. At first thought one
might think that this nonlinear breakdown would funda-
mentally change the statistics of breakdown. In the
linear problem the theory of breakdown is based upon the
statistics of extremes. That is, the largest (or most criti-
cal) local defect or cluster of defects nucleates the crack
or local breakdown, which proceeds to fracture or spread
across the network due to the current enhancement (or
stress enhancement) at the edge of the crack. Thus the
process is dominated by the probability of the occurrence
of a local critical defect. In the case of the RSJ array, the
critical defect is held back by nonlinearity from becoming
normal until a complete or global vortex trail or path
across the sample can be blazed through the percolating
critical regions. But, perhaps, this picture underplays the
still-pivotal role played locally by the most critical defect
or cluster of defects.

Consider for a moment the low concentration
[(1—p)~0] limit. Here, clearly, one can still consider
single defects (of missing junctions) just as in the linear
problems. Indeed, the critical current behavior with a
single large defect (see Fig. 6) still is seen to decay as a
power of the defect size. And clearly the Liftshitz argu-
ments used previously in the linear cases still apply. That
is, the probability of occurrence of a large cluster of de-
fects decays exponentially with cluster size. Thus, at
least at low concentration of defects, one still obtains the
previous logarithmic vanishing of the breakdown
current i, in the thermodynamic limit, i.e.,

characteristic modified Gumbel form to the critical
current distribution in an ensemble of random samples.
But as the concentration of missing junctions (1 —p) in-
creases, we need to consider the eFect of the nonlinear
interactions between defects or clusters of defects.
Despite the fact that the vortex path must percolate en-
tirely across the sample, this percolation seems to happen
rapidly, once the largest defect has gone critical, and
thereby blocks a large region of the sample from carrying
any additional current. The excess current is diverted
away to the regions to each side of the critical defect, and
this feature seems to quite rapidly cause them to saturate
or become critical so that the dominant determinant of
the breakdown still seems to be the most critical defect or
cluster of defects which nucleate the global spreading of
the criticality. Thus the statistics of extremes should still
apply. This, which we have tested numerically, is dis-
cussed below. Indeed, for linear breakdown problems in
most of the numerical simulations in the literature (note
especially Fig. 8 and the related discussion in Duxbury,
Leath, and Beale ), the current i, at which the the first
bond breaks, and the current ib, at which the entire net-
work breaks, seem to scale in the same manner. And,
moreover, for very large samples, the network breaks
very close to the breaking of the erst few bonds. In the
RSJ-junction array case here, what seems to be happen-
ing is that i, is simply pushed up to i, (analgous to L'b).

That is, although the first defect to reach the critical
status locally cannot go normal until i, is reached, never-
theless, for large samples, global breakdown seems to fol-
low very closely to the criticality of the first most critical
defect region. The picture that emerges here may have
substantial experimental consequence in experiments on
real granular (or other disordered) superconducting thin
films with a dc bias voltage applied. In particular, near
the critical current I,„there may be large regions of the
sample in a critical state, where the vortex lines in these
regions are just about to depin from their associated de-
fects.

i, ~1/[1+IC(lnl. ) ],
where K is a defect concentration-dependent constant
and the power a is a constant of order 1. Similarly, as
shall be described below, the statistics of extremes gives a

FIG. 21. Typical plot of dy/d~ vs r for i just above i, in a 25 X 25 random array at p =0.90.



9630 P. L. LEATH AND W. XIA

Thus, for example, if superconducting samples in the
state of criticality were stimulated by some external
source, such as laser light or microwave radiation, one
would expect an anomalously large depinning of vortex
lines and, hence, voltage and noise and other responses in
the system. In particular, the motion of these vortices in
disordered systems is extremely noisy, and this may be an
explanation for the anomalously large amount of noise
seen experimentally in some dc-biased Josephson-
junction systems and for the anomalous photoresponse
seen in granular superconducting thin films. '

Before giving our statistical data, there is one impor-
tant aside to be discussed. In Fig. 12 we show a curve of
dy/dr vs r which shows Josephson oscillations but zero
average voltage (after the transient from the initial condi-
tions disappears). This curve and a number of similar
ones were actually seen in the data for randomly diluted
arrays for a few configurations of defects that occurred
randomly within the ensemble. In each such case of os-
cillations with zero average voltage, a map of the loca-
tions of these oscillations (locally produced and annihilat-
ed vortex-antivortex pairs) showed that the oscillations
were occurring at the top or bottom edges of the sample
(there are periodic boundary conditions on the sides). A
typical snapshot of the behavior is shown in Fig. 22. This
behavior was being forced by our boundary conditions,
which require equal current into (or out of) each node at
the top (or bottom) of the sample. And in a few cases this
boundary-imposed current could only be carried, as a re-
sult of the local configuration of missing bonds, by pass-
ing through a local funnel-shaped region, which then had
to become normal. Therefore, so as not to systematically
bias the data, we attached bus bars (three perfect rows of
junctions) to the top and bottom of each otherwise ran-
domly diluted array in the ensemble. This change of
boundary conditions eliminated all oscillations with zero

average voltage.
We then proceeded to measure the critical current i,

for an ensemble of 800 randomly diluted arrays which
were 25 X 25 (plus the perfect 3 X 25 bus bars at top and
bottom) at p=0. 90. The resulting failure distributions
F(i) (the probability that a sample has a critical current
i, (i) gives the usual S-shaped curve shown in Fig. 23. It
would have been nice to have demonstrated directly the
logarithmic vanishing [Eq. (6)] of (i, ) in the thermo-
dynamic limit of I.—+ ~, but the available computer time
limited the sample size so that the required several orders
of magnitude in sample size L (or even a few) could not
be investigated. The alternative is to consider the shape
of the failure distribution F(i) and compare it with the
various predictions from the statistics of extremes. There
are basically two fixed points in the form of F(i), which
are discussed by Duxbury, Beale, and Leath and origi-
nally by Gumbel. The first is what we shall call the
modified Gumbel (MG) distribution

FMo(i) = 1 —exp I
—CL exp[ —(k ji )' jI, (7)

F~(i) =1—exp( cL i ), — (8)

where c and the exponent m are constants, and where d is
the dimension of the system (d=2 here). This Weibull
form (8) has been used widely in engineering applications
for years and, especially for large m, is difficult to dis-
tinguish from the modified Gumbel form (7) except in the
toe (small-i) region. In order to fairly distinguish between
the two curves from our data in Fig. 23, we calculate the
quantity

where C and k are constants that are determined by de-
tails of the vortex depinning process, where d is the di-
mension of the system (d =2 in this case) and where a is
the exponent that would apply (as in Fig. 6) for the criti-
cal defect of defect clusters. This general form was found
to fit a wide variety of applications to breakdown of
linear systems. ' ' It arises whenever the extreme event,
the existence of the critical defect or cluster of defects,
has an exponentially small probability with increasing de-
fect or cluster size. The second fixed point function is
given by the Weibull (W) distribution

O

CO

C)

FIG. 22. Snapshot of the normal current in horizontal bonds
corresponding to the case in Fig. 11 where there are Josephson
oscillations but no average voltage. The vortex creation,
motion, and annihilation are confined to the region shown at the
top of the sample. Such cases were eliminated by adding bus
bars to the samples.
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FIG. 23. Failure distribution F(i) vs i for the ensemble of
800 random 25 X25 arrays at p =0.90.



VORTICES AND CRITICAL CURRENT IN DISORDERED. . . 9631

Actually, since o. is of order of 1 and since we have data
only over a relative small range of i, we cannot
definitively determine a. For simplicity and because it
seems to fit the data best, we shall assume o.=1 for our
purposes here. The resulting plots of A (i) vs i are shown
in Fig. 24. In Fig. 24(a) we show A (i) vs i as a test of
the modified Gumbel distribution (10), whereas in Fig.
24(b) we show A (i) vs lni as a test of the Weibull distri-
bution (11). Any deviation would be expected only on the
low-i (high-i ') end. The results suggest that the
modified Gumbel distribution fits best, although these re-
sults are not as clear as those obtained previously for
50X50 fuse networks. It will take calculations on sam-
ples larger than 25 X 25 to give definitive results here.

It is obvious, but perhaps worth noting, that the nature
of the vortex breakdown path that occurs varies consider-
ably as one goes from the toe (the bottom) of the S-
shaped curve of F(i) in Fig. 23 to the shoulder (the top)
of the curve. Those random samples which have low crit-
ical current i, [a typical sample with t, =0.38 is shown in

Fig. 25(a)] tend to have strategically placed vacancies
across the sample so that only a few junctions need be-
come normal at ~'„and the vortex path tends to be a rath-
er straight line across the sample. For samples in the
middle of the curve [a typical sample with i, =0.56 is
shown in Fig. 25(b)] more junctions become normal at i,
and the vortex paths are more tortuous. Finally, for sam-
ples in the shoulder of the curve [a typical sample with

i, =0.64 is shown in Fig. 25(c)], there are many junctions
which must become normal for the transition to occur
and the path is quite tortuous and, perhaps, even fractal.
Although this fact seems obvious, it does not seem to
have been noted before (despite the fact that similar pro-
cess must occur in the failure distribution of virtually all
breakdown problems).

Finally, we have studied the average I-V characteris-
tics for an ensemble of 400 randomly diluted arrays of
25X25 junctions at p=0. 90. In Fig. 26(a) we plot the
average voltage ( V) for the ensemble versus applied
current i (solid circles) and the root-mean-square voltage

O
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2.3
1 1

1.4 1.7 2.0 2.9 3.2

CV—

0
~ W
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0.35 0.950.75

-ln i
0.55

FICs. 24. Plot of A (i), as given by Eq. (9), vs 1/i [curve (a)]
which is a test of the modified Gumbel distribution [Eq. (10)],
and A (i) vs lni [curve (b)] which is a test of the Weibull distri-
bution [Eq. (11)].

A (i) = —lnt —in[1 F(i)]/L—d]

From Eqs. (7) and (g), we thus obtain

AMo(i) =(k/i )'~ —lnC (10)

A z,(i ) = —m 1ni —inc .
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FIG. 25. Typical vortex breakdown paths for i just above i, on random 25 X25 arrays, at p =0.90. Sample (a) had i, =0.38, sam-

ple (b) had i, =0.56, and sample (c) had i, =0.64.
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V, , vs i (open circles). As has previously been dis-
cussed, many experimental voltage-current measure-
ments and calculations" in granular superconductors
have been modeled over the years. These authors have
reported a voltage-current relation just above a critical
value i&, &, which behaves according to the empirical for-
mula

V/I cc(i i(, ) )—', (12)

V. CONCLUSIVE

where i &, ) is the critical current for the ensemble and
where, in two dimensions, x approaches 3.0 as T~T, .
Our calculations here correspond to T=O in the RSJ-
junction array. Nevertheless, we considered the data for
( V) in Fig. 26(a) and treated i(, ) as a parameter, vary-
ing it to get the best straight line for lnV vs ln(i i(„)).—
The result shown in Fig. 26(b) nicely fits a straight line
corresponding to x =3.1+0.1. The slope of the straight
line in Fig. 26(b) is 3.1. This result is consistent with that
from the linearized model.

Finally, there is the question of whether, in the ther-
modynamic limit, in two-dimensional arrays with dilute
randomness, there is still a finite-temperature Kosterlitz-
Thouless phase transition. The result seems to show that
there clearly is, since the exponent x above is clearly
bigger than one. That is, in the thermodynamic limit
where i, —+0, the linear resistivity is also zero; hence the
material may still be considered to be superconducting.
That is, when a voltage erst appears, it is only in a very
small number of regions of the sample, and hence the
voltage density or average electric field across the sample
is negligible.
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FIG. 26. (a) I-Vcurve for the average voltage ( V) (solid cir-
cles) and for the standard deviation of the voltage. V„, (open
circles) for an ensemble of 400 arrays (25X25) at p=0. 90. (b)
Logarithmic plot of ( V) vs ln(i —i&, ),)wherei(, ) is treated as
a parameter to get the best straight-line fit to the data. The
straight line has a slope of x =3.1 for i &, &

=0.40.

We have numerically studied the onset of voltage at
the critical current in disordered arrays of resistively
shunted Josephson junctions at zero magnetic field and
zero temperature. The breakdown of the coherent super-
conducting state at i, is difFerent in several fundamental
ways from that of the linear systems previously studied,
systems such as fuse network breakdown, brittle fracture,
dielectric breakdown, and onset of critical current in
linearized superconducting models. First, the breakdown
here is seen to be caused by vortex line depinning from
the defects in the sample. This process occurs spontane-
ously and naturally in the solutions of the dynamic RSJ-
junctio~ equations. In addition, for the case of single
large defects, we observed a series of transitions as the
sample broke down rom by row with parades of vortex
lines crossing those rows with voltage. Second, a
confined region of the sample does not go normal until a
spanning region or vortex breakdown path can occur
across the entire sample. Finally, despite the nonlineari-

ties, the statistics of the failure rate of the RSJ-junction
arrays appears to be remarkably similar to that of the
linear models. In particular, we predict that the critical
current in disordered superconducting systems will go to
zero logarithmically in the thermodynamic limit.
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