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Fluctuation conductivity of layered high-T, superconductors:
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The theory of fluctuation conductivity in two-dimensional clean superconductors is expanded over a
wider range of temperatures with respect to the conventional Aslamazov-Larkin theory. The results of
this modified theory are discussed in relation to recent experiments on the paraconductivity of Ba-Sr-

Ca-Cu-O compounds.

I. INTRODUCTION

In a number of recent experimental papers,' > the ex-
cess conductivity of high-T, superconductors has been
experimentally studied. It is worth mentioning that the
theory of fluctuation conductivity is anisotropic struc-
tures was developed a rather long time ago,® ® but now
some new features, especially in high-7, superconduc-
tors, appeared in the experiments, and they deserve more
discussion and some additional theoretical consideration,
which we propose in this article.

We shall restrict ourselves here to the discussion of
two-dimensional fluctuation behavior found in Ba-Sr-Ca-
Cu-O and related compounds, and we shall extend over a
wider range of temperatures the region of applicability of
the previous theory of fluctuation conductivity for clean
superconductors.

We will especially concentrate our attention on the
analysis of recent experiments where the excess conduc-
tivity of 85- and 110-K phases of Ba-Sr-Ca-Cu-O was
studied in a sufficiently wide range of temperatures.*>
The authors succeeded in interpreting the obtained re-
sults in the framework of the Aslamazov-Larkin theory
of paraconductivity® in the range of temperatures
—4SIn[(T—T,)/T,)]< —2. In this range the excess
part of the conductivity, extracted from the experiments,
og, was described by the formula
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where a is the interlayer distance and » =0.9%0.1, in
good agreement with the appropriate theoretical expres-
sion n =1. The agreement between theory and experi-
ments in the temperature range considered allows one to
conclude some facts and to formulate some hypotheses.
(1) The fluctuation term, in the vicinity of T, does not
include the anomalous Maki-Thompson term (which in
quasi-two-dimensional dirty superconductors, in the ab-
sence of pair breaking, must be dominant). This fact sug-
gests two possible circumstances. The first is the pres-
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ence of some pair-breaking sources, for example, local-
ized magnetic moments of Cu?" ions or even thermal
phonons, the density of which at temperatures
T~T.,~100 K is sufficiently high. The second is the
possibility of the absence of any Maki-Thompson contri-
bution. Indeed, as is well known,’ the Maki-Thompson
term is tightly connected with the coherent scattering of
electrons involved in fluctuation pairing on impurities.
This is why this contribution is characteristic of dirty su-
perconductors (§,>>1) only. The value of &, for high-T,
superconductors is estimated to be extremely small:
£y=10 A. The value of the mean free path for high-
quality samples may be estimated by the extrapolation of
the normal conductivity at zero temperature: it gives
[(0)=70-90 A, so that it is reasonable to assume ! X &,
implying that these superconductors have to be treated as
clean systems.

(2) If we assume that the movement of the electrons in
high-T, Ba-Sr-Ca-Cu-O compounds has a quasi-two-
dimensional character and that the Fermi surface has the
form of a modulated cylinder (Fig. 1), we have

§(p)=sp——ep=v0(|pu|—pOH-w cos(p,a), (2)

where v, is the Fermi velocity in the layers, a is the inter-
layer distance, and w is the hopping integral which has
the sense of a probability of electron hopping between
layers. Then, in the considered range of temperatures,
the coherence length in the direction perpendicular to the
layers, &(T)~v,/\V/'T AT —T,)~wa/V/T.T—T,),
remains less than a and the fluctuative Cooper pairs are
moving in the layers only. This justifies that the tempera-
ture dependence of fluctuation conductivity follows the
two-dimensional law® oy ~T, /(T —T,).

It is clear that, approaching 7., &,(7) will become
larger than a and in fluctuative pairing electrons of
different layers are involved, so that the picture starts to
be three dimensional. From the expression for & (7), it is
easy to see that this crossover between two- and three-

dimensional regimes takes place at a temperature
T,~T,+w?/T,.
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FIG. 1.
ductor.

Model of the Fermi surface for a layered supercon-

But in the experiment under discussion,*> a good two-
dimensional behavior was observed in a wide range of
temperatures, and only for In[(T —T7,)/T,]< —4 [ie.,
(T —T,.)<2 K] did the temperature dependence of o4 be-
gin to deviate from the two-dimensional law. Unfor-
tunately, on the basis of experimental results, it is difficult
to consider that this deviation is directly connected with
the passage to a three-dimensional regime (where
oq=[T./(T —T,.)]'"? since close to T, the sample inho-
mogeneities and the precise choice of the mean-field tran-
sition temperatures 7T, could influence the results. So we
can only estimate the upper limit for the crossover tem-
perature in Ba-Sr-Ca-Cu-O to be 7T,—7,52 K, and
hence _for the hopping integral w one can find

w=~V'T.(T.,—T,)S12 K. Taking into account that
al/a”f(vl/vu) ~(wa /v,)% one can estimate from the
above consideration that o,/0$2.5X10" * in good
agreement with direct measurements.

(3) It seems in any case interesting to study the oppo-
site region of the experimental curve, i.e., the range of
“high” temperatures, In[(T —7,.)/T,]= —2, where the
Aslamazov-Larkin approach begins to break down. For
dirty layered superconductors this question was discussed
previously.’

The scope of the present paper is to discuss this high-
temperature region in the clean case.
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FIG. 2. Diagrams of the operators of the electromagnetic
response in the first order of the perturbation theory.

II. FLUCTUATION CONDUCTIVITY
OF A CLEAN SUPERCONDUCTOR
AT ARBITRARY TEMPERATURES

Having in mind the description of the behavior of the
excess conductivity of a superconductor in the intermedi-
ate range of temperatures, we shall discuss the usual dia-
grams for the operator of electromagnetic response which
determines the fluctuation conductivity in the first order
of perturbation theory (sec Fig. 2). Since we discuss now
the case of clean superconductors, we shall not accom-
plish the averaging of these diagrams over the positions
of scattering centers. But, on the other hand, in the case
under discussion of arbitrary temperatures, we cannot re-
strict our consideration to the most singular terms in
1/e=In"'T /T, only, as is usually done in the vicinity of
T, (when € <<1).!° This means that we have to take into
consideration all boson frequencies {2, and moments q in
the fluctuation propagators L (q,{;) (the wavy lines in
Fig. 2). There are no reasons now to omit the first three
diagrams of Fig. 2 either. Usually, they give a less singu-
lar contribution in comparison with the Aslamazov-
Larkin paraconductive contribution (the fourth diagram
of Fig. 2), but now, since € may not be small, their contri-
butions have to be taken into account.!!

In contrast to the Aslamazov-Larkin consideration of
paraconductive contribution,® the frequency and momen-
tum dependence of the Green-function blocks in the
fourth diagram of Fig. 2 have to be taken into account (as
was done previously for the dirty case’). All these cir-
cumstances make the calculations more complicated. As
an example, the first diagram may be written as

[ =e? Tgf o )d Xp,e,)G(q—p,Q; —€,)G(p,e, —w,) , 3)
where =27T(n+1), Q,=27Tk (n,k=0,%£1,%£2,...) are fermion and boson Matsubara frequencies,
G (p,e,)=[ie, —&(p)] ! is the one-electron Green function of a normal metal, d =dimensionality of the electron spec-

trum, and w,=27Tv (v=0,1,2,. .

.) is the boson frequency of the external electromagnetic field. The function
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1 1
L(q,Q,)=—— 4)
b (T /T )+ (1 + Q| /4nT +[76(3) /87 T? [ (v-q)?) | — (1)

denotes the fluctuation propagator of a clean metal at temperatures above T, (here p is the density of states, { ) means
the averaging over the Fermi surface, ¥(x) is the digamma function, and £(3)=1.202 is the Riemann zeta function of
argument (3).

There are no major problems in calculating expression (3) with nonzero Q; and vg = 7. In accordance with the argu-
ment presented in the Introduction, we shall now restrict ourselves to the two-dimensional case (d =2) only. Trans-
forming the integral over p to one over £(p) and accomplishing the integration for four nontrivial poles in the complex
plane, one can turn out the summation over €, and then, after the analytical continuation over the external frequency
i®w,—w, find for the contribution from the first two diagrams in frequency-dependent fluctuation conductivity:

(1 2)
= fw dq f “dQ coth == |ImL*®(q,—iQ)
8w T
1 iw i) 1 i) 1 o i 1 o) i
X — —_—— Y|t [+ | = +y¢ | =——
¥ 47T 4nT ¥ 47T v 2 4xT 4nT ¥ 2 2wT + 47T
1 iQ iw iQ iw 1 iQ 1 iw iQ
—2¢ |=—— —2¢ | —— — =+ - | = 5
¥ 2  4nT ¥ 2 4nT 4nT 27T ¥ 2  4nT v 2 47T + 47T 5)

where o, =1e®v 2p7 is two-dimensional normal conductivity and the meaning of  is obvious.

The calculation of the third diagram is even more troublesome, but one can evaluate it too. The so-called anomalous
Maki-Thompson contribution in the case under discussion of a clean superconductor naturally does even not appear,
and so the final result for the frequency-dependent contribution in the fluctuation conductivity from the third diagram

(3)
oq
= d dQ coth ImLR(g,—iQ
-, 0)37_ fo qf co mL (g, —iQ)
1 o iQ 1 iQ 1 iw iQ 1 iQ
X —+ —Y | =+ +Y | =—— + —Y | =
¥ 47T 4nT 4 2  4nT v 2 4nT 4nT ¥ 2  4nT
l iw iQ 1 iQ 1 iQ 1 iw iQ
- | =t —— —— +¢Y | =— -y | 6
v 2 47TT 47T Y 2 47T ¥ 2 4nT v 2 47T 4nT (©)

From expressions (5) and (6), it is easy to see that in the limit ®—0 the total contribution of the first three diagrams
goes to zero as w. Hence, for the direct current conductivity o4(0), we have to take into account the last, fourth dia-
gram of Fig. 2 only, which determines the paraconductivity contribution (04=04"). The appropriate explicit analytical
expression for it may be written in the form

Off = —2¢ 2T2f

2 )d L(q,9;)L(q,Q; +o,)Bl(q,Q;,0,) , 7

where the Green-function blocks (see Fig. 3) are of the form

B,(q,Q,0, TEf v”G p,€, +,)G (p,€,)G(q—Pp,Q —€,) , (8)

and v, =9e(p)/dp;. Having in mind the application of the present theory to layered superconductors [see Eq. (2)] we
write in (7) the longitudinal (in layer) part of Q4% (w,) only.

The paraconductivity contribution in the frequency-dependent conductivity of dirty layered superconductors was
carefully studied,” and it is well known to what consequences the quasi-two-dimensionality of electron spectrum leads.
One of them is the appearance of a crossover between two- and three-dimensional behavior of the fluctuation conduc-
tivity at a temperature T, —T.=~7w?2 It is not difficult to see how in the clean case the crossover point may be ob-
tained by substituting 7 with 1/7,. In fact, in the clean case, T,, — T, ~w?/T.,.

As already discussed in the Introduction, here we are interested in the region of temperatures where a two-
dimensional behavior of fluctuations takes place, especially for € $1. This is why, for the purpose of simplifying the cal-
culations, we shall assume the character of the electron motion to be two dimensional:

dq, m/a 1
f f f ’ f - 277)2afd2‘1~

—m/a
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Then we have that B=(B-q)q /qﬁ and
d
(Byq))= —PTEI (v qu)d‘Pf — - g ©

E—ile, T, )(E—ie, )~V q—i(Qx—¢,)]

where p=(1/a)(m /2m) is the density of states in the case under discussion. The integral over d£ may be calculated.
The result is

I—ﬁ Q(En +v(en +V~Qk +v))sgn6n+v G(en(en—ﬂk))sgne,, (10)
o, 2i€, 1, —iQy 1,V q 2ie, —iQ —vq, ?

where 0, =27Tv (v=1,2,. . .). Substituting this expression into (9), one can find

(B”.q“):%ﬁ—zfoﬂvoq”cosgod(p[ew,ﬂk +,)— (@, Q)] , (11)

where

+o  O(e,(€, —Qy))sgne,
O(p, Q)= 3

n=—o

2ie, —iQy —v g cosp

Accomplishing the integration over ¢ in (11) and then the summation over n, one can find the discouraging result that
(B,-q;)=0 for any w,70.

The case w, =0 needs a special consideration. Accomplishing the integration over £ in this case (where only two non-
trivial positions of the poles may take place), one obtains

. vogq cosgde
[B,(q,Q,0,=0)-q]=2ipTY 0(¢,(c, —Q;))sgne i -
! ! e " "fO (2€, —Q, +1v0choscp)2
_ vigip t 1

) (12)
16m°T? Sy [(n+14|Q, | /4nT) +viq] /(4T )* P/

In the simplest case, (1, =0 and g, =0, which was adopted by Aslamazov and Larkin in the vicinity of T.,° the expres-
sion (12) immediately reproduces their old result for B,. Hence, finally, for the Green-function block B,asa function of
the external frequency w,, one obtains the nontrivial result

v(z)qu 2+m 1 . =0
B,(q)Qp,0,)= | 16772 <"~ [(n +14|Q,[/4n T +viqt /4aT V27 ’ (13)
0, ,70.

Unfortunately, it is impossible to accomplish directly the analytical continuation of such a function from the set of
Matsubara frequencies o, in the upper half-plane of the complex variable © (0= —iw,).'* But if we assume that such
an analytical continuation BR(q,Q,w) exists, the sum over {1, in (7) may be transformed into a contour integral and the
dc fluctuation conductivity o, will be finally expressed by the means of B®(q,0,0) only. Indeed, transforming the sum

in (7) into a contour integral in the complex plane z = —i,, we have
20T
guL e Ef o )2L(q,Qk) (q,Q; to,)Bi(q, ), 0,)
_ e? z d’q ., .
==~ $ceoth |2 | f oy Bi@2e)L(@2)L(qz +iw,)dz , (14)

where the contour integral C is shown in Fig. 4. The cuts in it are separating the domains of different analytical proper-
ties of the integral function.

As is usual, the contour integral in (14) may be reduced to the integral along the cuts, and after the final analytical
continuation i w,,— w one can find
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[Qﬂ" w)]R :HZma f e f+w {[BR(q,2,0)’L*(q,2)LR(¢,z + 0)

—[B*(q,2,0) 2L “(q,2)L *(q,z +»)}dz

[B4(q,2,0)]*[LR(q,2)— L “(q,2)]L A(q,2) . (15)

iwe?
" 4Tma f ) f—w s1nh2 z/2T)
Because of the analytical properties
L®(q,z)=L"%q,—z),
BR(q,z,O)ZBA(q, —2z,0),

one obtains that the first integral in (15) is of the order of w? and it does not give contribution to the dc conductivity.
Finally, we have!*

Ctoper .
oﬂ(O)—l})Lnl(J—T—‘Tg;f (162)

where e=In(T /T,) and

817' + o0 + oo 1
= d d
fle) 72§2<3)fo xax [ Y [e+ReBx, ) P+Im*Blx, )]}
Xsinh ™22y ) {Im?B(x,y)[Re*Z 4(x,y) —Im?*Z 4(x,y)]

—2Imﬁ(x,y)[e+ReB(x,y)]ReEA(x,y)ImEA(x,y)} , (16b)
and the functions B(x,y) and =(x,y) are defined as
Blx,y)=¢(L+x +iy)—P(1), (16¢)
pig 1
EA(x’y):,EO [(n+1+ip)+1.173x2P72 (16d)

f

(The branch of the function =4 in the complex plane is and y in Eq. (15). This leads to 2(x,y)=~¢(3) and to
chosen in order to obtain Im3“ <0 when y >0, in accor- fley=1/e=T, /(T —T,) SO that the classical
dance with the analytical properties of B .) Aslamazov-Larkin result is found (dashed line). For
€e—+ow (T>>T,), we find the asymptotic behavior

III. COMPARISON WITH EXPERIMENTS

In Fig. 5 the behavior of the function f(€) Im ’?
=(16a /e*)o4(€) is reported in a In-In scale (continuous

line) in the same iemperature interval where the experi-
ments are usually performed.‘*’5 For e—>0(T—T,), it is
sufficient to take into account only the region of small x

A\Wi
\j

\ -lw,

S|

Wy

FIG. 3. Graphical representation of the block of Green func-
tions B(q,Q;,w,). FIG. 4. Contour C in the complex z plane.
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FIG. 5. Behavior of the function f(e)=(16a/e?)ag(€) in a

In-In scale (solid line). The dashed line is the Aslamazov-Larkin
expression.

fle)=1/€ [ie, oz~1/In%T/T,)], which is very
different in comparison with the corresponding result for
the dirty case where f(€)~1/€ [of*~1/In(T/T,)]."
However, as will be discussed in a moment, this region is
not accessible experimentally. For intermediate € values,
f(e) has been computed numerically. The Aslamazov-
Larkin behavior is well recovered for Ine < —3. At high
temperatures the present theory predicts a deviation from
this behavior with a tendency toward higher scopes. This
behavior, always observed in the experiments,l‘5 was
previously attributed to a breakdown of the Aslamazov-

L. REGGIANI, R. VAGLIO, AND A. A. VARLAMOV 44

Larkin theory for short-wavelength fluctuations and
treated phenomenologically inserting a cutoff in the
momentum spectrum. A qualitative agreement with the
experiments is found up to Ine=~ —1.*> At even higher
temperatures the data usually appear to bend down much
faster, but this is simply due to the ‘“‘technical” reason
that the data above =27, are generally used to deter-
mine the slope of the linear normal-state conductivity so
that at this temperature the fluctuative conductivity is
artificially imposed to be 0.

It is worth underling that, in any case, the assumption
of a linear temperature dependence of normal-state con-
ductivity, generally made the literature, is somewhat ar-
bitrary, since it does not have a solid theoretical basis.

In conclusion, we have expanded over a wider temper-
ature range the theory of fluctuative conductivity for
clean superconductors in the two-dimensional case. The
results of the theory are in qualitative agreement with the
recent experiments on Ba-Sr-Ca-Cu-O compounds in the
region —4SIne< —1. Higher-temperature regions are
not accessible for technical reasons.
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