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Stability of the fixed point of the two-channel Kondo Hamiltonian
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We have performed full-scale numerical-renormalization-group calculations on the anisotropic, two-
channel, impurity spin s =—Kondo Hamiltonian. To allow for anisotropy we have worked in a basis of
total axial charge j, and jb (a and b index the channels) as well as total S,. In the isotropic limit, our re-
sults agree well with the previous work of Cragg, Lloyd, and Nozieres. The most important results are
(1) confirmation of the approach to a nontrivial fixed point from weak coupling, (2) the stability of the
fixed point against exchange anisotropy, and (3) the destabilization of the fixed point by the application
of a magnetic field or the lifting of exchange symmetry between two channels. We find the crossover
temperature scales with the square of the exchange splitting.

I. INTRODUCTION with channel asymmetry induced via different exchange
coupling.

The multichannel Kondo problem has been of interest
since Nozieres and Blandin' showed that an anomalous
fixed point occurs at finite coupling for n & 2s, where n is
the channel number and s is the impurity spin. They also
showed that this anomalous fixed point is unstable with
respect to channel symmetry breaking and therefore sug-
gested the unusual behavior at this fixed point could not
be observed in real Kondo systems. Interest in the mul-
tichannel Kondo problem was renewed when Cox and
co-workers proposed a quadrupolar Kondo Hamil-
tonian for uranium heavy-fermion materials and the cu-
prate high-temperature superconductors, which can be
mapped exactly to a two-channel, pseudospin s =

—,
' Kon-

do model. In Cox's model, the channel degeneracy is
guaranteed by time reversal, but the exchange isotropy
and pseudospin degeneracy are not guaranteed. It is
therefore important to study the stability of the anoma-
lous fixed point against anisotropy and the imposition of
a magnetic field.

In this paper, we have performed numerical
renormalization-group (NRG) calculations on the aniso-
tropic two-channel, spin s =

—,
' Kondo Hamiltonian. For

the strong-coupling isotropic limit, our results agree weil
with the previous work of Cragg et al. For weak cou-
pling J, as expected, the effective coupling Aows to the
anomalous fixed point after renormalization. The impor-
tant new result is that the fixed point is stable against ex-
change anisotropy. We have also studied the fixed point
when a magnetic field and channel-symmetry-breaking
fields are applied to the impurity. We find that the anom-
alous fixed point is unstable in both cases.

In Sec. II, we will present the two-channel, spin s =
—,
'

Hamiltonian and its logarithmic discretized form. In
Sec. III, we will discuss the symmetry of the Hamiltonian
and methods we use. In Sec. IV, we will give the results
for (1) bare J, which is small, (2) a bare Hamiltonian,
which has exchange anisotropy, (3) a bare Hamiltonian
with a magnetic field present, and (4) a bare Hamiltonian

II. HAMILTONIAN

The two-channel Kondo Hamiltonian is

1g Ekckapckap 2 g JaCOay, &p~COav'S
k CX

Here D is the conduction bandwidth, a =a, b, the index
of two channels, p is the spin index, ck „are the usual
electron creation operators, co~ create electrons at the
original site, o. is the vector of the Pauli matrices, and
s =—, is the spin of impurity. Hamiltonian (1) will be log-
arithmically discretized in order to use the numerical
renormalization-group method. For a more detailed dis-
cussion, see Sec. II of Ref. 7. Here is a brief outline of
the method: (i) Divide the conduction band into logarith-
mic intervals, e.g., +(A'"+" to A ")D, with D the band-
width and A ) 1; (ii) keep only the average states in each
interval (those are the ones that couple to the impurity);
and (iii) for numerical convenience convert to a tridiago-
nal basis via the Lanczos algorithm with the initial state
being the Wannier orbital about the impurity site. The
Lanczos states correspond to creation operators
fo,f t(, . . . and have a radial extent A', A /, . . . times
k„„;about the impurity. The final Hamiltonian has the
form

H/D = g E„(f„g„+(„+H.c. )
n=0

g Jafoay~pvfoav'S &

where

A
—n/2(1+A ')(1 —A ("+())

&n=
2[(1 A

—(2~+())(1 A
—(2~+3))](/2

When J, =J&, one has the isotropic two channel Kondo
Hamiltonian, while J,AJt, corresponds to the channel
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asymmetric case. For the exchange anisotropic case, the
term J f0 „o„,f0, s is reduced by

3,0 J,=Jb= —0.2
=9.0

and J;=Jb, J, =Jz, but J' WJ .

III. SYMMETRY

Now let us discuss the symmetry of the Hamiltonian
(2). For the isotropic Hamiltonian, we make use of the
conservation of the axial charges j„j,', jb,jb, and of the
total spin S,S'. To allow for anisotropy, nondegeneracy,
and a magnetic field, the remaining conserved quantities
used in diagonalization are j„j,', jb, jb, and S'.

The axial charge and total S' are defined as
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The axial charge operators obey the same commuta-
tion relation as those of angular momentum, and j,j'
commute with the Hamiltonian. The good quantum
numbers for the system are j~,j;jbjbS'). We can diago-
nalize the Hamiltonian in each irreducible subsp ace
j~„jb,S'). In our calculation, about 250 total states
were retained at each iteration, and energies were mea-
sured in units of the conduction bandwidth.

IV. RESULTS

First we consider the isotropic, strong coupling limit.
We have calculated the lowest energy levels for

J,=Jb= —1.0

FIG. 2. Lowest NRG energy levels for the weak-coupling,
isotropic two-channel Kondo Hamiltonian. We use
J, =Jb = —0.2 and choose the logarithmic discretization pa-
rameter A=9.0 to ensure quick convergence. Although there
are even-odd effects at the first few iterations, the energy spec-
trum eventually goes to a single fixed point when iteration X in-
creases. By comparison, the dashed line represents the energy
levels for the case J, =Jb = —1.0 with the same A=9.0.
Differences in fixed point level spacings relative to Fig. 1 arise
from the different choice of A.

J, =Jb= —1.0, A=3.0. The results shown in Fig. 1

agree well with the work of Cragg, Lloyd, and Nozieres.
The energy spectrum goes to the fixed point after a few
iterations, and there is no even-odd e6'ect. In Fig. 2, we
display the lowest-energy levels for weak coupling, with
J, =Jb = —0.2, A=9.0 as a function of iteration number
N. Because J is sma11, it takes many iterations for the
spectrum. to near the fixed point for A=3.0. Large A
value can greatly speed up convergence. In this figure,
there is an odd-even e6'ect up to the eighth iteration; after
that the spectrum Bows to the same fixed point as is
reached starting with J, =Jb = —1.0, A =9.0.

Figure 3 gives the results for the exchange anisotropic
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FIG. 1. Lowest numerical renormalization-group (NRG) en-

ergy levels for the strong-coupling isotropic two-channel Kondo
Hamiltonian. We take the exchange couplings (J„Jb) of the
channels to be equal to —1.0, which is somewhat larger than
the nontrivial fixed-point values. For all figures, energies are
measured in units of the conduction bandwidth. For both even
and odd iterations the levels How quickly to the fixed point spec-
trum. The states here are labeled by the axial charges j„jb and
total spin S.
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FIG. 3. Lowest NRG energy levels for the strong-coupling,
two-channel Kondo model with exchange anisotropy. For both
J,)J& and J, & J&, the energy levels How to the isotropic fixed
point. The states here are labeled by j„jb,and S,.
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FIG. 4. Lowest NRG energy levels for the weak-coupling,
two-channel Kondo model with exchange anisotropy. The en-

ergy levels flow to the isotropic fixed point. The states here are
labeled by j„jb,and S,.

FIG. 6. Lowest NRG energy levels for the strong-coupling,
two-channel Kondo model in a splitting of coupling for two
channels. Lifting the channel degeneracy produces a flow to the
normal Kondo fixed point. The quantum numbers here are j„
Jb, andS .

case with (a) J'= —0.5, J'= —1.0, and A=3.0 and (b)J'= —1.0, J = —0.5, and A=3.0. The energy spectrum
converges to the isotropic fixed point in both cases, indi-
cating that the anomalous fixed point is stable with
respect to exchange anisotropy. The same is true for the
weak coupling case as is shown in Fig. 4.

Next we consider the efT'ect of imposing a magnetic
field, H. The fixed point for J, =Jb= —1.0, H=0. 12,
and A=3.0 shown in Fig. 5, is a polarized Fermi-liquid
fixed point. This means that the nontrivial fixed point is
unstable when there is a magnetic field.

It was known' prior to this work that the fixed point
is unstable if J,W Jb, and the system fiows to the single-
channel Kondo fixed point J*;„=—~, J*„=O.O. Our
calculations confirm this result. From the calculation,
the energy difference between the ground state ( ~S, ~

=
—,
'

)

and first excited state ( ~S, ~

=0) is zero at the normal fixed
point. This can be understood from the normal Kondo
problem. In the one-channel Kondo problem, for the
fixed point at J=0.0, the first excited energy is zero for

even iterations and finite for odd iterations, but for the
fixed point at J = —~, the first excited energy is zero for
odd iterations and finite for even iterations. In the two-
channel case, at this fixed point, the two channels are
decoupled, and the first excited energy always zero no
matter whether the iteration is even or odd (see Fig. 6).

Let us look at the crossover region between the anoma-
lous and normal fixed point. We define the crossover—

N~ /2
temperature scale Tf by Tf =A ', where Nf is the
iteration when the first excited energy becomes one tenth
of that at anomalous fixed point. In Fig. 7, our results for
J, = —1.0, J&=J,—bJ show that the temperature scale
TI is proportional to (b,J) . This is consistent with con-
formal field theory. '

V. SUMMARY

Using the NRG method, we have studied the fixed
point of the two-channel, impurity spin s =

—,
' Kondo

problem. In the isotropic case, the energy spectrum flows
to the nontrivial fixed point even for weak coupling. An
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FIG. 5. Lowest NRG energy levels for the strong-coupling
two-channel Kondo m.odel in the presence of an applied mag-
netic field. The applied field destabilizes the nontrivial fixed
point producing a flow to a polarized Fermi-liquid spectrum (to
be discussed in a separate work). The quantum numbers here
are J, Jb, andS .
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FIG. 7. Channel exchange splitting AJ vs crossover tempera-
ture scale T~. T~ measures the temperature scale on which the
energy levels crossover between the two fixed point (see text for
definition). From this figure, we find that hJ is proportional to
T 1/2f
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applied Geld destabilizes the nontrivial fixed point. In-
terestingly, we find that the nontrivial fixed point is stable
against the exchange anisotropy. We also find that the
crossover temperature scale is proportional to ( b J)
when there is channel exchange splitting AJ. The com-
parison of our NRG results with the finite-size spectrum
given by conformal field theory' is planned to be dis-
cussed in another paper.
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