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Interface spin waves (ISW) in a bilayer of two-sublattice ferrimagnets are investigated on the Heisen-

berg model with nearest-neighbor exchange interactions. We first derive the Green s functions for the
bilayer system in different coupling schemes and express them in terms of Green's functions for the two
semi-infinite ferrimagnetic systems that are already known from previous work. Interface-spin-wave

spectra are then calculated from these functions for various interface-coupling schemes. When the two
semi-infinite systems are different, it is found that there are two ISW s localized in the interface, one on
each side, for any finite interface exchange coupling J» and that they always appear outside the energy
range of the corresponding surface spin waves (SSW) of the two semi-infinite ferrimagnets. Hence the
SSW's serve as the lower bounds of the ISW's in the energy spectra. In the limit of J»~0, the ISW's

approach their corresponding SSW's as expected.

I. INTRODUCTION

A considerable amount of work on interface spin waves
(ISW)' has been performed in recent years for hetero-
structures of magnetic materials and magnetic superlat-
tices. In the earliest paper we can find in the literature,
Yaniv considered the interface between two semi-infinite
simple cubic Heisenberg ferromagnets. Using the
Green's-function technique, he studied the ISW on the
(100) interface formed by the nearest-neighbor exchange
coupling between the surface layers of the two com-
ponents. It is found that there may be zero, one, or two
branches of ISW's depending on the interface exchange
integral and other parameters of the two materials.

Ferromagnetic interface spin waves in cubic Heisen-
berg systems are also discussed by Xu, Mostoller, and Ra-
jagopal. Very different results are obtained for different
faces of the same crystal, or for the same face of different
crystals. Magnetic superlattices of ferromagnetic and an-
tiferromagnetic materials have been discussed by Her-
man, Lambia, and Jepsen, Hinchey and Mills, and
Diep. Mika and Grunberg have considered a ferromag-
netic m.ultilayer with alternating directions of magnetiza-
tion and a semi-infinite stack of alternating films of two
different ferromagnets has been treated by Dobrzynski,
Djafari-Rouhani, and Puszkarski. Very recently, Mata

and Pestana have investigated the nature of ISW as a
function of exchange coupling strengths at the interface
between two antiferromagnets and found a variety of pos-
sible magnon states.

On the other hand, there have been only ferrimagnetic
surface-spin-wave (SSW) treatments9 ' in the literature,
and we have not found any work on ferrimagnetic inter-
face waves. Hung, Harada, and Nagai assume the two
sublattices with opposite spins forming a CsC1 structure,
while Zheng and Lin" consider a semi-infinite ferrimag-
net consisting of two different kinds of magnetic ions a
and b forming two sublattices with the mean spin values
~(S'), ~X~(S')t, ~. Both the CsC1 and NaC1 structures
are treated in Ref. 11 by the method of retarded Careen's-
function equations of motion in the matrix form. The
method used in Ref. 11 was introduced by Lin and
Zheng. ' It greatly simplifies the algebraic procedure and
is particularly useful in the treatment of surface or inter-
face spin waves in ferrimagnetic systems.

We apply the method of Ref. 12 to investigate in this
article the nature of ISW's and their spectra in a bilayer
heterostructure of ferrimagnets with CsCl structures. We
consider two semi-infinite ferrimagnets of different spins
coupled to each other via nearest-neighbor interactions
between their (001) surfaces. Thus, the Green's function
for a semi-infinite system derived in Ref. 11 can be em-
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ployed directly as our starting point. Since the results of
Ref. 11 will be frequently quoted in this paper, we refer to
it as I from now on.

The plan of this paper is as follows. We first describe
the model in Sec. II. Four different types of interface
coupling are defined here. The interface Green's func-
tions are derived in Sec. III from the semi-infinite Careen s
functions and expressed in terms of the bulk Green's
function. In Sec. IV, ISW spectra of a variety of possible
modes in our model are calculated, and numerical results
are discussed in detail in Sec. V.

II. MODEL OF FERRIMAGNETIC INTERFACES

We consider the (001) interface between two semi-
infinite Heisenberg ferrimagnets. Each is a two-sublattice
system forming a CsC1 structure, namely, a body-
centered-cubic (bcc) lattice with the two sublattices them-
selves simple cubic. Figure 1 shows schematically two
cases of interface contact projected on the (010) plane. In
Fig. 1(a), the system as a whole maintains the bcc struc-
ture throughout. The nearest neighbors on two sides of
the interface lie along the diagonal direction. The case in
Fig. 1(b) can be obtained by displacing one ferrimagnet in
(a) by —,

' lattice constant in both x and y directions. The
nearest neighbors on two sides of the interface are then
along the direction normal to the interface. The z axis is
chosen to be perpendicular to the interface. The atomic
layers parallel to the interface are labeled by
n =. . ., —3, —2, —1,0, 1,2, 3, . . . with the interface lo-
cated between the layers —1 and 0. Type-1 material oc-
cupies the left space and type-2 material occupies the
right space. In each material, the mean spins of the two
sublattices are opposite in directions. The bilayer system
can have three different types of interface: (1) an a banti--
ferromagnetic interface which is formed by the a-
sublat tice surface of one material coupled to the 6-
sublattice surface of the other material via the coupling
Ji2) 0 as in Figs. 1(a) and 1(b), (2) an a-a ferromagnetic

H=g JS, Sq,
a, b

(2)

where J denotes the nearest-neighbor exchange integral,
and the sum is taken over the nearest-neighboring pair of
spins only once. J can have only three different values, it
is taken to be J, (Jz ) when the pair belongs to material 1

(2), and J,z when the pair belongs to different materials
across the interface. We shall make liberal use of the re-
sults of I and follow the same notation except for the su-
perscript (i) to label the two semi-infinite systems in the
present case.

III. INTERFACE GREEN'S FUNCTIONS

In this section we limit our discussion to the a-b anti-
ferromagnetic interface coupling as in Fig. 1(a). The oth-
er cases will be discussed in Sec. IV. We first consider the
special case J,@

=0 in which the bilayer system is decou-
pled and becomes two separate semi-infinite ferrimagnets.
The results of I can be directly taken up and we have, fol-
lowing Eq. (41) of I, for the two semi-infinite systems

interface which is formed by the two a-sublattice surfaces
via the coupling J,2 (0, and (3) a b b-ferromagnetic inter-
face which is obtained by interchanging the a and b sub-
lattices and hence is equivalent to the a-a ferromagnetic
interface in (2).

To keep the calculation manageable, we assume as usu-
al that the interface does not change the mean spin values
in any sublattice near the interface. This means that
&S'&"'=&S'&"' &S'&"'=&S'&"' where i =1,2 for the
two ferrimagnets. For convenience, we also define

a, = —&s'&"'y&s'&"' i =1,2 .

In either semi-infinite system, the nearest neighbors of
an a spin are all 6 spins and vice versa. The Heisenberg
model Hamiltonian for the nearest-neighbor interaction
can then be written as
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FKx. 1. Illustration of the interface structure of a bilayer of ferrimagnets with CsC1 structures. The picture shows its projection on
the (010) plane while the interface is parallel to (001) plane. The nearest-neighbor coupling across the interface is a-b antiferromag-
netic in both (a) and (b). A unit cell and the coordinate axes are also shown at the left end.
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G'"(m, n) =g'"(m, n)

+ [g"'(m, —1)V(b", +g"'(m, o) V((f" ]

X[1 g( )( 1 1)v( )

g())(10)V(1)](g(1)( 1 n)

where m, n ~ —1 and

(8)

U;(a)=
i sgn(T; )[T; (a) 1—]', T, (a. ) )1,

u, —1—sgn E; — Ql —T, (a),. T; (~) &1 .

(9)

Z (i )
( & )

—
I [ IV { ) ] ~

m —n
~ + [ IV ( & ) ] ~

m —n 6 1
~

]
U, (v)

G' '(m n)=g' '(m n)+[g' '(m, O)V' '

+g"'(m, —1)v(,'f)]

X [1—g' '(0, 0) Vbb'

g(2)(Q1)V(2)](g(2)(Qn)

T;(a)=1+(E;+l)(E; —a;) ri (Ir),

W, {a)= —T, (a) . i U—,(a),

7J(K) =cos(k~d )cos(kid )

s, =E/8J (S

(10)

(12)

(4)

where m, n +0. 1 is a unit matrix and the coupling ma-
trices are

where d represents the nearest-neighbor distance.
It has been shown in I that there is a SSW in medium 1

and its spectrum is given by

y (&)——ba

4J, (S &'" 0

0

0
0 4J &s'&"'
0

0 0
—4J, (s'&(,"q( ) o

(5a)

(5b)

(6a)

+—[( 1 ——a( —ri2)~+2a(( 1 —
7i )]

and the SSW spectrum in medium 2 is given by

1 [( 1 a + 1 a ~2)2+2a (1 ~2)]1/2

(14)

(15)

O —4J, & S'&.(2)q(~)

0 (6b)

g "(m, n)= 1 1

8J;(S'&" —'a ri (a. )

i(E;+1)
m —nl

U;(k)

——'a. ri(N. )Z"

—,'q(~)z(,')

I(c, —a)i i

U, (a)

(7)

All the Green's functions in (3) and (4) above are 2X2
matrices. They are all functions of the energy E and the
two-dimensional wave vector sc defined by
k=(a, q)=(k, k, q). These variables are omitted in ex-
pressions throughout this paper only for simplicity.
g "(m, n) are the bulk Green's function for the ith ferri-
magnet. They are, according to Eq. (45) of I, given by

It is also known that Eq. (14) represents the acoustic
branch and Eq. (15) the optical branch for 0 &a, & 1 and
0&a2& 1. When a(, a2) 1, Eq. (14) gives the optical
branch while Eq. (15) gives the acoustic branch. It is
remarked that, for convenience, we have defined Eq. {15)
such that it differs from Eq. (52) of I by taking the oppo-
site sign. In other words, the energy in this branch is
measured in the negative-energy direction. As is seen in
the next section, these SSW's have very important
inQuence on the nature of ISW spectra.

The bulk Green's function for the system consisting of
the two uncoupled semi-infinite ferrimagnet can then be
written as

G' "(m, n), m, n —1,
G' '(m, n)= 'G' '(m, n), m, n )0,

0, otherwise .

The supermatrix equation that G' '(m, n) satisfies is

E1—D' '

F(2)

0

F(2)—2

E1—D'"
F(2)

F(2)—2

Z1 —D"'—V,(,"
0

0
D( ) y()

F(&)—1

F(&)—2

E1—a")

G"'(2, n)

G"'(l, n)
G"'(O, n)

G' '( —l, n)
G"'( —2, n)

52„1

5,„1
5O„1

5,„1
5 2„1

(17)
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Apart from those given in (5) and (6), matrices involved in (17) are defined by
—8J (s')" 4J, (s')"q(~)

D(0—
4J (s') "q(~) —8J (s')"' (18)

F(0—
1 0

0 4J; (S')')71(K)

0 (19)

(20)
0 0

y (2)—
4J, (s'&',"q(~) o

When Ji2%0, the two ferrimagnets couple to one another via the nearest-neighbor interactions and the bulk Green's
function for the system can be written down from (17) as

z1 —a"'
F(2)—1

F(2)
2

E1—a"'
F(2)—1

F(2)

/1 —a( ' —V( ' —V

V-l, p

—
Vp, —1

a(1) V(1)

F(1)
1

F(1)

E1—a"'

G(2, n)

G(1,n)

G(O, n)
G{—2, b)
G( —2, n)

6,„1
61„1
6()„1

6,„1
6 2„1

0
o —4J„&s'&."'

~

—4J (S') 0

0

where we have defined the matrices

(22)

V (1)——ba

V bb
(2)—

4aJ (s')"' o

0

0 0
0 4b,J2(s')' '

(21)

(24a)

(24b)

0

Vp —1=
0 0

4J„(S )"'g(K) 0

0 4J„(s )'."q(~)
V —1p=, O 0

0

(23)

where we have defined

~~1 J1 ~12+b

dLJ2 =J2 —J12/CX, ,

a =(s')"'/(s')"'
~ =&s'&"'z&s'&'"

(25a)

(25b)

(26a)

(26b)

It is easily seen from (21) that the diagonal perturbations
V pp and V, , act only on spins on the surface layers of
the two semi-infinite ferrimagnets. They may be regarded
as extra effective surface potentials adding to V» and
V b. in a similar fashion as in Ref. 1. With only the diag-
onal perturbation due to the interface, the Green's func-
tion for the bulk system still satisfies Eqs. (16) and (17)
provided that the surface potentials in (5a) and (6a) are
replaced by

G(m, n)=G' '(m, n)+ g 6' '(m, l)Vi i 6(l', n), (27)

from which we And the interface Green's function ex-
pressed in terms of G' '(m, n) with the surface potentials
(24)

The off-diagonal perturbation Vo, and V,o come
from the coupling between surfaces across the interface.
Their contribution can be included by making use of the
Dyson equation

6' '(m, n)+6' '(m, o)Vo, G( —l, n), m )0,
6(m, n)= '

o o6' '(m, n)+G' '(m, —1)V, oG(o, n), m ~ —1 .
After some algebra, we obtain the more explicit forms

6' '(m, n)+G' '(m, o) Vo i[1—G' '( —1, —1)V i oG' '(0, 0) Vo & ]

X [G' '( —1, —1)V,oG' '(O, n)+6' '( —l, n)], m )0,
G' '(m, n)+G' '(m, —1)V io[1—6' '(0, 0)Vo, G' i( —1, —1)V,o]

X[G' '(0, 0)Vo &G' '( —l, n)+G '(O, n)], m (—1 .

(28)

(29a)

(29b)
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For n =m, Eqs. (28) can be further simplified with the aid of (16)

G(m, m)= .

G121(m, m)+G' '(m, O) Vo 1[1—61"(—1, —1)V 1OG' (0,0) Vo 1]

X G'"( —1, —1)V 10G' (O, m), m ~ 0,
G'"(, )+G"'(,—1)V, [1—G' '(0, 0)V,G"'( —1, —1)V, ]

XG' '(0, 0)VO, G'"( —l, m), m ~ —1,

(30a)

(30b)

where G"'(m, n) and G' '(m, n) are given by Eqs. (3) and (4) with the potentials (Sa) and (6a) replaced by (24). Equa-
tions (29) and (30) express the interface Green's functions in terms of the already known semi-infinite Green's functions.

IV. IS%' SPECTRA

The interface spin-wave spectra are determined by the pole of the inverse matrix involved in the second term of Eqs.
(30). It is easy to see that the matrices

1 61 1( 1 1)V 1OG1 1(0 0)VO

1 —G' '(0, 0)VO, G'"( —1, —1)V 10

have the same determinant value. Thus the ISW spectra are uniquely determined by the equation

det~ 1 G ( 1, 1)V 10G (0 0) Vo (31)

(33)

To solve this equation, we start with Eqs. (3) and (4). Using V2f and V if' in (5) and (6), and Vb, and Vbb in (24), we find
after a long but straightforward calculation,

jg,',"(m, n) +M", ,'(m)g,',"(—l, n) g,'1", (m, n)+MI", (m)g,'&'( —l, n)
'

G'" m n =
gb,"(m, n)+M2, '(m)g,',"(—l, n) g&1", (m, n)+M&", (m)g,'b'( —I, n)

g,', '(m, n)™I'( 2)mgq, '(O, n) g,'b'(m, n)™12'(m)gbi,'(O, n)
G"'m n =

gb, '(m, n)+M22'(m)g$, '(O, n) gbb'(m, n)+M22'(m)gbb'(O, n)

In these equations we have de6ned the matrix

M", , '(m ) M'„'(m )

M(m)= M" (m) M '( )

4(S') I,"[bJ,g,',"(m, —1)—J,21g,'1", (m, O) ]/b, '" 4(S'),' '[b J2g,'q'(m, O) —J22Ig,', '(m, —I ) ]/6' '

4(S')b"[bJ,gb,"(m, —1) J, rigb1", (m, O)]/—b"' 4(S'),' '[AJ2gbb'(m, O) J2rigb, '(m, ——1)]/5' ' (34)

where

b,"'= 1 —4(S')b"[bJ,g,',"(—1, —1) J, rig,'b'( —1,0) ]—,

(35)

b, ' '=1 —4(S')' '[bJ g' '(0 0)—J 2'' '(0 —1)] (36)

Combining Eqs. (32)—(36) and plugging the results into
(31), we can after a tedious calculation eventually reduce
it to the form

g(1)g(2) 16J2 2(&z)(1)(Sz)(2)

Xg,',"(—1, —1)gbb1(0, 0)=0,

I

difficult to see that the last term of Eqs. (30) decreases ex-
ponentially with increasing

~
m ~, provided that the energy

of the system falls outside the bulk energy band of either
medium 1 or 2. In other words, when T; ) 1, the inter-
face part of the Green's function decays exponentially
when it moves away from the interface. Substituting (35)
and (36) into (37), we find under the conditions T,)1.
(E,+ 1)(s2—a2)(21 —1)J12

1
b, , (E2 —a2) —a, h2(E, +1) J12

Ab

where use has been made of (22) and (23).
We are interested in the IS%' s localized in the neigh-

borhood of the interface. As a rnatter of fact, it is not

+ 6(62=0,
CXp

where

(3&)
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b, ]=J](s]+1)
—

—,
' J,g [ —T]+ 1 —sgn(T, )(T] —1)'~ ],

b, = —J(s —a)
—

—,'J&a2q [ —T2+1 —sgn(T2)(Tz —1)'~ ] .

(39)

(40)

It is noted that Eqs. (39) and (40) yield the surface spin-
wave spectra for the semi-infinite ferrirnagnets when
5i =0 and hz=0. The corresponding solutions are given
by (14) and (15).

We have derived the ISW spectrum equations for the
a hant-iferromagnetic interface as in Fig. 1(a). It is a sim-
ple rnatter to find the ISW spectra for the a-a or b-b fer-
romagnetic interface from the above result. Since these
latter interfaces are completely symmetric with respect to
the interchange of a and b sublattices, we have to consid-
er only one of them.

The a-a ferromagnetic coupling is obtained from the
above by interchanging the a and b sublattices in one of
the semi-infinite ferrimagnets of a system as shown in
Fig. 1(a), and at the same time replacing the antiferro-
magnetic exchange integral J,2 &0 by the ferromagnetic
Ji2&0 across the interface. This procedure does not
change the form of the Hamiltonian (1). The equation of
the a-a ferromagnetic ISW spectrum then follows from
(38) by making the interchange in the medium 2,

(Sz )(2)~( Sz ) (2) (41)

This transformation is completely equivalent to the fol-
lowing replacements in Eq. (38):

a2~ 1/a2,

E2~ E2/ap,
(42)

&a~ ~2~a ~

ah~ ab/ap .

when a2) 1. Furthermore, these surface branches appear
in the positive-energy direction.

We now turn our attention to the type of interface cou-
pling scheme as depicted in Fig. 1(b). For the a ba-ntifer-
romagnetic interface the only difference from the previ-
ous case shown in Fig. 1(a) is the coupling potential
across the interface. Matrices (22) and (23) should be re-
placed by

0 0
0 —J, (S'),"'

(45)—J„(s'&'," o

0 0

0 0
J»(s')]2] o

o J„(s'&'."
0~-io= 0

(46)

This can be understood as follows. In Fig. 1(a) each ion
on the surface of one medium is coupled to four nearest
neighbors across the interface, while in Fig. 1(b) each ion
has only one nearest neighbor across the interface.
Furthermore, the g factor is missing in the off-diagonal
matrix elements because the line connecting the ions cou-
pled across the interface in Fig. 1(b) is normal to the in-
terface. Thus the spectrum equation can be obtained by
following exactly the same procedures as before and the
result is

r

1 czi
~](e2 ap) ag~2(el+ 1) J]2+

CXb CX2
(47)

where both 6i and 52 remain the same and are still given
by (39) and (40). When the transformation (42) is made in
(47), we obtain directly the spectrum equation for the a-a
ferromagnetic interface

The meaning of all the parameters remains the same after
either the transformation (41) or (42). The resulting
equation for the ISW spectrum for an a-a ferromagnetic
coupling across the interface is then

CX2

b](E2+ 1)+a,a2b ~(E]+1) J]~+a]a2b]]5~=0,
Qb

(48)

(E,+ 1)(E2+1)(g —1)J,2

(X2
b, ](Ep+1)+a2a, by(E]+1) J]2

CXb

—aio;2b (62=0 .

where b. ] is still given by (39) while 52 is given by

(43)

h~= J2(a~+1)
—

—,
' J2]1 [ —T2+ 1 —sgn( Tz )( T2 —1)' ] (44)

instead of (40). Once more, b. ]=0 and hz=0 represents
surface spin waves in medium 1 and medium 2, respec-
tively. Since Eq. (44) has the same form as (39) but not
(40), the situation is different from the a bantiferromag--
netic case. Medium 2 contributes an acoustic surface
branch when 0 & a2 ~ 1, but an optical surface branch

where b, z is still given by (44).
From the above discussion, we find that the ISW spec-

tra for different types of interface coupling can be qualita-
tively different. The ISW spectra (47) and (48) for the in-
terface as in Fig. 1(b) involve only linear terms in J]z,
while (38) and (43) for the interface as in Fig. 1(a) have
J i2 terms as well. Without going into the detailed
analysis, we just mention that the difference is originated
by the different orientation of the line joining the coupled
nearest-neighbor spins across the interface. As is shown
in the Appendix, however, all the four spectrum equa-
tions have the same asymptotic behavior. As the inter-
face coupling diminishes, or when J iz ~0, two of the in-
terface spin waves in each case reduce to SSW's of the
two semi-infinite media. Similar result is found in a one-
dimensional antiferromagnetic chain with an impurity
bond, ' except that the two localized modes are degen-
erate.
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bl because we are consider-solution discussedd here is sta e ec
nl a s eeific interface configuration. n

d the complicateu energy rehas to study rgy re r
face magnetic structures. This wi e
future investigations.

-J4
0.0 0.2

l l t

0.& O.e 0.8 I.O

a for the ferrimagnet/ferrimagnet inter-we plot the spectra or e e net inter-
e with a-b antiferromagnetic coup ing or 0,

&

interface with a-a ferromagnetic coup

e contacts of the type as in Fig. 1{b), we
t/f n t tcalculate ISW sps ectra for ferrimagne err'

d - ferromagneticface with a-b antiferro gma Qctlc an QQ
coupllngs. eTh results are shown in Figs. an

netic IS%' spectra in anFIG. 3. 0-5 antiferromagne ic
'

n
et/ferromagnet system as g.in Fi . 1(a}. S,antiferromagne /"'= .5 (S'&(."=0.447, S' . = .

s re resent the IS%"s with corresponding J»J& =0.3. Solid hnes represent t e
values mar e .k d Dashed lines are the SSVf s
shaded areas are the bulk spectra.

V. RKSUI.TS AND MSCUSSIQN

f the IS%e resent in tliis sec
'h' tion numerical results o

spectra for different cases. or conv

r calculation. or e
'F the interface contact type as il us-ou

etrated in Fig. 1( ~,al t e spec
F 3—8. For thecoupling schemes are p Fre lotted in Figs.

antiferromagnetic-antiferrom ga net interface wi a-
z (i) Sz)(i)tiferrornagnetic coup ing

E =, , e
' = l, 2 the IS& spectra are given in Fig. an e

antiferromagnet/ferro magnenet for whictra for the an
'

"' 'A —(S')( ' with antifer-
romagnetic coupling are shown in ig.'n Fi . 4. In Figs.

2

UJ

—J0—

0.0 0.2 0.4
1 i

0.6 0,8 I.O

etr an antiferromagnet-ferromagneFIG. 4. Same as in Fig. 3 for an an i
S"'=0.5, S."'=1.5, (Ssystem with parameters

(S')"'=1.449, a, =1,a&=0.655, and J, = . .=0.4.0
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. 3 for a ferrimagnet-ferrimagnet sys-FIGr. 5. Same as in Fig. 3 for a e g
' s-

tem with parameters
'S')"'=1.957, a, =0.194, a,=0.489, and J, = . .

1 nd o tical in medium 2 in this case.as acoustic ln mcdaUIH 1 an op ica

7. Same as in ig.F 5 except for the parameters
S"'=0 5 S"'=2 (S =0S = — 'g"'= 481 (S')' '=0 957 ai=5. 155,a & a ~ a

o.,=2.045, and J, =0.7. T e is
acoustic in medium 2 in this case.

t e correspondingspective y. orp
'

1 F r easier companson, t e p
ium are alsobulk as wel as1 SSW spectra for each medium

r ran e of the correspon ingfall outside the energy rang
s has beenreases and approaches zero, as asWhen J,2 decreases a p

S%"' tending topointed out above, thehere are indeed two I s en i
r J, wesurface separately. For arbitrarySSVf s on eac

two and only two s oc6nd that there are two a oc
h

' t f ce. Since these two modes o

surface waves when the two semi-the corresponding sur ace
1 de that thesetems are decoupled, we conc u e ainfinite systems a

ISW's are localized on the two si es o e
'

e as in Fig. 1(a, t eseg g.
~aves are localized on t e a su

a sublattices on both sides of the a-abe locahzed on the a su at ices
ferromagnetic interface. It is easily ven e
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F' 5 except for the parameters
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6. Same as in ag.
S"'=0 5 S' '=2, (S', =0.cx2=,= . . h SSVf*s are optical in this case.F2=0.489, and J& =0.5. Hot

s ectra in a ferrimagnet-FIG. 8. a-a ferromagnetic IS%' sp
as in Fig. 1(a). 5,"' =Q. 5,ferrimagnet system as an ig.
a

—
~(S')"'=0 957 a, =5. 155, a, =

Ji =0.7.
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rr1magnet/ ferrim
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fe

~

' antiferr p

=0.481 (gi)(g)
&g 1(b) g(i) ()

~ 155~ a2=2 045

T& =1+(Essw+1)( ssw —a, )(a,q2/2)
—i

T i
—( 2ESSW+ ai )(aug /2) I

Similarl iy we expand Qg
~&= t(. +1)g

to the fii-st oorder in 1'

(A7)

APPKNDz

e ilow study th
J ~o12 ' and show that h

avlor of the ISWy t e asymptotic beh

from the
a t ey actuall t

s as

e larger absolute-ener v . e eg
H our spectrum

, we consider
equations (38

Solving for J
i er only (38) in the f

h v fo (38)

—(r., —a )a 2a, +, /ab+(E, +1)b,

2E, +1 lc, —
z

(A8)

n[g a ( ssw+ 1
i | ssw

Substituting (A9) in
or to the first orde

solution J
c1, from wh hwic a

e i entified, namely

J12=
(A10)J, =6,/a (e, +1),

s
Ref. 8 are just s

'
o both sides of the

'

ing g 1) S"&
p cial cases and can b

interface in

, and g(2~
e reproduce

b all equal to
. y set-

o unity

where we have defined

b.=[(I c, , —a, —a2)h&/ab —(e, + 1)hza,
—4(E +1)(I E, —a~)(q —1)b,,b ~a /a

/J2 (S') ' '= E /e

a~/ab =a / ~2 ~

2 1

In (A2) and (A3), we hav, wehavemadeuseof he o t erelation

(A2)

(A3)

(A4)

where 6 is, is given by (A6). In
th t th ISW

an arbitrary small ua
62 . FO

2E )to t e first ord
'

b,
2
—62

er in bc.2

and A„h ar2 are given by (39) and 4
W fi look h 1

Let
a t e analytic behavior of (Al Ilear E

c., =Ess~+ a1 81 (A5)

of the order of

b, , =[J +—'J
er of hc„ that i

, 7) [1+—,
' sgn(T )T (

(A6)

in which Ac.c1 is a small ua . e
expand 5 (E ) a

quantity. Since b, ( =, e

& E& and keep terms S,

~z= [ —Jz+-,'azJ2n'

X[1+—'s n—,
' sgn( Tg )( T —1) ' 'T T'T.~TH«»

SSW—a2)[(a2/2) '

T,' =(2e2SSW+1—

(Al 1)

(A12)

(A13)

where we have m
The

ave made use of thhe fact that b (e
coupling J12 is now

2 ez )=0.

e expanded to thee first order in 6
as ion, wefindth e solution

c2. n a
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(A14)

which approaches zero as Ac.z —+0. Since a2 and u, are
both positive, but c.z is always negative, as is clearly
seen from (15), we conclude that J,z and hz have the
same sign. On the other hand, J2 )0, sgn( T2) T2 ~ 0 and
T2 &0, we see that J,2 and Ac2 have opposite signs. This

means that J&2 ~0+ as hc2~0. Therefore, the energy of
the ISW in medium 2 is below that of the SSW, and tends
to cz from below as J&2 0+.

Following exactly the same procedure, one can show
that all the other SSW's have the same behavior and tend
to the corresponding SSW's in the limit of the interface
decoupling. They are not reproduced here.
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