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The coupled-cluster method (CCM) is applied to anisotropic-quantum-antiferromagnetic models in

one and two dimensions (1D and 2D). Several hierarchical approximation schemes of the CCM are

de6ned, which are specialized for the spin-lattice models. Good results are obtained for both ground-

state and excited-state energies. The spin-spin correlation functions and the staggered magnetizations

are also calculated. We have found that the CCM gives a qualitatively correct description of the entire

Heisenberg-Ising phase, including the critical point where a phase transition occurs in 1D. Some in-

teresting differences between 1D and 2D models near the critical point are discussed.

I. INTRODUCTION

The coupled-cluster method (CCM) has proved to be
one of the most powerful and universal techniques in
quantum many-body theory. ' Among its main advan-
tages are its automatic avoidance of unphysical diver-
gences in the thermodynamic limit and its systematic
ability to be taken to arbitrary accuracy. The CCM has
been applied to a wide range of physical systems, includ-
ing problems in nuclear physics, both for finite ' and
infinite nuclear matter;" atomic and molecular systems in
quantum chemistry; ' ' and the electron liquids. '
More recently, the CCM has also been successfully ap-
plied to the problems of the quantum anharmonic oscilla-
tor treated as a field theory in (0+1) dimensions, ' and of
the N relativistic quantum field theory. '

The recent discovery of the high-temperature super-
conductors has brought a huge resurgence of interest in
strongly correlated electronic systems. Among the vari-
ous model systems proposed, the two-dimensional (2D)
Hubbard model is widely believed to contain the essential
correlations of the active electrons in this large class of
ceramic materials. The antiferromagnetic Heisenberg
model can be derived from the Hubbard model at half-
filling, and this is believed to describe correctly the elec-
tronic properties of the high-T, materials before doping.
By now, a large number of experiments' has confirmed
this point, which was first suggested by Anderson' short-
ly after their discovery. In view of the successful applica-
tions of the CCM to the wide range of physical systems
mentioned above, we consider it very timely and useful to
apply it to study these strongly correlated models at a
fundamental and microscopic level. Specifically, we
study the spin- —, anisotropic antiferromagnetic Hamil-
tonian, or XXZ model. The Heisenberg model is just the
isotropic point of the XXZ model. In the one-
dimensional (1D) case, the spin- —,

' XXZ model has an ex-
act solution given by the Bethe ansatz, ' with which we
can compare our results.

A recent paper by Roger and Hetherington' has
pioneered the CCM treatment of quantum spin lattices,

although their treatment was restricted to ground-state
energies. In particular, they considered the Heisenberg
antiferromagnetic models in 1D and 2D, and obtained
good results for the ground-state energies at low levels of
truncations. In this article, we wish to demonstrate that
the CCM can be applied to a generic spin-1attice model
and can therefore be used to study possible quantum
phase transitions systematically. The XXZ model is very
suitable for this purpose. We define several hierarchial
approximation schemes within the CCM, specialized for
the lattice models, and then systematically apply these
different schemes in an attempt to improve our results.
In addition to accurate values for both the ground- and
excited-state energies, we find that the CCM gives a
quantum phase transition in 1D and possibly also in 2D
at some critical value of the anisotropy, even at a rela-
tively low level of approximation. The phase transition
shows up in the asymptotic behavior of both the stag-
gered magnetization and the correlation functions, as
well as the excitation energy gap. A brief report of some
of our results has already been published.

The outline of this article is as follows. Some rigorous
results of the XXZ model are briefly reviewed in Sec. II,
especially those exact results obtainable from the Bethe
ansatz in 1D with which our results are to be compared.
In Sec. III we begin with a brief summary of the
coupled-cluster method, emphasizing the fact that the
Hilbert space is biorthogonal in the CCM, rather than
having the usual orthogonal basis in other theories.
Therefore, the ket and bra states are, in general, not man-
ifestly Hermitian conjugate to one another within any
given approximation scheme of the CCM, and have to be
calculated separately. We then define various approxima-
tion schemes especially tailored for the lattice models. In
Secs. IV and V, we employ these schemes to calculate the
ground ket state and obtain the ground-state energies in
1D and 2D, respectively. We also discuss the nature of
these schemes and their physical implications. The bra
states are calculated in Sec. VI.

With both ket and bra states known, we then calculate
two physical quantities, namely, spin-spin correlation

9425 1991 The American Physical Society



9426 R. F. BISHOP, J. B. PARKINSON, AND YANG XIAN

functions and staggered magnetizations. For one of the
approximation schemes, which contains long-range con-
tributions, we are able to demonstrate that the correla-
tion functions change their asymptotic behavior from ex-
ponential decay at large anisotropy to algebraic decay at
some critical value of the anisotropy. We find that the
staggered magnetization goes to zero in 1D and to a finite
value in 2D at the respective critical points. This behav-
ior strongly suggests the occurrence of a quantum phase
transition, although there are some difFerent features be-
tween the 1D and 2D models. As a final piece of evi-
dence for the claimed phase transition, we calculate the
excitation spectra in both 1D and 2D in Sec. VII. As ex-
pected, the energy spectra show finite gaps at large aniso-
tropies and becomes gapless precisely at the critical
point. We conclude this article with a summary and dis-
cussion in Sec. VIII.

II. BRIEF REVIEW OF SOME RIGOROUS RESULTS
FOR XXZ MODELS

Quantum antiferromagnetic models have been of great
interest in physics long before the discovery of high-
temperature superconductors. As early as 1931, Bethe'
had found the exact solutions for the eigenstates of the
1D spin- —,

' Heisenberg antiferromagnetic model. Seven
years later, Hulthen ' calculated the exact value of the
ground-state energy based on the Bethe ansatz. Since
then the Bethe ansatz has been generalized to the XXZ
model and also to other 1D quantum systems. The
excitations and other physical properties of the corre-
sponding models have also been investigated by the Bethe
ansatz and other means within approximately the last 30
years. In particular, for the XXZ model, the staggered
magnetization was obtained by Baxter in 1973, and the
asymptotics of the correlation functions were obtained in
1986 by the algebraization of the Bethe ansatz, namely,
the quantum inverse-scattering method (QISM). The
QISM has confirmed the results of earlier work by Luther
and Peschel. ~7

The nearest-neighbor-coupling XXZ model Hamiltoni-
an is given in any number of dimensions, and in terms of
the spin operator s—= ts; a=x,y, z I, by

H= ,' g (si"sf+ +sos—f+ +b,sfsi'+ ),
l, p

(2.1)

where the index l runs over all N lattice sites, the index p
denotes the z nearest-neighbor sites, and we have imposed
the periodic boundary condition and set the antiferro-
magnetic coupling constant and the lattice spacing to
unity. We shall consider only bipartite lattices with even
X, so that each sublattice contains —,'N spins. The Heisen-
berg model corresponds to the isotropic case, i.e., 6=1,
while the XF model is given by 6=0. The Hamiltonian
of Eq. (2.1) commutes with the z component of total spin,
s'„„i(=+is)),which is therefore a good quantum num-
ber. We shall be interested particularly in those values of
6 for which the ground state is antiferromagnetic, and
hence lies in the subspace, s«,» =0.

First, we discuss the two-dimensional case of the
square lattice. Despite great e6'orts, few rigorous results

A~ —1.
4

(2.2)

Precisely at the point 5= —1, the system undergoes a
first-order phase transition to the so-called critical anti-
ferromagnetic phase where the spin-spin correlation func-
tion shows algebraic decaying behavior, details of which
are given below. This phase covers the entire range of

~ h~ & 1. Its exact ground-state energy is

4
= -' cosO

oo dc'—
—,
' sin 0 —~ cosh(neo) [cosh(28co) —cos8]

(2.3)

where 0 & 8—:arccosA & m. From Eq. (2.3) one can evalu-
ate the energy values at various special points. Thus, at
6= —1, E /X= —

—,'; at 6=0 (i.e., the XF model),
Es/X= —I/m; and at the isotropic point 6, =1 (i.e., the
Heisenberg model), Es/N= ,' —ln2. The cor—responding
spin-wave excitation spectrum in this critical region is
gapless and given by

sinOE=2
O

sinq, 0 ~ q ~ m. . (2.4)

From this region, the system undergoes another phase
transition at 6= 1 to the Ising-like phase which exists for
all 5 & 1. This transition is second order and the
ground-state energy changes continuously and smoothly
at the critical point. For 6 ~ 1 the ground-state energy is
given by

are known. Specifically, there is no rigorous result for
whether the ground state of the Hamiltonian of Eq. (2.1)
at 6=1 and s= —,

' on a 2D square lattice possesses a
long-range order (LRO) of the Ising type, although most
of the approximate calculations do show a finite LRO
with a staggered magnetization of about two-thirds of the
Ising value (see Ref. 28 and references therein). Perhaps
the closest rigorous argument in this respect is provided
by Kubo and Kishi. They apply various sum rules for
the XXZ model and have shown that, for s= —,', the
ground state possesses an o5'-diagonal LRO akin to that
of the XY-like state at small anisotropy (0&3, &0. 13),
and a diagonal LRO akin to that of the Ising-like state at
large anisotropy (6) 1.78). Unfortunately, their proof
cannot directly be extended to the most interesting point,
namely the isotropic Heisenberg model with 6= 1.

In contrast to the 2D case, the 1D spin- —,
' XXZ model

can be solved exactly by the Bethe ansatz, as stated
above. We summarize below the main exact results for
the 1D spin- —,

' XXZ model. In the ferromagnetic regime
(b, & —1), the exact ground state has all of the spins
aligned in the same direction and its energy is trivially
given by
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E
4

g =—'coshy A, /n', —1&6,&0,
( 1)ng / m/8' 0&g& 1

(2.12)

—
—,
' sinhy 1+4 g [1+exp(2my)]

m=I

6 ~ 1 , (2.5)

where 6—:coshy. Direct evaluation from Eq. (2.5) shows
that, in the Heisenberg limit (6= 1), the energy has the
same value as given by Eq. (2.3), whereas in the Ising lim-
it (b, ~oo) one has M'~const X +b, —1 exp

C) 1+,
6—1

where A, and B, are constants which depend on 6, and
the exponent ~/2 & 8' —=arccos( —b ) & m'.

For b. ) 1, the absolute magnitude of G"(n) decays ex-
ponentially to a nonzero value, the square of the order
parameter M'. Very near the critical point 4, =1, M' as
a function of 6 shows the essential singularity behavior

b+ —,5—+~ .
4

(2.6) (2.13)

In this Ising-like region ( b, ) 1), the spin-wave spec-
trum has a finite gap, and the excitation energy is given
by

L)E = sinhy+1 —k, cos q, b, =coshy, (2.7)

where the constant k, is given in terms of the two com-
plete elliptic integrals K& and K'„

K, =J d8
Ql —k, sin 8

IC', =—I d8
Ql —(1—k, )sin28

by the relation

(2.g)

(2.9)

E (k)=Ek+E (2.10)

Thus, the spectra given by Eqs. (2.4) and (2.7) are the
lower boundaries to this continuum.

Finally, the spin-spin correlation functions and the
staggered magnetization for the 1D lattice are defined by,
respectively,

Faddeev and Takhtajan have pointed out that the
spectra given by Eqs. (2.4) and (2.7) are unphysical
single-kink excitations with spin —,. The physical spin-
wave excitations with s'„„&=+1 are actually formed
from two such kink solutions. The spectrum is, in fact, a
continuum, given by the form

where C& is a positive constant. The energy gap in this
Ising-like region, given by Eqs. (2.7)—(2.9), also shows an
essential singularity as

E o
—+const X exp

C'i
1+,

b, —1
(2.14)

where C
&

is another positive constant.
The exact 1D ground-state energy for a range of values

of 6 which spans all of the phases is shown later in Fig. 2,
along with our CCM results. The corresponding exact
staggered magnetization for 6 ~ 1 is also shown later in
Fig. 6.

III. GROUND KET STATE

We begin this section with a brief summary of the
CCM, taking our spin model on a bipartite lattice as ex-
ample. For more detailed reviews, the interested reader
is referred to Refs. 4—10.

The first step of the CCM is to choose a model state
Although it is not necessary to do so, an uncorre-

lated state is often taken. For our antiferromagnetic
mode1, the N-body Neel state is the obvious choice, con-
sisting of two alternating sublattices, with their spins in
the +z directions, respectively. The exact ground ket
state ~ql & is quite generally expressed in the CCM form as

(3.1)

where the correlation operator S is partitioned into one-
body, two-body, etc., and up to N-body pieces with N the
total number of spins in the system. We choose X to be
an even number. In particular, one writes

G l'(n)= &sPst'+„&, M—:—i&sr &i,
1 1

(2.11)
NS=QS„, (3.2)

with a,P=x,y, z, and where s is the spin quantum num-
ber, s =s(s +1). Because of the translational invariance
of the lattice systems, both G(n) and M are independent
of the index l in Eq. (2.11). The asymptotic value of the
magnitude of G "(n) as n —+ ~ is equal to the square of
the staggered magnetization M'.

In the critical region (~b, ~ 1), there is no diagonal
LRO, i.e., M'=0, and the leading asymptotes of the
correlation functions have power-law decay behavior as
n —+00~

with S„expressed in terms of n-fold "creation" opera-
tors,

(3.3)

These creation operators C;+ are defined according to the
Hamiltonian of the system and with respect to the chosen
model state. In our spin model, the creation operators
C; are defined by the spin-Hip operators with respect to
the Neel model state, i.e., the spin-raising operators s;
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for the down-spin sublattice, and the spin-lowering opera-
tors s for the up-spin sublattice. It should be notedJ
that, by definition, each term in Eq. (3.3) commutes with
every other term.

The CCM Schrodinger ground-state equation is then
written in the following form:

(3.4)

or in the equivalent similarity-transformed form,

o —=2s, a =x,y, z . (3.9)

We thus equivalently define raising and lowering opera-
tors by

along the —z axis. This is equivalent to the transforma-
tion s~ —+ —s„,sy~sy and s, ~—s, on the up sublattice.

Secondly, because we are concerned only with spin- —,
'

models here, we use the Pauli matrices to replace the spin
operators,

e-'He'C) =E, le ) . (3.5) o,—. = —,'(o, +io~) (3.10)

E, =(el e'He'le'), (3.6)

and secondly with the state (4&l C; C; . . . C, , one has a
1 2 n

set of nonlinear coupled equations for the coefficients
g. . . in Eq. (3.3):

(@lC, C, . . .C; e He lN) =0, n =1,2, . . . ,X,

Taking the inner product firstly with the model state
( 4&l, one has the expression for the energy

for the down-spin sublattice and

o.+——=—'( o+i—o~) (3.11)

(3.12)

for the rotated up-spin sublattice. We note that the sub-
lattice rotation leaves the commutation relations of the
Pauli matrices unchanged,

(3.7)

where the destruction operators C; are the Hermitian
adjoints of the corresponding creation operators C,.+.
These nonlinear coupled equations are the hallmark of
the CCM. One can also use the fact that the similarity-
transformed Hamiltonian e He can be written in
terms of nested commutators using the well-known ex-
pansion

The Xgz model Hamiltonian of Eq. (2.1) in our rotat-
ed Neel basis is now given by

7 X ~l~l+p+ ~! ~l+p+ ~l ~l+p
I,p

2
(3.13)

The n-body operators S„of Eq. (3.3) in our model are
then written as

e He =H+[H, S]+—,[[H,S],S]+.. . .
1

(3.8) S„=C„
I1,I2 „.. . , I

+ + +I I I +I +I ' .+I12'n1 2 n
(3.14)

This otherwise infinite expansion always terminates after
a finite number of terms in our case because the Harnil-
tonian H contains a finite number of destruction opera-
tors. For example, for a Hamiltonian with a two-body
potential, the expansion terminates at fourth order.

Before we apply the CCM to calculate the ground ket
state of the XXZ model, we transform the model Hamil-
tonian of Eq. (2.1) into a more convenient form. First, we

perform a notational rotation' of 180' about the y axis of
one sublattice of the Neel state so that all spins in the
model state align in the same direction, say down, i.e.,

I

where C„ is some suitable normalization constant. Not-
ing that the ground state of the antiferromagnetic spin
models is in the subspace of s,'„,

&
=0, it follows that the

correlation operator S should contain only those parti-
tions S„with even n, and with n/2 creation operators on
each of the two sublattices. From now on, to avoid con-
fusion, we shall exclusively use indices i or Ii„ I for one
sublattice, and j or [j„] for the other. Hence, one can
rewrite Eq. (3.14) with a rather natural choice of the nor-
malization constant C„as

+ + + + + +12npgX+jl . . .l'JJ. . .J 1 l '''
l jj'''J(~f) 12'''n' I 2''' n I 2 n 1 2 n

1' 2' ' ' ' n 1' 2' ' ' ' ' n

(3.15)

where an arbitrary coefficient 4;; . . with any repeated index may be taken to be identically zero because of the1' ' ' n'J1' ' Jn

property of the Pauli matrices, (o +
) =0. This is only true for the spin- —,

' systems considered here.
As in any microscopic theory, one needs to make a truncation approximation in a practical calculation. In other

words, we shall need to truncate the total possible number of cluster configurations in Eqs. (3.2) and (3.15) for the corre-
lation operator S to some finite or infinite subset. We shall discuss several physically motivated such approximations
below. In each such case, the CCM equations are derived from Eq. (3.7) with the destruction operators chosen, in turn,
to be the Hermitian adjoints of the creation operators corresponding to each configuration retained in the approxirna-
tion for S. We thus have a set of equations equal in number to the cluster coeKcients retained.

The most common truncation scheme of the CCM is the so called SUBn approximation in which one only keeps up
to the n-body correlations,
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n/2

~~~suan
1=1

(3.16)

and where in the present case n is an even positive integer. Therefore, for example, the SUB4 approximation consists of
two sets of coupled equations, namely the two-spin-Aip and four-spin-Rip equations. They are obtained, respectively, as
follows:

e"p( ~sUB4)~ exp(~SUB4) I@) =o

ol

and

P

(1+264;.;+ +24;.;+ )5;+,—2(h+2S;.;+ )S;., +g(S;.,S;.;+ +4;;., +, ) =0; (3.17)

(NIo, o,. o~'o~ . ex'p( —SsUB4)H exp(SsUB~)I@) =0,

+4, . (4, .,'S,'. , + +4, . S . ')+S, . '(4, . S, . ,'+ +4, . '4 ., )

—2$;.;+ IS;. 4;. '(5, + +5,'+, )+S;.,'S, . (5, + +5, + )]

—
—,
' g (&;- J&;;;-+. J'+S; '4;,' ;-+. +.4;.,- +S. .., . ",+4, . ,'.+ 4, ,„. , ) =0 . (3.18)

We note that Eqs. (3.17) and (3.18) are valid within the
SUB4 approximation for a bipartite lattice in an arbitrary
number of dimensions.

The ground-state energy is obtained from Eq. (3.6) as

8
(b+2b ), — (3.19)

where z is the coordination number (i.e., the number of
nearest neighbors) of the bipartite lattice, and bi =—4, ., +
is the first two-body coefficient. We note that Eq. (3.19),
which is exact and not just restricted to the SUB4 ap-
proximation, gives the ground-state energy in terms of
the single lowest-order correlation coefficient b& under
any approximation. Clearly the first term, —zA/8, in
Eq. (3.19) is just the classical Neel value, and the term in-
volving b& gives the correction to this classical value due
to quantum Auctuations.

Other physically motivated truncation schemes are
also possible. We have found several useful ones defined
as follows. Thus, a second sequence of approximations is
based on the localized nature of the interaction itself,
which we call the LSUBn scheme where the character L
stands for "locale." At the LSUBn level of approxima-
tion, one retains only those configurations in the correla-
tion operator S which contain any number of spin Hips

with respect to the Neel state over a locale or localized
region of n contiguous sites, and which are compatible
with the restriction s'„„&=0.

A third sequence of approximations is motivated by
the kink structures of the spin systems in 1D, or by the
domain structure in a dimension more than one. We call
it the PSUBn scheme with P standing for "plaquette. "
By definition, each plaquette consists of one contiguous
cluster of arbitrary size iv. which all of the spins are
Hipped with respect to the Neel state. Hence the PSUBn
approximation will contain configurations with up to n

such plaquettes.
Finally, a fourth sequence of truncation schemes is a

combination of the SUBn and LSUBm schemes (with
m & n), hence denoted as SUBn+LSUBI. This scheme
not only contains the arbitrarily long-range contributions
of the SUBn configurations but also the localized higher-
order I-body correlations (with m & n) of the LSUBm
configurations which are relatively easy to handle. This
scheme in our calculations is the most promising one be-
cause it gives a phase transition as well as accurate nu-
merical values of the ground-state energies as we shaH see
shortly.

rv. cmuvXD-ST&YE K+ERGV rW ~D

In this section we shall study separately the various
truncation schemes de6ned in Sec. III for the 1D model
and leave the corresponding calculations for the 2D mod-
el to the next section.
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TABLE I. Ground-state energy per spin for the 1D XXZ model at several values of 6 under various
SUB2-m schemes. The full SUB2 (=SUB2-~) results and the exact results of Ref. 22 are given in the
last two columns.

SUB2-2 SUB2-4 SUB2-6 SUB2-8 Exact

5.0
2.0
1.0
0.5

—1.2986
—0.6076
—0.4167
—0.3421

—1.2986
—0.6078
—0.4186
—0.3494

—1.2986
—0.6079
—0.4186
—0.3504

—1.2986
—0.6079
—0.4186
—0.3506

—1.2986
—0.6079
—0.4186
—0.3506

—1.2995
—0.6172
—0.4432
—0.3750

A. SUBn scheme

In Eq. (3.17) we obtain the equations of the full SUB2
approximation by setting all four-body coefficients to
zero. Using the translational in variance, we write

l

4';.;+,—=b, =b „where r is a lattice vector which con-
nects the two sublatti. ces of the Neel model state. In 1D,
r is thus a positive or negative odd integer, and the full
SUB2 equations then become

(1+2bb, +2b, )5 „—2(b+2b, )b„+gb„+ +,b„„, =0,
P r'

(4.1)

where p=+1 denotes the nearest-neighbor lattice vectors
in 1D, and the sum on r' runs over all (positive and nega-
tive) odd integers.

One can define a partial SUB2 approximation here
which we call the SUB2-m scheme. In this SUB2-m ap-
proximation, one keeps only those coefficients b, with
~r (m. For example, the lowest approximation of all is
the SUB2-2 truncation in which one keeps only the single
independent coefficient b, . The SUB2-4 approximation
retains the two independent coefticients, b& and b3, and
the SUB2-6 approximation retains the three independent
coefficients, b &, b3, and b5, etc.

The SUB2-2 equation is easy to solve. In Eq. (4.1), set-
ting all other coefficients to zero, one has a second-order
equation for b&,

itive values of A. This is demonstrated in Table I and
Fig. 1. In Table I we have listed the results for the
ground-state energy under the various SUB2-m schemes
(up to m = 8) at several values of b, . We have also includ-
ed the corresponding exact results from Sec. II in the last
column. It is interesting to observe in Fig. 1 that, at
small 6, the energy curves from the various SUB2-m

—0.2

SUB2

1 —2kb (4.2) -0.3-

with solution

b, =-,'(&a'+3 —a), (4.3)
Eg
N

where we have discarded the other unphysical solution.
At b, = 1 (the Heisenberg model) and b, =0 (the XY mod-
el), the ground-state energies are obtained respectively,
from Eq. (3.19) as E /N = —

—,', = —0.417 and
E /N= —+3/6 = —0.289. This compares with the ex-
act results of —0.443 and —0.318, respectively, from Sec.
II, to the same three significant figure level of accuracy.
From Eqs. (4.3) and (3.19) it is easy to see that the SUB2-
2 approximation gives the same asymptotic form for the
ground-state energy in the Ising limit (b,~ oo) as that of
the exact result, given by Eq. (2.6). It is interesting to
note that our SUB2-2 wave function has the same form as
that used by Sachdev in a variational calculation at
6=1. In contrast with our own method, he minimized
the expectation value of the Hamiltonian with respect to
b, and thereby obtained a value Eg /N = —0.428.

The SUB2-m approximations with larger m show a
rapid convergence in the energy calculation for most pos-

—04-

SUB2—4

—0.5
-1.5 —1.0 —0.5 0.0 0.5 1.0 1.5

FIG. 1. Ground-state energy per spin for the 1D spin-2 XXZ
model as a function of 6, showing the results of several SUB2-m
and the full SUB2 (—=SUB2-00) schemes described in the text.
The terminating point of the full SUB2 approximation is indi-
cated.
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schemes bend downward increasingly rapidly as I in-
creases, indicating the possible existence of a special
point in that region. This point will become more expli-
cit when the full SUB2 equations are solved.

The complete equations of the full SUB2 approxima-
tion, Eq. (4.1), can be solved exactly by the so-called sub-
lattice Fourier-transform method. We leave the details to
Appendix A and simply give the solution here:

—0.2

—0.3

/ '.
..—Psuw

Neel ~

b„=—f dq (1—+1—k cos q ),
o cos(q)

where the constants K and k are defined by

1+2kb i+2b IK:—6+2b „k (b+2b, )

(4.4)

(4.5)

In particular, b, is determined self-consistently by the re-
lation

b, =—f dq(1 —+1—k cos q ) .
0

(4.6)

In the large-6 limit, this b, again gives the same asymp-
totic form for the ground-state energy from Eq. (3.19) as
that of the exact result given by Eq. (2.6).

We note that a real solution to Eq. (4.6) ceases to exist
when k )k, =1. This gives the critical value

—1.0 0.5 1.0 1.5

bl =o.h„ 1

+1+2cz+ 2a
(4.7)

where a =(vr 2—) /(4 —1r ) —Num. erically, b,, =0.3728.
The ground-state energy of this complete SUB2 approxi-
mation is shown in Fig. 2, together with that of the
SUB2-2 approximation. Most interestingly, however, the
behavior of b, as a function of r in the SUB2 approxima-
tion changes its exponential decay to a power-law decay
precisely at this critical point, i.e., as r ~ ~,

a/l", 6) b.. .
b„~ ' (4.8)b/r,

where b is a constant and a and l () 1) are functions of 5
only. This behavior indicates a possible phase change at

Further evidence for a phase change at A=A, will
be given in Secs. VI and VII, where other physical quan-
tities such as the order parameter, correlation functions,
and the excitation spectrum are calculated.

B. I.SUBn scheme

The lowest-order approximation of the LSUBn scheme
is given by the LSUB2 truncation which is the same as
the SUB2-2 approximation, i.e., as given in Eqs. (4.2) and
(4.3).

The LSUB4 scheme retains only three independent
configurations in 1D, namely the two lowest independent
two-spin-Hip configurations characterized by the
coefticients b, and b3, and the most compact four-spin-
fIip configuration represented by the coefficient

+2. + I + 3 —g4 Again here we use g4 to replace the
first four-body coefticient for simplicity. As always, we
assume that the configuration coefticients share the obvi-

FIG. 2. Cxround-state energy per spin for the 1D spin- —' XXZ
model as a function of 6, showing the exact results of Ref. 22,
and our CCM results for the LSUB2, LSUB4, PSUB1, and full
SUB2 approximation schemes described in the text. The ter-
minating point of the full SUB2 scheme is indicated. The exact
result becomes critical at 6=1, although this is not obvious
from the energy plot.

+ + + ++g4~1 ~1+1~1+2~1+3) (4.9)

where the sum on I runs over all lattice sites.
The three independent coefficients of the LSUB4 ap-

proximation are now determined by three coupled equa-
tions, obtained from Eqs. (3.17) and (3.18) by setting all
other coefFicients to zero,

1 —2kb I
—3b ) +2b I b3+ 2b 3 +2g4 =0,

b )
—4hb3 4b Ib3+g4 0

(4.10a)

(4.10b)

—b(b, +2b, b3)+g4(b, +4b, +b3)+2b, b3 =0 . (4.10c)

The corresponding numerical solution for the ground-
state energy is also shown in Fig. 2 for comparison.
Several values for the energy at various points of 6 under
this LSUB4 approximation are given in Table II. As can
be seen from Fig. 2 and Table II, the LSUB4 approxima-
tion gives better results for the energy than the LSUB2

ous lattice symmetry, so that here, for example,

+ii+2;i —,1,i +1 +i, i +2;i +3,i +1 g4

etc. In fact, one can write the correlation operator S un-
der this LSUB4 approximation simply as (in 1D only)

LSUB4 g ( b 1 i~ 1 171 + 1 +b 3 0 1 (71 +3
l



R. F. BISHOP, J. B. PARKINSON, AND YANG XIAN

TABLE II. Ground-state energy per spin for the 1D XXZ model in the LSUB4 and SUB2+LSUB4
schemes at several values of 6, together with the exact results of Ref. 22.

5.0 2.0 0.5 0.0 —0.5

LSUB4
SUB2+ LSUB4

Exact

—1.2995
—1.2995
—1.2995

—0.6155
—0.6155
—0.6172

—0.4363
—0.4366
—0.4432

—0.3692
—0.3727
—0.3750

—0.3193

—0.3183

—0.2932

—0.2745

(—=SUB2-2) and the full SUB2 schemes for most values of
At small and negative values of 6, both LSUB4 and

LSUB2 results deviate from the exact results
significantly, and the LSUB4 result becomes lower than
the exact one.

C. PSUBn scheme

As defined earlier, the PSUBn scheme consists of n pla-
quettes of contiguous flipped spins with respect to the

Neel model state. Even at the lowest order of this
scheme, PSUB1, up to X-body correlations have been
taken into account, albeit only partially, where X is the
number of particles in the system. The PSUB1 correla-
tion operator is thus given by

N N/2 2m +
~PSUB1 X X g2m II ~i+i —1

i =1 m=1 1=1
(4.1 1)

where g2 ——b1. The CCM equations are given in this case

by

1 26g2 3g2 +2g4 =0
m —1 m —1

~g2 g2 +2+2~g2g2 ~ X g2 g2 —2 +( ~2, ) g g2 g2 —2 +2

(4.12a)

(4.12b)
n=1 n =2

We have not attempted to obtain an analytic expression
for the coe%cients Igz I in this scheme. However, the
numerica1 solution gives the ground-state energy curve
which is also shown in Fig. 2 for comparison.

In Table III we give the results under some partial
PSUB1 approximations at several values of A. The
definition for the partial PSUB 1 approximations,
PSUBl-m, is similar to that for the partial SUBn scheme.
Hence, the PSUB1-2 approximation retains one
coe5cient g2, PSUB1-4 retains g2 and g4; PSUB1-6 re-
tains g2, g4, and g6, etc. From Table III we again see
that the convergence is very rapid as m increases; and
from Fig. 2, one concludes that, although in this scheme
partial higher-order many-body corrections are taken
into account, the values for the ground-state energy ob-
tained are not better than those in LSUB4 approxirna-
tion. This is somewhat disappointing, but it clearly
shows the importance of some configurations over others,
at least so far as the ground-state energy is concerned.

D. SUBn+LSUBm scheme

As discussed above, the full SUB2 scheme retains only
the two-spin-flip configurations. It includes the long-
range contributions of two-body correlations and shows
an interesting changeover in the asymptotic behavior for
the coefticient b„as r —+~. However, its result for the
ground-state energy is not better than that of the LSUB4
scheme. One can improve the result of the SUB2 scheme
by taking partial four-body corrections into account
without much difhculty. If we consider the g4 contribu-
tion together with those included in the full SUB2
scheme, then all the terms in the SUB2 and the LSUB4
schemes are included, i.e., SUB2+LSUB4. The resulting
equations for the con6guration coe%cients, obtained from
Eqs. (3.17) and (3.18), are now given as

1 2&b )
—6b $

+2g—4+ y bp„](b2„)+by„~] ) —O,

(4.13a)

TABLE III. Ground-state energy per spin for the 1D XXZ model under various PSUB1-m approxi-
mations at several values of h. The exact results of Ref. 22 are included in the last column.

PSUB1-2 PSUB1-4 PSUB1-6 PSUB1-8 PSUB1-10 Exact

5.0
2.0
1.0
0.0

—1.0

—1.2986
—0.6076
—0.4167
—0.2887
—0.2500

—1.2994
—0.6144
—0.4297
—0.2887
—0.1649

—1.2995
—0.6151
—0.4310
—0.2887
—0.1760

—1.2995
—0.6152
—0.4311
—0.2887
—0.1753

—1.2995
—0.6152
—0.4311
—0.2887
—0.1753

—1.2995
—0.6172
—0.4432
—0.3183
—0.2500
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3 g4 g 2g —3 b2„,+b2„+i )=0, (4.13b)

—4ICb2~+, + g b~(~ „)+i(b2„1+b2„+1)=0,

inclusion will alter the critical behavior. Specifically, the
inverse-square-law algebraic decay of the two-body
coefficients b„ofEq. (4.8) at the critical point may change
to a different power-law behavior. It would be interesting
to observe this phenomenon.

mAO, +1,—2, (4.13c)

Ag4 —2kb jb3 Ab]+b3g4 b5g4+2b]b3+4b, g —0

(4.13d)

where the constant K is given in Eq. (4.5). A full analyti-
cal solution of these equations has not been obtained.
The results of a numerical solution are, however, shown
in Table II and in Fig. 3. One can see that, not only is
the value for the ground-state energy much improved,
but the critical point 6,=0.4355 is also somewhat closer
to the expected value of 1 than that in the SUB2 scheme.

We have not yet calculated the effect of including at
least some of the long-range contributions of the four-
body correlations. However, the expectation is that their

I

V. GROUND-STATE ENERGY IN 2D

In this section we focus on the 2D model on a square
lattice. As in the previous section, we study the various
approximation schemes separately.

A. SUBn scheme

The 2D full SUB2 equation is similar to Eq. (4.1) for
1D, except that the vectors I" joining sites on one sublat-
tice to those on the other are now two dimensional, i.e.,
r=r-,-=r —r;. For simplicity we still use the symbol r
instead of r unless it is necessary to do otherwise. Hence,
the equation of the 2D SUB2 scheme can be written as

(1+2bb, +2b, )5 „—2(b+2b, )b„+g b„+p+p b„
P

=0, (5.1)

where p denotes the four nearest-neighbor lattice vectors
on the 2D square lattice and p& is any one of them.

One can define a sequence of partial SUB2-m approxi-
mations, similar to the 1D case. The lowest-order ap-

—02

1 —6bbq —5b, =0 (5.2)

with solution

proximation, SUB2-2, which retains only the first two-
body coeKcient b „gives the equation

b, =-,'(&9a'+ 5 —3S) . (5.3)

The full 2D SUB2 equation (5.1) can also be exactly
solved as in the 1D case. The details are again given in
Appendix A. The solution is given by the following equa-
tion:

, f dq. f'dq,
cos(r, q, )cos(r q )

y(q)

X[1—+1—k y (q)], (5.4)

where the constants K and k are given exactly the same
as in 1D by Eq. (4.5), and the function y(q) is defined by

y(q):——,
' g exp(iq p) =

—,'(cosq„+cosq~ ) .
P

(5.5)

The coef5cient b] is determined self-consistently by the
relation

—OD
—1.5 -0.5 0.5 1.0 1.5

b, = f dq, f dq [1—+1—k y (q)]. (5.6)

FIG. 3. Cxround-state energy per spin for the 1D spin-2 XXZ
model, showing the full SUB2 and SUB2+LSUB4 results de-
scribed in the text, together with the exact results of Ref. 22.
The terminating points of both CCM approximations are indi-
cated.

Once b
&

is determined, the ground-state energy is again
calculated by Eq. (3.19), with z =4 for the 2D square lat-
tice. In Fig. 4 the energy is shown as a function of 5
within both the SUB2-2 (

=—LSUB2) and full SUB2
schemes. Both approximations give the same asymptotic
behavior for the energy at large 6,
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FIG. 4. Ground-state energy per spin for the 2D spin- —' XXZ

model on a square lattice as a function of 6, showing our
LSUB2, LSUB4', LSUB4, and full SUB2 results described in the
text. The terminating point of the full SUB2 scheme is indicat-

ed. Also shown are the A~ ~ asymptotic form of Eq. (5.7), and

the Monte Carlo (MC) results of Ref. 32 (indicated by crosses).

FIG. 5. A graphic illustration of the seven configurations re-
tained in the 2D LSUB4 scheme described in the text. The
crosses indicate the Aipped spins with respect to the model Neel
state and the dashed lines delineate the locale of the correspond-
ing configurations. The weights w and d, defined in the text, are
given, respectively, for each configuration.

B. LSUBn scheme

(5.7)

which again coincides with the exact result within the
same order from perturbation theory, ' as in the 1D case.
This asymptotic behavior and the results of a recent
Monte Carlo calculation are also shown in Fig. 4. The
numerical values for the ground-state energy in the
SUB2-2 and full SUB2 approximations at 6=1 are given
in Table IV, together with other approximations for com-
parison.

The critical point of Eq. (5.4) is determined exactly as
in lD, i.e., by Eq. (4.7), but with a different value for a.
For the square lattice we obtain numerically a=0.2310,
giving 5, =0.7985, and the ground-state energy at this
critical point, E /N = —0.5837. One sees that this value
of 6, is much closer to the classical value of 1 than that
in 1D.

As in 1D, the LSUB2 approximation is the same as the
SUB2-2 approximation, which is given by Eqs. (5.2) and
(5.3). However, in general, the 2D case is more compli-
cated because there are many more configurations than in
1D. For example, in the LSUB4 approximation for the
2D square lattice, there are seven independent
configurations with coefficients defined as shown graphi-
cally in Fig. 5.

It is natural to expect that some of these configurations
are more important than others, at least in the regime
where the quantum fiuctuations have not completely de-
stroyed the classical LRO which is present in the model
Neel state. We consider two possible physical measures
of how important a given configuration is. The first of
these is simply the number w of "wrong" bonds produced
by flipping spins with respect to the Neel model state.
Classically, the breaking of each bond in the antiferro-
magnetic regime costs energy, and hence configurations
with larger values of w are likely to be less important
than those with smaller values of w. Secondly, an exten-

TABLE IV. Ground-state energy per spin for the 2D Heisenberg model (6=1) on a square lattice
under various CCM approximation schemes described in the text, together with the results of the spin-
wave theory (SWT) of Ref. 33, and from the Green's-function Monte Carlo (GFMC) calculations of
Ref. 28.

SUB2-2

—0.648

SUB2

—0.651

LSU84'

—0.653

SUB2+g4
—0.656

LSUB4

—0.664

SWT

—0.658

GFMC

—0.669
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sion of the seemingly important concepts in 1D of locale
size and the number of kinks present, leads us to consider
the length, d, of the "domain boundary" of a given
configuration. This is defined to be the number of lattice
bonds crossed by the shortest-path circuit (indicated in
Fig. 5 by the dashed lines) which encloses all of the

Aipped spins. The weights w and d for each of the
LSUB4 configurations are indicated in Fig. 5.

From their weight numbers (w and d), one sees that b,
is most important, followed by g4, then b3 and b3, then
g4, g4, and g4, etc. The seven coupled equations of the
full LSUB4 scheme are given by

1 6kb, sb, +4(b3) +14(b3) +2b, b3+12b(b3+Sb3b3+2g4+2gq+4g4+Sg4=0
—Shb3+b, +8(b3) —Sb, b3+8b b +g" =0

Sh—b~+3b2+6(b") +4b, b' 2b, b—+Sb'b +g'+2g =Q

4'' —4kb, +8b,g'+4b, g'+8b, b —4b3g' —8b3g' —8b g"=0,
shg4 hb~ 2bb, b3+Sb, g4+b3g4+2b3g4 6b3gq+2b, (b3) +4b~b3+4b~b3b3 =0

sag~ —bb f 2bb)b 3—+b,g4+Sb, g4+2b, g4d b3g~ —b3g4 —3b3g4—+2b, +4b, b3+4b, (b3 ) =0,
106&4 266 i 4kb&63 +2big4+ 166]g4 63g4 63g4 263g4 b3g4

—3b3g' 2b3g"—+2b, +2b b'+6b b +2b, b'b~+Sb, (bb) =0

(S.Sa)

(5.8b)

(5.8c)

(5.8d)

(5.8e)

(5.8f)

(5.8g)

Solution of the full LSUB4 equations is done numerically.
Using Eq. (3.19), we obtain the ground-state energy
which is also shown in Fig. 4. From Eq. (5.8), if one re-
tains only the two most highly weighted coefficients, b

&

and g4, according to the above criteria, and sets all others
to zero, one has a partial LSUB4 approximation which
we denote as LSUB4'. Its result for the ground-state en-
ergy is also shown in Fig. 4. It is interesting to note that,
in Fig. 4, the rapid downward bending of the energy
curve around 6=0.6 in the LSUB4 scheme indicates a
possible critical point near this region, reminiscent of the
phenomenon observed in the 1D SUB2-I schemes dis-
cussed in Sec. IV and shown in Fig. 1.

The numerical values for the energy at 5=1 in the
LSUB4' and LSUB4 approximations are given in Table
IV. One sees that, as far as the energy is concerned, the
LSUB4' scheme gives a better result than both the
LSUB2 (:—SUB2-2) and the full SUB2 schemes, but the
LSUB4 result is the lowest and it is the closest to the re-
sults from the best available numerical Green's-function
Monte Carlo (GFMC) calculations. Our results are also
compared in Table IV with the corresponding result of
Oguchi from Anderson's spin-wave theory (SWT), in
which the correction to the classical Neel value is calcu-
lated to the first order in inverse powers of the spin quan-
tum number s, where s =—,

' here. Finally, we note that
the completely independent and quite difFerent GFMC
calculations of Carlson and of Trivedi and Ceperley are
in excellent agreement with each other, with values
E /N = —0.6692+0.0001 and —0.6692+0.0002, respec-
tively. Both values also agree well with another recent
result of Singh, ' who obtained E /X = —0.6696
+0.0003 from a perturbation theory calculation per-
formed around the Ising limit.

C. SUBn+LSUBm scheme

Just as in the case of 1D, one can take partial four-
body correlations into account by including some four-

I

body coefficients, in addition to the full SUB2 coefficients.
Here we consider SUB2+g4. One has three equations

1 6bb, —14b,—+g b„b„+ + +2g4 =Q,
r', p

8(&+2b, )b„—g b„, b„+ + =0, ~r~ ~ 3,
,p

Ag,' —KI 2+2b g'+2I 'b" =0

(S.9a)

(5.9b)

(5.9c)

where, as before, p& is any one of the four nearest neigh-
bors of the square lattice. In particular, the critical point
is now at 6, =0.8186, again as in 1D closer to the value 1

than the corresponding SUB2 result. The ground-state
energy at 6= 1 is also given in Table IV.

VI. BRA STATE, CORRELATION FUNCTION,
AND STAGGERED MAGNETIZATION

In order to calculate any physical quantities other than
the ground-state energy in the CCM, the bra state is also
needed. As stated in Sec. I, one of the key features of the
CCM is that the bra state is not manifestly the Hermitian
conjugate of the corresponding ket state in any finite
CCM approximation and needs to be calculated separate-
ly. Accordingly, the CCM does not give an upper bound
for the ground-state energy. However, the CCM calcula-
tion of physical values at any leuel of truncation is con-
sistent with the important Hellmann-Feynman
theorem. As Thouless has shown, this implies that
the expectation value of any physical quantity involves
the same set of diagrams as for the energy, but in which
each one of the interaction potential lines is replaced one
at a time by the operator whose expectation value is to be
calculated.

There are two distinct versions of the CCM for
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parametrizing bra states, namely, the normal CCM
(NCCM) and extended CCM (ECCM) schemes. Here we
use the NCCM scheme. For more detailed discussions on
the parametrization of bra states within the CCM, and of
the alternative ECCM scheme, the interested reader is re-
ferred to Refs. 6 and 8.

The normal CCM bra ground-state wave function ( tl
corresponds to the ket state l'0 ), and is parametrized by

N/2
S=1+ g S~„

n=1
(6.2)

where the correlation operator S is built wholly out of de-
struction operators with respect to the model state le).
Note that e is clearly not equal to e, where S is the
Hermitian adjoint of operator S, and hence the need for
the additional operator S. In our spin models on a bipar-
tite lattice, it is given by

(q l

= (elSe-', (6.1)

I

Sg I f J J J 0
1

0 I 0 f 0 J 0 J 0 J )12' 'n' 1 2 ''
n 1 2 n 1 2 n

(6.3)

where, as in the previous sections, the indices i and j denote the two sublattices, respectively. We note that the particu-
lar value of unity for the constant term in Eq. (6.2) implies the manifest normalization

(6.4)

By analogy with the ket state case discussed previously, the Schrodinger equation for the ground bra state is written

&q'IH=E, &q'I, (6.5)

and the equations for the bra state coefficients S;; .
~ J are found by taking the inner products of Eq. (6.5) with the'1 --'n J1. - Jn

complete set of states obtained by letting arbitrary configuration creation operators act on the Neel state le ). After a
simple operator manipulation, using Eqs. (3.6) and (3.7), this leads to the equations

(elSe [H, o,+. . .o,+o+ . o+je le&=0, n=1, 2, 3, . . . , (6.6)

where we have used the fact that S commutes with all configuration creation operators. Equation (6.6) has the form of
coupled but linear equations for the bra state coefficients once the ket state coefficients are used as known input. Once
again, the resulting equations contain only finite powers of S, since the nested commutator series again terminates after
a finite number of terms.

As before, one needs to define approximation schemes to solve Eq. (6.6). Here we consider the SUB2 approximation
in which S~S2 and S~S2. Setting all higher-order many-body coefficients to zero, and making use of the translation-
al invariance, we obtain for the 1D chain and the 2D square lattice, with S, . , +„=b„, —

P

1+2(b, +2b, )b, —4 g b„b„. 5„—2(b, +2b, )b„+2g b„,b„ =0, (6.7)

where r and r' are again vectors connecting sites on
diFerent sublattices. One can obtain the lowest-order ap-
proximation, LSUB2 (—= SUB2-2), from this equation by
setting all independent coefficients to zero except b, and
b i. This gives

b

1

2&x'+3
1

2+96. +5

for 1D,

for 2D (square lattice) .
(6.8)

d cos(q r)
4IC ~ (2~)d Q 1 k2y&(q)

(6.9)

where the constants K and k are as defined previously in

The full SUB2 equation (6.7) can again be solved by the
Fourier-transform technique. Details are given in Ap-
pendix B. The solutions are, for both the 1D and 2D
(square lattice) cases,

I

Eq. (4.5), the constant D is given by

d q 1 —y'(q) /2
—~(2ir) V'I —k&y2(q) 2 '

and where the function y(q) is defined by

cosq, in 1D,
—,'(cosq„+cosq ) in 2D .

(6.10)

(6.11)

0 1

I'
1

2E, '

(6.12)

In Eqs. (6.9) and (6.10) the meaning of the definite in-
tegrals is given explicitly in Appendix A, Eq. (A5). It is
easy to see that, as for the ket state, real solutions cease
to exist in Eq. (6.9) when k) k, =l (or b, (A, ). In the
1D case, this leads to the asymptotic behavior as r ~ ~,
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=(C ~Se cr, o~~ies~e), a,P=x,y,z, (6.13)
I

where the constant l ( & 1) is a function of b, and
K, =A, +2b, . This behavior will be used when we dis-
cuss the possible phase transition implied by the ter-
minating point.

After both the ket and bra states are determined we
can calculate the ground-state expectation value of any
physical operator within the corresponding approxima-
tions. Two important such quantities are the spin-spin
correlation functions and the staggered magnetization.
The asymptotic value of the magnitude of the correlation
function should be equal to the square of the staggered
magnetization. However, in the CCM, because of the
lack of a manifest Hermitian relationship between the ket
and bra states, this equality does not hold in general in
any given approximation. In fact, the difference between
the two is a measure of the error of the corresponding ap-
proximations, as we shall shortly see.

The spin-spin correlation functions in the CCM are
given by

G ~( l ) —= ( cr o ~ )

where l is any lattice vector. Note that this definition of
the correlation function differs from the usual one [e.g. ,
Eq. (2.11)] by a factor of (

—1)' which gives a minus sign
if indices i and i+/ pertain to sites on different sublat-
tices, and a plus sign otherwise. This is because we have
employed the rotated Neel model state in which all spins
are aligned along the minus z axis. Similarly, the stag-
gered magnetization is given by

M —= ——y(a;. )
2

l

2= ——g (4~Se o, e ~@), a=x,y, z, (6.14)
l

where the summation is over one of the sublattices, and
the inclusion of the minus sign ensures that M' is positive
in our rotated Neel basis.

Under the SUB2 approximation, we obtain in both 1D
and 2D,

[G "(l))suB~= '

1 —4(1 —5&0)g b„b„, same sublattice,
r

1 —4 g b„b„+4b&b&, different sublattices,
(6.15)

where, as previously, the sums on r run over all vectors
joining sites on different sublattices. From this equation
one sees that the SUB2 estimate for G "(l) is independent
of I for spins on the same sublattice, which is an unphysi-
cal consequence of the approximation. On the other
hand, for the correlation between spins on different sub-
lattices, the asymptotics of G "(r) is determined by the
product b„b„.

From Eq. (6.15) one can define an order parameter as-
sociated with 6 "as

pressed in terms of odd powers of the ket state and bra
state coe%cients in the SUB2 approximation for both 1D
and 2D. Again, for the correlation between two spins on
the same sublattice, they are constant. For spins on
different sublattices, we obtain, combining 6 ",6 ~, and
6 ZZ

G(r)—= (o; o; „)
=2 g b„.b„b„~„.~„„8+b„b„.—b„

p=G "(~)=1—4g b„b„. (6.16) +4b„b, +2b„+b„+4b„b„+p . (6.18)

The explicit SUB2 solutions for both 1D and 2D are
given by Eq. (B13) in Appendix B. In particular, at the
critical point, p, = —1 in 1D and p, =0.362 in 2D
(square lattice).

For the 1D case, the asymptotic behavior of G "(r) asr~~ is easily determined. Using Eqs. (4.8) and (6.12)
we have

At the critical point, the asymptotic value of the correla-
tion function in 1D is nonzero, G, ( oo ) = —1+(I/IC, )

+K, /2. With K, =1.363, G, (co )=0.4152 in 1D.
In the SUB2 approximation, the staggered magnetiza-

tion for both the 1D and 2D square lattice models is
given by

G "(r)~ '

p+, 6)5, ,
L 2r '

p, + 8 (6.17)

(6.19)

1 26
&~'+3 in 1D,

M'=1 —2 g b„b„, M"=M~=0 .

The explicit SUB2 solutions are given by Eq. (B14) in Ap-
pendix B. The LSUB2 approximation gives

where B is constant, A and L () 1) are functions of b,
only.

The correlation functions G""(r) and G~~(r) are ex-

1 125
&9a'+ 5

in 2D.
(6.20)
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The values of M' as a function of 5 are shown in Fig. 6
for both 1D and 2D under the LSUB2 and full SUB2 ap-
proximations, together with the exact result of Baxter
in 1D. In Fig. 7 we also show both (M') and p as func-
tions of 6, in the full SUB2 approximation, for both the
1D chain and the 2D square lattice.

From Fig. 7 it is clear that the asymptotic value of
G "(r), namely, p, is not equal to the square of M' as
mentioned earlier. However, it is very close to it except
near the critical point, which suggests that the SUB2 ap-
proximation is giving a good description of the
Heisenberg-Ising phase over most of its range. We also
observe that, in the same order of approximation, the
discrepancy between (M') and p is smaller in 2D than in
1D. This is clearly because the quantum fluctuations are
more significant in 1D than in 2D.

For the SUB2 approximation in the 1D case, M'=0 at
A=A, as expected. Near the critical point, M' has the
following asymptotic form:

(6.21)

It is clear that one cannot produce the essential singulari-
ty of the exact result of Eq. (2.13) under such a low level
of approximation.

Finally, we note that in 2D at the SUB2 critical point
(h=b, , ), our result for the staggered magnetization is
nonzero and has the value M,'=0.682. This is important
because we believe that the critical points in our calcula-
tions correspond to those at 6= 1 for the exact case in
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PIG. 7. The order parameter p associated with the correla-
tion function 6 "(r) and the square of the staggered magnetiza-
tion M', as functions of 6, showing the results of the full SUB2
scheme described in the text, for both 1D (dashed lines) and 2D
(solid lines).
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FIG. 6. Staggered magnetization M' for spin- —' XXZ model

in 1D and on the 2D square lattice, as functions of 6, showing
the results of the I.SUB2 (dashed lines) and full SUB2 (solid
lines) approximations described in the text. The exact result in

1D from Ref. 25 is also shown. The values of M, and 6, in the
full SUB2 calculation for the 2D model are indicated by arrows.

1D and the probable case in 2D. Therefore, our results
strongly suggest that the Heisenberg antiferromagnetic
model on the 2D square lattice possesses a LRO. This
agrees with other calculations for the square lattice. For
example, Anderson's lowest-order spin-wave theory
gives M,'=0.606 at 6=1, while the Green's-function
Monte Carlo results of Carlson give M,'=0.68+0.02
and those of Trivedi and Ceperley give M,'=0.62+0.04
at the same point.

VII. EXCITATIONS

with

X„=C„ + + +
1 2'''n 1 2 n

(7.2)

where C„ is again a suitable normalization constant.

In this section we shall examine the excitations of our
spin models within the CCM. We employ the standard
CCM technique of Emrich which constructs the excited
ket state wave function ~%, ) in terms of a linear excita-
tion operator X. This operator acts on the corresponding
exact ground-state wave function so that
~%, ) =X~%') =Xe ~C&). Like the ground-state correla-
tion operator S, X is also constructed purely from linear
combinations of products of creation operators,

X=+X„
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Clearly the operator X commutes with the operator S.
By using the Schrodinger equation for the excited state,

e(q)= —,'zK+I —k y (q), (7.7)

and its counterpart, Eq (.3.4), for the ground state, one
readily obtains

(7.3)

The lowest-order approximation is where X~X&,
which contains only those terms with a single
configuration creation operator

s(0) =
—,'zK+1 —k2 . (7.8)

The gap disappears precisely at the critical point 5=b „
where the spectrum becomes

where the function y(q) is given by Eq. (6.11), and the
constants K and k by Eq. (4.5).

It is easy to see that this spectrum has a finite gap for
both the 1D and 2D cases for k (1 or, equivalently,
6 & 6, . This energy gap is given by the expression

e, (q) =
—,'zE, +1—y (q), b, =A, . (7.9)

or (7.4)

where indices i and j denote the two sublattices, respec-
tively, as before. It is obvious that these operators pro-
duce excitations with s„«&= 1, similar to the spin-wave
excitations of other theories. Higher-order approxima-
tions for the excitations with s'„„&=+1 would need to in-
clude those terms in X with, for example, three creation
operators such as g, ,' X';; o,+o,+'cr , e.tc. For .the
present purposes, however, we consider only the simplest
approximation, given by Eq. (7.4).

The set of eigenequations for the lowest-order CCM
excitation coefficients (X'k j in Eq. (7.4), where the index
k runs over either set of sublattice vectors, is now readily
obtained by taking the inner product of Eq. (7.3) with the
bra states ( 4&

~
o k . We now use the SUB2 approximation

for the ground ket-state correlation operator S~Sz, as
well as making the lowest-order approximation X~X,
for the excitation operator. For both the 1D chain and
the 2D square lattice, the resulting equations take the
more explicit vectorial form

—zKXk g br&k+r+ —Kq&k
p, I'

(7.5)

X'k~X'k(q) =e ' 'iX'(q), c,,~e(q) . (7.6)

Hence, by making use of Eq. (A4) and (All) (with the un-
physical positive sign of the square root discarded, as ex-
plained in Appendix A), we readily find that the energy
dispersion relation for a s'„„&=+1 plane-wave excitation
of wave vector q is given in this lowest-order (but other-
wise not truncated any further) CCM calculation, for
both the 1D chain and the 2D square lattice, by

where, as previously, z is the coordination number of the
lattice, the constant K is as defined in Eq. (4.5), the sum
over p runs over the z nearest-neighbor lattice vectors,
and the index r runs over all distinct lattice vectors which
join sites on different sublattices. We note that Eq. (7.5)
for the excitation coefficients [X'kj is actually valid for
any bipartite lattice in an arbitrary number of dimen-
sions, just as Eqs. (5.1) and (6.7) are for the ground-state
correlation coefficients [b, j and [ b, j, respectively.

It is trivial to verify that Eq. (7.5) has lattice plane-
wave solutions,

For the 1D chain we have E, (q) = 1.3642~sinq
~

with—~(q ~~, which may be compared with the exact re-
sult at 6=1 quoted in Sec. II, namely, E(q)= —,'m ~sinq ~.

We observe that the behavior of our lowest-order approx-
imate CCM excitation spectrum, given by Eq. (7.7), very
closely parallels its exact counterpart in 1D, both at and
above the transition point.

However, a closer look at the asymptotes of the energy
gap near the critical point reveals some difFerences. The
asymptotic behavior of Eq. (7.8) is given in 1D by

e(0)~const X +b, h„b,~h, in—1D, (7.10)

while the exact result has the essential singularity from
Eq. (2.14),

s(0)~const Xexp
C' 6~1 in 1D .+
6—1

As in the case of the staggered magnetization, the details
of this essential singularity at the critical point cannot be
obtained within the SUB2 approximation, as is to be ex-
pected.

Another point is worth noting. As discussed in Sec. II,
the 1D exact spin-wave spectrum of the form Eq. (2.7) is
the spin- —, single-kink excitation. This is clearly revealed
by the large-6 limit, where one has

e(q)/b, ~—,', (7.11)

On the other hand, our CCM spectrum of Eq. (7.7) gives,
in 1D,

e(q)/b, ~l, b.~ oo . (7.12)

We realize that our excitations have spin s'„«, =+1, not
+—,', and clearly do not correspond to the (unphysical)
single-kink state of Eq. (2.7). The operator X, of Eq. (7.4)
flips a single spin which may be regarded as creating an
adjacent pair of kinks with respect to our approximate
ground state. By contrast, the exact two-kink spectrum
of Eq. (2.10) involves kinks at all possible separations,
leading to a continuum of states. It seems reasonable to
suppose that our spectrum corresponds to the lower
boundary of this continuum, as is also believed to be the
case for antiferromagnetic spin-wave theory.

We now turn to the analogous discussion for the 2D
case. In particular, for the 2D square lattice at A=5„
we have the gapless spectrum
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E, (q)=2K, +1—y (q), —m. (q, q (m (7.13)

with y(q)= —,'(cosq +cosq ) as before. Hence, the spin-
wave velocity is given by

U, =2', =2(b,, +2b, ) =2.335 . (7.14)

VIII. DISCUSSION AND CVNCLUSIQNS

In this paper we have demonstrated the manifest suc-
cess of the CCM on the spin- —,

' lattice models in 1D and
2D. Various truncation schemes have been explored, in-
cluding new schemes especially tailored for these lattice
systems. In particular, the LSUBn scheme includes the
most important higher-order many-body corrections for a
given n and gives good values for the ground-state energy
of the Heisenberg-Ising phase. Qn the other hand, the
SUBn scheme can give a phase transition due to the in-
clusion of certain correlations of arbitrarily long range,
even at low n. The SUBn+LSUBm scheme, which com-
bines the best features of both, has proven especially
promising. The PSUBn scheme is motivated by the kink
structure of the spin systems. Although this has not yet
been developed in as much detail as the other schemes,
we believe that it holds particular promise for a deeper
study of the excited states, especially in the 1D case.

Under the SUB2 and SUB2+LSUB4 schemes, we ob-
serve a phase transition as the anisotropy varies in 1D,
and possibly also in 2D. This is extremely encouraging
because the CCM is an ab initio method which does not
presuppose any knowledge of a phase transition, or any
other such global behavior. It cannot, however, be ex-
pected at low levels of implementation to give a very de-
tailed description of the actual critical behavior very
close to or at the critical point. As we have seen, the
essential singularity of the 1D exact results near the criti-
cal point was not produced in the SUB2 approximation.
However, as shown in Fig. 6, this essential singularity re-
gion is very narrow indeed, and over most of the range

By comparison with the corresponding classical spin-
wave velocity, Uo =2 at 6= 1, we have a measure of the
renormalization of this quantity due to quantum Auctua-
tions. Our value for the spin-wave velocity from Eq.
(7.14) may also be compared with the GFMC result of
2.28+0. 1 by Trivedi and Ceperly, and ihe value of
2.316 given by Qguchi from Anderson's spin-wave
theory, which again evaluates the first-order correction
in inverse powers of the spin quantum number.

It is interesting to note the similarity between the spec-
tra of the 1D and 2D models near the critical point.
However, as we have discussed in Sec. VI, their corre-
sponding staggered magnetizations have very different
limiting values at the critical points that we have found,
namely, zero in 1D and nonzero in 2D. It is not clear at
this stage whether the 2D system really undergoes a
phase transition at 6=6, as in the case of 1D, and if so,
what kind of phase transition it is. We leave further dis-
cussion to the next section.

the SUB2 result has the correct general form. One im-
portant feature of the CCM is that it is capable of sys-
tematic improvement. We have seen that the
SUB2+LSUB4 scheme not only gives better results for
the ground-state energy than does the SUB2 scheme, but
it also moves the critical point 6, closer to the expected
one. We hope that the inclusion of additional contribu-
tions, using, for example, the SUB2+LSUB6 scheme,
will further improve the results close to the critical point.

One interesting result from our CCM calculations is
that at the critical point 6=6„the staggered magnetiza-
tion is zero in 1D but Gnite in 2D. While this is in agree-
ment with the second-order phase transition of the 1D
exact result mentioned in Sec. II, it is not so conclusive in
2D where no rigorous results are available, though our
result within the SUB2 approximation agrees with the
spin-wave theory and the GFMC calculations men-
tioned in Sec. VI. The spin-wave excitations calculated in
Sec. VII certainly support the idea that there is also a
phase transition at the critical point (5=6,, ) for the 2D
square lattice. If this is true, the phase transition in 2D
would differ from the second-order phase transition in
the 1D case. The same speculation about a possible
phase transition has also been made in Ref. 32 and other
references cited therein. Obviously, more study is need-
ed.

The CCM will be especially useful in other noninte-
grable systems such as other 2D lattices and 1D models
with spin s )—„particularly in view of the possibility of
shedding some more light on the appearance of the so-
called Haldane phase for the spin-1 chain. Another
straightforward extension of our calculations is to include
the effect of an imposed magnetic Geld. For example, in
this case the 1D, spin- —,

' model with an applied Geld was

also exactly solved by Bethe ansatz. ' More generally,
we are hopeful that relatively simple approximations for
the operators 5, S, and X will lead to accurate results for
a wide variety of spin systems of current interest, and
that these will complement the existing methods such as
direct diagonalization for small X and Monte Carlo for
somewhat larger X. As shown in Secs. IV and V, our re-
sults even at this stage are approaching the accuracy of
the best GFMC results without much significant corn-
puting effort. We believe that our results have consider-
able potential for further improvement. Clearly, it
should also be possible to use computer algebraic
methods for generating and solving the coupled nonlinear
equations which lie at the core of the CCM. Indeed, we
have already made some progress in this respect and the
results will be reported elsewhere. Finally, for other spin
systems or for other phases, different model states might
be more appropriate than the Neel state used here. We
are presently investigating such questions.
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APPENDIX A: SOLUTION OF THE FULL SUB2
GROUND KET STATE EQUATIONS

The equations for the CCM ground ket state
coeKcients retained in the full SUB2 approximation are
obtained from Eq. (3.17) by setting all of the four-body

cluster coefficients [g;;.. " } to zero. The translational in-
variance of the lattice allows us to write
4';.;+„-=-b„=b „where r is thus a lattice vector which
joins sites on diQ'erent sublattices. Hence, the full SUB2
equations take the more explicit vectorial form:

(1+2bb, +2b, )5,—2(b, +2b, )b, +gb, , + + b,
P

r'
=0, (A 1)

where the sum over p runs over the z nearest-neighbor
lattice vectors [e.g. , p =+1 in 1D, and p=(0, +1), (+1,0)
in 2D], p, is any particular one of these vectors, and the
indices r and r run over all distinct vectors which join a
site on one of the two sublattices to a site on the other.
Equation (Al) holds for both the 1D chain and the 2D
square lattice. Indeed, it holds for any bipartite lattice of
arbitrary dimension. Here, we consider a general hyper-
cubic lattice of dimension d, and hence with z =2d
nearest neighbors.

Equation (Al) may be exactly solved by the so-called
sublattice Fourier-transform (SFT) method. We first
divide the lattice into the two alternating sublattices,
which we label with indices i and j as before. The vectors
denoting the sites in the two sublattices are denoted, re-
spectively, as

(positive or negative) integral values. The vectors r and r'
in Eq. (A 1) now belong to the set [r,"], where
r; =x; —x, and each such distinct vector is counted only
once in the equations. One sees immediately that all such
vectors r belong entirely to the set of j-sublattice vectors.

We now define the SFT of the j-sublattice coefFicients
[b, ] by the relation

I (q) —=g e" qb, , (A3)

q e-"qrqd
—~ (27r)

(A4)

where q=(q„q~, . . . , qd), and the sum on r again runs
over all distinct j-sublattice vectors. Equation (A3) has
the usual well-known Fourier inverse relation

d

xi=( n, i»n. . . , nd), g n&=2I,
p=1

d
x.=(mi, m~, . . . , md), g m =2J+1

p=l

(A2)

where, for an arbitrary function f (q),

f dq f(q)
=—f dqi f de2 f dedf(ei e2 'Vd) . (A5)

where d is the dimensionality of the hypercubic lattice,
and the parameters [n ], [m j, I, and J all take arbitrary

I

If we multiply Eq. (Al) by the factor exp(ir q), and sum
on the index r over all distinct j-sublattice vectors, we
find

(1+2kb, +2b, )y(q) —2KI (q)+ —g e '~ q g e' 'q g e' bR =0,1

z R' R
(A6)

where the constant K and the function y(q) are defined
by

I (q)= [1++1—k y (q)],K
y(q)

(A 1 1)

K—:6+2b], (A7) where

=1 —1 "
y(q):——g e'~'q= —g cosq~,z d

1

and where we have also made the substitutions

(AS)
1+2kb, +2b j

k =
(b, +2b, )

Thus, from Eq. (A4) we obtain the solution

(A12)

R—= r —r' —p„R'—:r'+p+p& . (A9)

(1+2kb, +2b, )y(q) —2KI (q)+y(q)I (q)=0, (A10)

which is trivially solved to yield the solution

It is trivial to observe that, since the original vectors r
and r' run over all distinct j-sublattice vectors, so do R
and R'. Thus, Eq. (A6) becomes the simple quadratic
equation for I (q),

dq exp( —ir q)
(2~)d y(q)

X [1—+1—k2y2(q)], (A13)

where we have discarded the unphysical of the two solu-
tions for I (q) from Eq. (All) by appealing to the fact
that we require the quantum fluctuations to disappear in
the Ising limit as 6—+ ~. We thus require that each of
the coefficients [b, ] vanishes as b, ~~. In particular,
b, —+0 (and hence k —+0) in this limit, so that the oppo-
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site sign of the square root is precluded in Eq. (A13). By
using the fact that y(q, , q2, . . . , qd ) is an even function
of each of its arguments, Eq. (A13) may be written in the
more explicit form

7T

b, = dq, cos(r, q, ). . . dqd cos(r„q„)
0

X
1 —+I —k y (q)

y(q)
(A14)

where r=(r„r2, . . . , rd) and q=(qi, q2, . . . , qd).
Finally, by observing that b =—b& for an arbitrary

choice r—+p among the z nearest-neighbor lattice vectors,
as is required by the symmetry properties of the lattice
vectors under the obvious reflections and rotations, Eqs.
(AS) and (A14) readily yield the self-consistency relation
for the nearest-neighbor SUB2 coefficient b &,

b, =f „e " I(q)—~ (2m)"
(84)

where the function y(q) is as defined in Eq. (A8). Hence,
by using the solution given by Eq. (All) for I (q) (with
the unphysical positive sign of the square root discarded,
as explained in Appendix A), we readily find the solution

I (q)= D ( )

4K +I—k y (q)
(86)

where the constant k is as given previously by Eq. (A12),
and the constant D is now defined self-consistently as

where the integration over q is given by Eq. (A5). If we
now multiply Eq. (Bl) by the factor exp(ir. q), and sum on
the index r over all distinct j-sublattice vectors, we find

(1+2Kb, —4:-)y(q) —2KI (q)+2y(q)I (q)I (q) =0,
(85)

b, =
d f dq, . . f dqd[l —+1—k y (q)] . (A15) D =2(1+2Kb, —4:-) . (87)

It is apparent that real solutions only exist for the SUB2
coefficients Ib, I when the condition k ~1 is satisfied.
By making use of Eqs. (A12) and (A15), this condition
may readily be shown to be equivalent to 6 ~ h„where
the critical value 6, is self-consistently determined by the
same equations.

APPENDIX B: SOLUTION OF THE FULL SUB2
GROUND BRA STATE EQUATIONS

The equations for the CCM ground bra state correla-
tion coefficients ( b„I retained in the SU82 approximation
are given by Eq. (6.7). As are those for the ground ket
state, these equations are valid for any bipartite lattice in
an arbitrary number of dimensions. We shall consider
hypercubic lattices only, with dimensionality d and hence
with the number z =2d of nearest neighbors. They may
be written in a more explicit vectorial form as

(1+2Kb, 4:-)o, 2Kb—, +2 g b—, b, ; p
=0,

P r'

(81)
where, as in Appendix A, the indices r and r' run over all
distinct vectors which join a site on one of the two sublat-
tices to a site on the other, and hence belong to the set of
j-sublattice vectors defined in Appendix A, the sum on p
runs over the z (=2d) nearest-neighbor lattice vectors,
the constant K is defined in Eq. (A7), and the constant =
is defined as

From Eqs. (A3) and (83), it is trivial to prove the rela-
tion

w — I q I q—~ (2m. )

and hence, from Eqs. (A 1 1) and (86),

D ~dq 1

4 0 ~" 1 —k'y'q

(88)

(89)

4K o hard Qi k2y~(q)
(810)

Finally, by combining the results of Eqs. (87), (89), and
(810), we find the explicit solution for the constant D,

f ~dq 1 —y (q)/2 1

o ~ V'1 —k 2y~(q) 2
(811)

The coefficients [b, I are thus given from Eqs. (84) and
(86) as

D 1 7r

b, =
d dqi cos(r, qi). . . dqd cos(rdqd)4K ~" 0 0

Also, by substituting r~p in Eq. (84), with p an arbi-
trary nearest-neighbor lattice vector, we readily find

:-—=g b, b, . (82)
y(q)

+1—k y (q)

I (q) =g e" qb, ,
'

(83)

in analogy with Eq. (A3). Its Fourier inverse yields

Equation (Bl) may again be solved exactly by a similar
SFT technique to those employed in Appendix A. We
first define the SFT of the j-sublattice coefficients I b, I by
the relation

(812)

where D is given by Eq. (Bl1), and r=(r„rz, . . . , rd ),

The SUB2 values of the order parameter p (given by
the long-range limiting value of the spin-spin correlation
function) and the sublattice magnetization M', are hence
given, respectively, from Eqs. (6.16) and (6.19) as
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p= 1—
1 —k y q

f ~dq 1 —y (q)
+1—k y (q)

~dq 2 —y (q)
+1—k y (q)

f ~dq 2 —y (q)
Vl —k y(q)

(B13)

(814)
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