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The magnetic structure factors determined using polarized-neutron scattering have been employed to
analyze the magnetic-moment distribution of Mn in MnX; alloys (X=Ni,Pt). In particular, a spin-
density measurement in MnNi; 55 at a low degree of long-range order has been performed at room tem-
perature. Results suggest that Mn is found in a high-magnetic-moment state in this class of compounds,
independently of the system, thus indicating a small dependence of the magnetic state on the atomic
volume. Furthermore, a rather direct evidence of the presence of Mn atoms having a negative magnetic
moment is also obtained. The information, which can be derived on the electron distribution in fcc Mn,

is also discussed in a phenomenological fashion.

I. INTRODUCTION

In recent years the experimental study of charge and
spin densities in transition metals embedded in different
environment (alloys and compounds) has shown sys-
tematic failures’>? of the local-spin-density approxima-
tion3 (LSDA) as applied to the calculation of ground state
in crystals. In particular, it has been found that calculat-
ed charge and spin densities are correctly reproduced as
far as the spherical part is concerned, so that rather good
estimates of the magnetic moments are obtained, whereas
the asphericity of the electron distribution is found only
qualitatively in agreement with the experimental data.l%*
Such a behavior is thought to be related to the intrinsic
symmetry of Fermi and Coulomb holes as described by
the LSDA.

Another systematic failure of the LSDA, still to be re-
lated to the size of Fermi and Coulomb holes, shows up
in the calculation of the cohesive energy along the 3d
transition series and, less pronounced, also along the 4d
and 5d series.’ The disagreement between experimental
and theoretical cohesive energy along the 3d series at-
tains its highest value around the middle of the series that
is for Mn. Actually, the dip in the cohesive energy ob-
served both experimentally and theoretically for a num-
ber of outer electrons around Mn can be attributed to the
electronic structure of both the atom and solid, which
can favor high-magnetic-moment states. Therefore, the
disagreement between theory and experiment about the
cohesive energy of Mn can probably be due to an
enhancement of the error in the calculation of the elec-
tron distributions. On the other hand, the comparison
between experimental and theoretical data on the elec-
tronic structure of Mn turns out to be difficult, since the
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pure element has, at room temperature, such a complicat-
ed structure both crystallographically and magnetically
that an adequate accuracy in an experimental study is a
too high demand. Consequently, in order to collect use-
ful experimental data on the electron distribution in Mn,
one has to focus on Mn-based alloys having a simple
structure. In such a way, high-accuracy data can be col-
lected, the system still maintaining the most important
features of the electron distribution of Mn.

fcc Mn alloys can be obtained by adding a suitable
amount of Fe and, in this particular case, the electronic
structure has been studied experimentally at an adequate
accuracy level.>” Another example of Mn in the fcc en-
vironment is provided by the intermetallic compounds
having the formula MnXj;, where X can be Ni or Pt.
These systems have been previously studied® '° and,
apart from the possible need of a more accurate data
treatment of the results, it is found that Mn always has a
magnetic moment larger than 3uy, in agreement with the
case of MngcFes, (Ref. 7), where the magnetic moment is
almost 41 z. The study of the above-mentioned systems is
also interesting because the lattice parameter changes
from 3.59 A in the case of MnNi; to 3.90 A in the case of
MnPt;, thus allowing for identifying effects possibly relat-
ed to the atomic volume. Actually, several theoretical in-
vestigations'! have elucidated the relevance of this pa-
rameter in establishing electronic structure and magnetic
properties of a given element. Finally, we note that, in
the case of MnNij;, the magnetic state of the alloy can be
changed by varying the state of order,'? thus identifying
the effect of the local environment.

With the aim of getting some information on the elec-
tron distribution in Mn with regard to magnetic proper-
ties in the fcc environment, we performed a measurement
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of spin density of MnNi; at a low degree of order, and,
hence, a low magnetic moment, and an analysis of the
available experimental data on totally ordered MnNi,
(Ref. 8) and MnPt;.>!% The choice of reanalyzing the al-
ready published data®~1° was dictated by the need of hav-
ing data which, as referred to different states of the vari-
ous systems, were internally comparable. Performing in
all cases the same analysis of the experimental data al-
lows for a reasonable identification of stable magnetic
structures of Mn when embedded in a fcc environment
and for deducing the symmetry of the spin density, which
has been proved to play a fundamental role in comparing
theory and experiment.!’> Moreover, considering that in
many cases Mn exhibits a magnetic moment close to 4ug,
i.e., the maximum magnetic moment allowed in Mn,
some information on the general electron distribution can
be obtained assuming an almost full up-spin band.! Such
an experimental information can be useful when com-
pared with the electronic structure of fcc Mn, calculated
by means of first-principle approaches,'>!* as well as with
studies of stability of the magnetic structure by means of
Stoner-like criteria.!’

II. EXPERIMENT AND DATA REDUCTION

The experiment was performed on the polarized-
neutron diffractometer installed at the 1-MW Training,
Research and Isotope Production Reactor of the Centro
Ricerche Energia, Casaccia (Rome). A standard experi-
mental setup was employed: Cogq,Fe o polarizing
monochromator, neutron-spin reversal at a frequency of
5 Hz, and 0.7-T magnetic field at the sample. The sample
was a slab-shaped crystal having dimensions 1X1.8
X0.07 cm?, with the extended face parallel to the (100)
plane. The crystal composition was determined by chem-
ical analysis and by x-ray emission and the actual formula
was found to be MnNij ss.

The crystallographic structure of the compound (L1,
type) is based on a cubic fcc cell with two sets of non-
equivalent crystallographic sites, namely, corner and face
sites. When the stoichiometric system is ideally ordered,
corners (A sites) are occupied by Mn and faces (B sites)
by Ni. The structure factors fall in two classes, F and L:

F: Fhkl(F)=aA +3GB
if A, k, and I have the same parity ,
L: Fy(L)=a,—ap otherwise,

where a; is the total scattering amplitude of the /th site.
F refers to the fundamental reflections while L indicates
the superlattice ones. The state of order of the sample is
determined by the long-range order parameter S, which
we define as

F(L)

S:
(apn —ani)

where F (L) is the measured structure factor of the super-
lattice reflections. Since we were interested in a relatively
low degree of order, an appropriate thermal treatment
was applied to the sample. We started from the complete
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disordered state by heating the crystal up to 700°C for 1h
under vacuum (10~® Torr), then we annealed the sample
for 207 h at 420°C, that is just below the order-disorder
transition temperature. Finally, the sample was cooled
down to room temperature in about half an hour. The
resulting degree of order of the sample was determined by
measuring the intensity ratios of superlattice to funda-
mental reflections, thus avoiding the absolute measure-
ment of the superlattice intensity. In order to make
negligible the effect of half-wavelength contamination in
measuring the superlattice intensity, a Ge(111) mono-
chromator was employed. The integrated intensities of
(100), (200), (300), and (400) reflections were measured at
two different wavelengths (1.421 and 1.104 A) in order to
deduce the intensity ratios as well as the extinction free-
structure factors. From these measurements we got
S =0.259+0.002. Using the measured value of S and the
chemical composition of the sample, it was possible to
deduce the occupation probability of the two sites by the
two atoms. We have

Pmn(Mn)=3S +x ,
Pmn(Ni)=1—pp,(Mn) ,

le(Mn)Zl—le(Nl) )

2(Mn)—4x
pNi(Ni)=1+pi3— ,

where p;(X) is the probability of finding an atom X at the
site / and x is the Mn concentration.

The flipping ratios of 22 reflections, including 15 fun-
damental reflections and 7 superlattice reflections, were
measured at room temperature using an incoming-
neutron wavelength A=0.89 A. Standard corrections for
incomplete polarization of the incoming beam, flipping
efficiency, and half-wavelength contamination were ap-
plied. Although the extinction effect was found to be
very small, we applied a simple kinematical approxima-
tion to correct the measured flipping ratios:

I,=Iy[1—exp(—2,t)],
1+y2+2p,y

— 2
To=alby P —g e
where I, and I, are diffracted and incoming intensities,
respectively, ¢ is the neutron path inside the sample, o is
the index of the neutron spin, 26 is the scattering angle,
Fy is the nuclear structure factor, y is the ratio of mag-
netic to nuclear structure factor, p, is the incoming-
neutron polarization, and «a is a parameter to be fitted to
the experimental data. This approximation turned out to
work fairly well in the present case, though the amount
of extinction was almost negligible (¢ =0.02). By apply-
ing such a correction we deduced the values of the flip-
ping ratios of all reflections. The bulk magnetization of
the present system was measured on the same sample em-
ployed in the neutron-scattering experiment using a
ballistic magnetometer.

The neutron-diffraction data thus obtained were put on
an absolute scale assuming by, =—3.73 fm and
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TABLE I. Experimental structure factors of the present sample at a low degree of order.

h k i sing/A (A7) Fg (up/unit cell)
0 0 0 0 1.152+0.012
1 1 1 0.2416 0.720+0.013
2 0 0 0.2789 0.620+0.013
2 2 0 0.3945 0.391+0.011
3 1 1 0.4626 0.267+0.013
2 2 2 0.4831 0.254+0.014
4 0 0 0.5579 0.130+0.016
3 3 1 0.6079 0.155+0.021
4 2 0 0.6237 0.100+0.014
4 2 2 0.6833 0.086+0.024
5 1 1 0.7247 0.003+0.032
3 3 3 0.7247 0.055+0.021
4 4 0 0.7890 0.035+0.017
5 3 1 0.8251 0.006+0.024
6 0 0 0.8368 —0.003+0.025
4 4 2 0.8368 0.086+0.018
1 0 0 0.1395 0.343+0.011
1 1 0 0.1972 0.301+0.011
2 1 0 0.3119 0.163+0.011
2 1 1 0.3416 0.139+0.011
3 0 0 0.4184 0.073+0.011
2 2 1 0.4184 0.080£0.011
3 1 0 0.4410 0.092+0.011

bni =10.3 fm and using the experimentally determined 1 .

value of the degree of order. The corrected structure fac- m="q, % Fg f WS I)exp(zG~r)dr 4 1

tors are reported in Table I, where the quoted errors take
into account both the statistical errors and the uncertain-
ties affecting the applied corrections.

III. DISCUSSION AND COMPARISON
TO OTHER MnX; SYSTEMS

The structure factor data presented in the previous sec-
tion can be used to derive some information on the possi-
ble magnetic states of Mn in a fcc environment. As a
consequence of the low degree of order of the present al-
loy, an appreciable amount of Mn atoms is found at both
sites in the unit cell. Therefore, all Mn atoms have an ap-
preciable average number of other Mn atoms as first-
nearest neighbors. It has been already observed’ that a
large number of Mn first-nearest neighbors induces an an-
tiferromagnetic alignment of Mn with respect to the total
magnetic moment of the system. In such a situation it is
clear that, if no hypothesis about the magnetic moments
of the various atoms is done, there is no way of obtaining
some quantitative information about the magnetic state
of the various atoms. Moreover, it is evident that the
analysis of a single system is of little help in view of the
complexity of the present magnetic structure.

To derive meaningful data from the present results we
have performed the same analysis successfully employed
in other systems."? Using the structure factors F G given
in Table I, the magnetic moments within the Wigner-
Seitz (WS) cells centered around each site can be deduced
by the following relationship:

where G is a reciprocal-lattice vector, () is the unit-cell
volume, and the integral is over the Wigner-Seitz cell
WS()) centered around the Ith site. As already observed,'
the fundamental reflections, with the exception of (000),
do not contribute to the site magnetic moments given by
the integral in Eq. (1), so that the extinction correction
does not introduce an appreciable error on the u,;’s. Con-
sidering that only the superlattice reflections contribute
to the value of the magnetic moments, the knowledge of
the long-range order parameter S is extremely important,
as the structure factors of the superlattice reflections are
proportional to S. The site magnetic moments calculated
according to Eq. (1) are reported in Table II together
with those of Refs. 8-10, obtained applying the same pro-
cedure.

The simplest hypothesis which can be done in order to
interpret the results of Table II consists in assuming aver-
age magnetic moments of the two atoms independent of
the site in each system. With this assumption, the mag-
netic moments of the two atoms turn out to be
u(Mn)=1.597up and wp(Ni)=-—0.102up in MnNi; s,
w(Mn)=3.369up and p(Ni)=0.217up in MnNi;, which
is assumed perfectly ordered,® u(Mn)=3.786u, and
w(Pt)=0.092up; in MnPt;,° u(Mn)=3.754u; and
w(Pt)=-—0.163up in MnPt, 5,.'° The results thus ob-
tained for the present sample are clearly very unlikely,
while in the case of MnNi; the magnetic moment of Mn
is smaller than those found in MnPt;, MnPt, 5;, and in
Ref. 7 and also the value for Ni is depressed with respect
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TABLE II. Site occupancy probabilities (see text) and site magnetic moments for the present sample and those of Refs. 8-10.

Py (Mn) Pri(Ni) ppi(Pt) Umn/Pp Uni/lp Bpe/Up
Present data 0.42340.010 0.836+0.010 0.6171+0.012 0.177+0.005
Ref. 8 1 1 3.369+0.030 0.2171+0.003
Ref. 9 0.928+0.01 0.978+0.01 3.521+0.050 0.173+0.005
Ref. 10 17301 0.956+0.01 3.754+0.030 0.009+0.005

to that currently reported in literature for several sys-
tems. In view of the too low magnetic moments of both
atoms in MnNi;, which could be a consequence of a
nonunitary long-range-order parameter, these data will
be discarded in performing a more quantitative analysis.
The negative value of u(Pt) in MnPt, s, can be interpret-
ed as a direct evidence of an antiferromagnetic alignment
of Mn.

To get meaningful magnetic moments for the system
MnNi; 55, further information about the electronic struc-
ture of both Mn and Ni is necessary. Because of the in-
trinsic partial disorder affecting the present sample, a cal-
culation of the electron distribution in perfectly ordered
MnNi; compound is of little help in interpreting our ex-
perimental data. Moreover, since some guess is necessary
in order to gain more information from the experimental
data, we preferred to resort to a simple phenomenological
model of the electronic structure of Mn and Ni. There-
fore, we performed a density-of-states calculation for
both Mn and Ni in the fcc paramagnetic phase at a lat-
tice parameter a,=3.585 A, i.e., the value for the present
sample. To investigate the possible magnetic phases of
Mn and Ni, we have applied a rigid-band splitting to the
calculated paramagnetic density of states. Calculations
have been done using the Slater and Koster approxima-
tion as described by Papacostantopoulous!® and using the
parameters derived therein. The number of electrons
having spin o and occupying the states corresponding to
the irreducible representations I', I'j5, I'},, and I',5 can
be written as

EF
noy=J_ ple—Un_,)de, @)
where v indicates the irreducible representation

nazznav
v

and U, is a splitting parameter which is zero for I'; and
I';s and has a fixed value U for I'|, and I'»5. p,(€) is the
density of states of the paramagnetic phase. The Fermi
energy € is determined by fixing the total number of
electrons. When Eq. (2) is satisfied for a given set of oc-
cupation numbers n,,, the magnetic moment as well as
the contributions to the magnetic moment from the pro-
jection of the magnetic moment density into the irreduc-
ible representations can be deduced. On the other hand,
the latter quantities can be obtained experimentally by
analyzing the aspherical contributions to the neutron and
x-ray structure factors. Mathematically, Eq. (2) admits at
least one solution for all nonzero U’s, but the physical
meaning of the solution is related to the stability of a

given magnetic phase. To this purpose we observe that
Eq. (2) can be written as follows:

€
ng,= f_);pv(e— Un_,)e ,

(3)
n

o Ny -

In such a way, Eq. (2) is regarded as a system of two
equations plus the condition for determining €. For a
fixed value of the parameter U, the different solutions of
Eq. (3) can be considered stable or unstable depending on
the derivative of n, with respect to 77,. The stability of a
solution n, =7, is guaranteed if

ldn, |

|6n,|<|87,| or equivalently <1, (4)

|d7 |

that is, when a fluctuation of 7, induces a smaller fluc-
tuation on n,. When such a condition is satisfied, Eq. (3)
can be solved iteratively since in the region where Eq. (4)
holds n,, as a function of 7, verifies the Lipshitz condi-
tion. Using Eq. (4) under the condition that the total
number of electrons is constant, we get

{[piep) P+Ip(ep) PIU

pilep)t+p (ep)
Equation (5) is a generalization of the well-known Stoner
criterion as it holds for all magnetic moments which are

solutions of Eq. (2). As a consequence, the paramagnetic
phase is stable if

P(U)= <l. (5

plep)U<1, (6)

where p(er)=p(ep)=p (ep) is the density of states per
spin at the Fermi level. Equation (6) is the more common
form of the Stoner criterion. The magnetic moments of
Mn and Ni obtained from the calculations outlined above
are shown in Figs. 1(a) and 1(b) where the Stoner parame-
ter P(U) is also plotted as a function of U. As we can see
from Fig. 1(a), the present approach suggests that Mn has
only one stable magnetic phase which corresponds essen-
tially to the maximum magnetic moment attainable in
this system, namely, about 3.8up. This high-magnetic-
moment phase is fairly stable as a consequence of the low
Stoner parameter calculated by Eq. (5). The results re-
ported in Fig. 1(b) show that, in the case of Ni, there is
still a stable phase with a magnetic moment of about
0.6p 5, but it is confined in an extremely small range of U.
Finally, in Fig. 1(c) we report the magnetic moments cor-
responding to the representation I';, as a percentage (p,,)
of the total magnetic moment. For both Mn and Ni, p,,
is essentially constant over the whole range of U.



9422

According to these results and those reported in Table
I1, we note that the analysis of all the data cannot be car-
ried out assuming that Ni and Mn have a magnetic mo-
ment independent of composition and state of order as
such an hypothesis is not compatible with the data of
Table II. Therefore, in order to explain the strong
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FIG. 1. (a) Total magnetic moment (solid line) and Stoner pa-
rameter P(U) (dashed line) vs U calculated applying the present
theoretical model for Mn. (b) Total magnetic moment (solid
line) and Stoner parameter P(U) (dashed line) vs U calculated
applying the present theoretical model for Ni. (c) Percentage
Pm of I';; symmetry magnetic moment calculated by applying
the present theoretical model for Mn (solid line) and Ni (dashed
line).
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change of the total as well as of the site magnetic mo-
ments with the state of order in these systems, we can as-
sume that the magnetic moment of Mn atoms is always
the same, but allowing for a change of sign of this mag-
netic moment as a consequence of the local environment.
This assumption was originally proposed by Weiss dis-
cussing the magnetic state of fcc iron.!”!® Having made
a hypothesis for the atomic magnetic moments, we can
only check its compatability with available data since the
number of variables in the present system is too large to
determine univocally the electronic structure of the vari-
ous atoms. If the absolute values of the magnetic mo-
ments of Mn and Ni are u(Mn) and p(Ni), the magnetic
moment at the site / of the alloy is given by

@ =p;(Mn)[1—2x;” Ju(Mn)+[1—p;(Mn)]u(Ni) , (7)

where p,;(X) is the already defined probability that the
site / is occupied by the atom X and x;  is the probability
that the Mn atom at the site / has a negative magnetic
moment. In order to proceed further, we have to make
some assumptions on u(Mn) and u(Ni). We can observe
that, in the case of FegMns,,  the magnetic moment of
Mn resulted to be 3.90u, while in MnPt; (Ref. 9) and
MnPt, 5, (Ref. 10) the Mn magnetic moment was 3.75u5.
A similar high magnetic moment is also observed in di-
luite Ni-Mn (Ref. 19) as well as in Pd-Mn (Ref. 20) alloys.
All these values are in reasonable agreement with the
theoretical estimates of Fig. 1. Therefore, we assumed
w(Mn)=3.7up and u(Ni)=0.6u5. In the case of Ni, the
chosen value of u(Ni) is a reasonable one in agreement
with several experimental data and with the estimates of
Fig. 1(b). Then, using Eq. (7), x;7 at Mn and Ni sites
can be derived. We got xy, =0.41310.005 and
xn; =0.76710.005. These estimates can be compared
with those derived under the assumptions of no short-
range order and a negative magnetic moment for the Mn
atom when the number of Mn first-nearest neighbors is
greater than a given number n,. In this condition, as the
number of Mn first-nearest neighbors follows a Poisson’s
distribution, we have

_ d n’
x =3 exp[—-n]—‘— , (8)
r=ny+1 r:

where n is the average number of Mn atoms first-nearest
neighbors. Equation (8) gives a reasonable description of
the distribution of the negative-magnetic-moment states
of Mn. In Fig. 2 we report x ~ as deduced from Eq. (8),
assuming ny=1, 2, and 3 in comparison with the experi-
mental values obtained at the two crystallographic sites
in the present sample. The point x ~ =1 at n =4, de-
duced from the results of Refs. 9 and 10, has been added
in Fig. 2. As we can see, the present population of
negative-magnetic-moment states is reasonably well de-
scribed by the random model of Eq. (8) if ny=1, thus in-
dicating the relevance of the local environment in deter-
mining the ferromagnetic or antiferromagnetic alignment
of Mn.

From the above analysis we can conclude that a
reasonable model of the Mn atoms in these systems pro-
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FIG. 2. Probability of the negative-magnetic-moment state of
Mn as a function of the average number of Mn atoms first-
nearest neighbors. Dots: experimental results obtained from
the present analysis (see text). Lines: random model described
in the text. Solid line ny=1, short-dashed line ny,=2, dashed
line ny=3.

vides for a high-magnetic-moment state of Mn but with
fluctuating sign. Such a model accounts for the data
available around the stoichiometric composition. This
picture is directly related to the spin-glass behavior ob-
served in disordered samples at low temperature.?!
Moreover, even close to the present composition, where
the spin-glass behavior appears to be absent, an anoma-
lous trend of the bulk magnetization versus temperature'?
is found, thus suggesting that the concentration of Mn
atoms with negative magnetic moments is a function of
temperature.

To get further insight into the electronic structure of
both Mn and Ni in the present system, we also analyzed
the symmetry of the spin density of each site. In general,
we can write!?

Fs=T cos(G-R))[p, fi(G)+uPhfieh(G)] , )
!

where R, is the position of the Ith site in the unit cell, y,
is the site magnetic moment given in Eq. (1), f;(G) is the
spherical site form factor, u3®! is an aspherical magnetic
moment, and f#*P’(G) is the corresponding aspherical
form factor. Taking into account the four irreducible
representations I', "5, I'}», and I',s,, the aspherical form
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FIG. 3. Fit of the present experimental magnetic structure
factors to Eq. (9). The upper points refer to fundamental
reflections, while the lower ones refer to the superlattice
reflections.

factor can be written as
FEPRG)= A(G)f{(G), (10)

where A(G) is the appropriate angular factor?? and
fI¥(G) is directly related to the actual spin density.?
£1(G) and f{*(G) can be deduced by applying the same
procedure leading to Eq. (1). The following equations are
easily obtained:

_ 1 . .
filQ)y= O, %FG fws(”jo(Qr)exp[zG rldr ,
(11)
1
4y — . o~
HQ=q 3o fwsmu(gr)exp[za rldr,

where j,(x) is the spherical Bessel function of nth order.
Equations (9)-(11) were used to fit the present data as
well as those of Ref. 8. The aspherical magnetic mo-
ments so derived are reported in the first two columns of
Table III, while the structure factors calculated for the
present sample with the help of Eq. (9) are shown in Fig.
3 in comparison with the experimental data. The agree-
ment between the fit and the measured structure factors
is quite good (y?=21). First of all, we observe that, in the
present sample, the aspherical magnetic moment at the
Ni site is of the same order of magnitude as the total
magnetic moment at this site (reported in Table II), evi-
dently an absurd situation. Consequently, the Ni mag-
netic moment is expected to be larger than the site mag-

TABLE III. Aspherical contributions to site (first two columns) and atomic (second two columns) magnetic moments for the
present sample and that of Ref. 8. Theoretical and experimental percentages p,, of I'}; symmetry magnetic moment (see text) are re-

ported for Mn and Ni in the last two columns.

AR /g HRP /up HMn)*P" /g PN /g Pm Pm
(model) (expt.)
Present data —0.083+0.020 —0.145+0.040 0.13+0.04 —0.17+0.04
Ref. 8 0.2840.10 0.0140.10 0.2840.10 0.01+0.10
Ni 0.15 0.303+0.025
Mn 0.403 0.416+0.004
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TABLE IV. Occupation numbers of the various electronic states in fcc Mn as deduced from the
present analysis of the experimental data (see text) and from the present theoretical model.

mr,t e o, mrosd nrl+nr15
Expt. 2 3 0.47 0.83 0.35
Model 1.99 2.94 0.50 0.73 0.42

netic moment, thus supporting again the idea of a large
number of Mn atoms present with a negative magnetic
moment at the Ni site. To obtain the aspherical magnetic
moment of the various atoms, Eq. (7) can also be applied
to the case of the aspherical contribution using x;  previ-
ously derived and the u?P™s. Results thus obtained are
reported in the second two columns of Table III. The
comparison between the present system and that of Ref. 8
shows that, within the experimental errors, the aspherical
magnetic moments for both Mn and Ni can be considered
the same. In the last two columns of Table III, the I"},
percentages of the total magnetic moments (p,,, of Ni and
Mn are reported in comparison with the values deduced
in the present model. For Mn the I'|, symmetry state re-
sults to be more populated, while in the case of Ni the
I',s symmetry state is favored, as for the pure metal.??
Finally, we remark that, from the present data, the
magnetic state of Mn within the fcc environment corre-
sponds to a high-magnetic-moment phase with the up-
spin 3d band almost full. Therefore, it is possible to
derive the occupations of the various electronic states
with the farther simple assumption that the up- and
down-spin occupations of the I'; and I'5 states are the

same. The resulting data are reported in Table IV to-
gether with those deduced from the present calculation.

As a last statement we can say that the collection of ex-
perimental data, together with the phenomenological
model presented here, give a substantial ground to the
idea that positive- and negative-magnetic-moment states
of Mn coexist in the MnX; systems when not fully or-
dered. The data derived from the model, which is based
on the LDA calculation of the electron distribution in the
paramagnetic phase, account correctly for the magnetic
moments we inferred from all the experimental data, even
though, as it has been already observed in other systems,
the electron distribution in the various symmetry states is
not correctly reproduced. In view of the great impor-
tance of Mn, the present system as well as the other com-
panion systems should be analyzed in greater detail in or-
der to determine the electron distribution and the possi-
bly present fluctuations of the magnetic state.
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