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Fixed-node Monte Carlo study of the two-dimensional Hubbard model
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The fixed-node Monte Carlo method is extended to lattice fermion models. This method replaces the
problem of finding the ground state of a many-fermion system by an e6'ective eigenvalue problem of
finding the lowest-energy wave function in a given region of the configuration space. It has previously
only been applied to fermions moving in continuous space. The discreteness of the configuration space
causes the algorithm to differ from that of the continuum. The method is tested against a known limit-
ing case where exact results are available for comparison. Cfood agreement is found. Using the fixed-
node Monte Carlo method, we study the domain-wall phase in the ground state of the two-dimensional
Hubbard model. The existence of a domain-wall phase which has domains of antiferromagnetic phases
separated by walls of holes is recently suggested by inhomogeneous Hartree-Fock (HF) and variational
Monte Carlo (VMC) calculations. Large improvements of the energies are found. The domain walls are
broader than those obtained by the HF and VMC calculations.

I. INTRODUCTION

Numerical methods become increasingly important in
the understanding of the physical properties of strongly
correlated fermion systems where traditional perturba-
tion approaches fail. The simplest model of a strongly
correlated electron system is perhaps the Hubbard model.
The Hamiltonian takes the form

H= —g t„c, c, +Urn, &n, &,

where t ~
= t, if r and r' are nearest neighbors and 0 oth-

erwise. c, is the creation operator for position r with
spin o., and n«=c«c«. Except in one dimension, the
phase diagram of the model is still not fully determined in
spite of the large amount of work devoted to it.

The Green-function Monte Carlo (MC) technique' is
an exact numerical method for computing the ground-
state energy. It does so by projecting out the excited
states from an initial trial wave function which is not or-
thogonal to the ground state. For fermion systems this
method is not directly applicable because of cancellations
between positive and negative contributions in the evalu-
ation of observables (the sign problem). The sign prob-
lem is a direct consequence of the presence of both posi-
tive and negative signs in the ground-state wave function
of fermion systems. The fixed-node Monte Carlo
(FNMC) idea circumvents the sign difficulty by replac-
ing the original fermion eigenvalue problem by a related
one. The new problem seeks the lowest-energy state un-
der the constraint that it does not change sign in a
prescribed region, while the original problem seeks the
lowest state with the fermion symmetry in the whole re-
gion. The nodal structure, i.e., the domains of fixed sign,
has to be supplied by a trial wave function. The solution
of the new problem provides a variational approximation
to the origina1 problem. Central to the FNMC method is
the trial wave function. The FNMC method has previ-
ously only been developed for fermions moving in con-

tinuous space. . We extend this method to lattice fer-
mion systems. " The discreteness of the configuration
space causes the algorithm to differ from that of the con-
tinuum.

Recent inhomogeneous Hartree-Pock (HF) calcula-
tions and variational Monte Carlo (VMC) calculations
employing the Gutzwiller wave function suggest that the
Hubbard model has a so-called domain-wall ground state
rather than the conventional two-sublattice antiferromag-
netic state when the electron density is different from one
electron per site. The domain-wall phase consists of
two-sublattice antiferromagnetic strips separated by walls
of holes. Using the FNMC method, we study the
domain-wall phase of the Hubbard model. The HF and
VMC wave functions provide starting points for our
FNMC calculation.

The paper is organized as follows. In Sec. II the HF
approximation and the Gutzwiller wave function are dis-
cussed. The fixed-node Monte Carlo method as
developed for lattice fermions is presented in Sec. III.
The results obtained for the ground state of the Hubbard
model are given in Sec. IV.

II. TRIAL WAVE FUNCTIONS

In this section we describe the determination of trial
wave functions. Two types of trial wave functions wi11 be
used: the Hartree-Fock (HF) and the Gutzwiller wave
function (GWF). The HF wave function is determined by
the HF equations. The Gutzwiller wave function has to
be determined by the variational Monte Carlo method. '

A. Hartree-Fock wave function

Substituting n, = ( n, ) +6, into (l) and keeping
terms linear in 6, , we have H =HH„
+Eo[n]+O(5,t5, i), where

HHF= —g t c, c, +Up n(n, ), (2)
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The matrix M is unitary such that the [cr, ] satisfy again
fermion commutation relations. Substituting (3) into (2),
the HF Hamiltonian HH„will take the diagonal form in
the ck, i.e.,

H H p
= g (sk, cr ) n I

k, a
(4)

provided that MI,'r(cr)=fr, (r) is chosen as the solution
of the following HF equation:

—g t .ctrl, (r')+U(n, )Pr, (r)=s(k, o )$1, (r) . (5)

and Eo[n]= —U g(n, t )(n, ~ ). To diagonalize (2), a
r

new set of fermion operators is introduced:

c„=QM„,(o )c,

PI, (r)=e'~~u (x) (10)

is assumed instead of a sublattice structure for the incom-
mensurate solutions. Combining (10) with (6), we have n,
and m, depending only on the x coordinate; hence
n, =n (x), m, =m (x). The coordinates are such that the

y axis is parallel to the domain wall and the x axis is per-
pendicular to it. For U )4t the domain wall prefers to lie
along the diagonal direction of the square lattice in the
HF and Gutzwiller VMC approximations. ' The HF
equation as given by (5) takes a simpler one-dimensional
form for the ansatz (10):

2t cosp—[u (x +1)+u (x —1)]

+ [n—(x)—( —1)"om (x)]u (x)=c,u (x) .U

The ground-state energy is optimized when ( n, )
satisfies the self-consistency equation

&n,.&= &Iyj,.(r)l'&nr, .& . (6)

Equations (5) and (6) must be solved self-consistently.
The ground state of HH„ is given by

Note that n (x +1)=n (x), m (x +l) = —m (x), where l
is the domain-wall separation (an even number of domain
walls are needed to satisfy the periodic boundary condi-
tions). If l is even, it is evident that u (x)= u (x + l).
Equation (11) is a matrix eigenvalue equation of finite di-
mension for a finite system. It can be diagonalized nu-
merically.

k=1

where N t (N i ) is the number of up (down)-spin electrons
and the product is carried over the states with the lowest
energy s(k, o ). Since we will not discuss a ferromagnetic
phase, we assume Nt =Ni =N/2, where N is the total
number of electrons in the system. The wave function
then has the familiar Slater-determinant form

-(R)= (R I pHp &

=det[Pr, t(r; ) ]det [Jr, &(rj )], (8)

where R ) =c, tc, t
. c, i IO) denotes a configuration

state and the rows of the determinant are composed of
the set of N/2 lowest k states. The total energy is given
by

B. Gutzwiller wave function

N (R)
O'T(R)=g r det[pr, t(r;)]det[pj, i(r~. )], (12)

where the Pl, 's are the lowest E(k, o ) solutions of (5) and
N (R) is the number of double occupied sites in
configuration R. To reduce the computational effort, the
domain wall is parametrized as

The HF approximation neglects correlation effects as
the interaction is replaced by an effective potential. It is
not expected to be a good approximation for strongly in-
teracting systems where the potential energy is compara-
ble to the kinetic energy. One way of improving the HF
wave function is to introduce on-site pair correlations
into the wave function by the Gutzwiller procedure,
which multiplies the HF wave function by a factor taking
the correlations into account,

EHp —
& +Hpl H

I +Hp & /& q'Hpl +Hp &

=2+ E„+Eo[n] .
1

n, = 1 —a g 1/cosh[(x —
x& )/g ),

I

m, =m Q tanh[(x —xI)/g ] .

(13)

(14)

A complete solution of (5) and (6) for arbitrary (n, )
is still a formidable task. Symmetry properties of the
solution need to be assumed in order to make the prob-
lem tractable. One assumption is that n, =n, m, =m,
which leads to the two sublattice antiferromagnetic solu-
tion, where n, =(n, t+n, i ) is the number density and
m, = A(r)(n„t n, i ) is the staggered —magnetization.
[ A (r) = 1 for one sublattice and —1 for the other. ] This
phase is commensurate with the lattice structure and
possesses long-range order. Incommensurate antiferro-
magnetic solutions are explored only very recently. A
modulated one-particle wave function

Instead of satisfying the self-consistency, the optimal
wave function is found by minimizing the energy
E (g, m, g, gz) = (H )~ against the parameters g, m, g, g
by the variational Monte Carlo method. The parameter
a is determined by the total number of electrons in the
system.

Both the HF and VMC calculations are carried out on
a rectangular strip cut along the diagonal of the infinite
square lattice. We measure the length in units of a/&2,
where a is the lattice constant of the square lattice. A
system with dimensions 14X 8 (a+2 X a /i/2) is shown in
Fig. 1. Periodic boundary conditions are applied on the x
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III. MONTE CARLO METHOD
FOR LATTICE FERMIONS

4 ()
~ 4 4 ~

4 4
4 ~

4 4 4

The ground-state wave function 4IO can be filtered out
by applying a filter operator F to a trial wave function %'&-

when (%c~'Pz )WO. A particularly simple choice of a
filter operator is F =1 ro(—H —w), ' where ro and tU are
parameters to be specified. Let O'"'=-F"%'z-. We have

(15)

FIG. 1. 14X 8 (a /&2 X a /&2) system. With periodic
boundary conditions, the top row of sites is identical to the bot-
tom row and the left row is identical to the right rom. Note that
the lattice is cut along the diagonal direction of the square lat-
tice. Throughout this paper, the unit length is taken to be
a /&2.

direction. Both periodic and antiperiodic boundary con-
ditions are used in the y direction. For small L only a
few wave vectors p are allowed. It is important to realize
that for p =sr/2 in Eqs. (10) and (11), all the single-
particle wave functions P& are localized in the x direc-
tion. Therefore, a large portion of the electrons hop only
along the y direction, which is untypical of larger sys-
tems. Antiperiodic (periodic) boundary conditions are
needed in the y direction for systems with I =4, 8 (6, 10)
to avoid p =n/2 in Eq. (10).

The above-sketched idea regarding the boundary con-
ditions is confirmed by numerical calculations. It is
found that wave functions with periodic boundary condi-
tions on the y direction for the system with L =8 are
significantly higher in energy than those with antiperiod-
ic boundary conditions. However, the energy is insensi-
tive to the boundary conditions in the x direction. The
variational energies under difterent boundary conditions
are listed in Table I ~ The results for the antiperiodic-
antiperiodic (aa) boundary conditions are that of Giamar-
chi and Lhuillier. The variational parameters are
chosen to be the optimal parameter under aa boundary
conditions.

where Eo is the exact ground-state energy. It is assumed
that the ground-state wave function dominates over all
the excited-state wave functions in (1S). This requires

rc & 2/(E, „+Eo—2w), (16)

For H given by (1), we have

UX~(R), R'=R
H(R, R')= t, R'EA—'(R)

0, otherwise,

where JV(R ) denotes the collection of configuration
which can be reached from R by moving one electron to
one of its nearest-neighbor sites. Equation (15) provides
the basis for the exact evaluation of matrix element be-
tween the ground state and a trial state. Given an arbi-
trary operator 0, we can express its action in
configuration space:

R„

Define O(R)—=Oqir(R)/Vr(R). Note that O(R) is a
function in R space and depends on the operator 0 and

where E „is the maximum eigenvalue of H. The appli-
cation of F on a wave function takes the form of matrix
multiplication:

F%(R)= gF(R, R')%(R')
R'

=(1+row )%'(R )
—ro $H (R,R ')%(R ') .

TABLE I. Eftects of boundary conditions on the energy. Energies obtained by the VMC method us-
ing the Gutzwiller wave function of the diagonal-wall type are given under various boundary condi-
tions. The system has 112 sites and N =104 electrons. The dimension is 28X8 (a/&2Xa/&2). The
energies and U are measured in units of t. The energy under periodic-antiperiodic (pa) boundary condi-
tion agrees with that under the antiperiodic-antiperiodic (aa) boundary condition within the error bar.
[The data for the (aa) boundary condition are from Ref. 4.] The energy for periodic-periodic (pp)
boundary condition is significantly higher than under the other two boundary conditions. The varia-
tional parameters are optimal for the (aa) boundary condition.

—E/N bc

7
7
7

10
10
10

74.36(4)
75.70(s)
75.8(3)
58.63(6)
59.42(6)
59.6(3)

0.7150
0.7279
0.728
0.5637
O.S714
0.573

PP
pa
aa

PP
pa
aa

0.28
0.28
0.28(4)
0.26
0.26
0.26(3)

3.4
3.4
3.4(4)
3.4
3.4
3.4(3)

3.2
3.2
3.2(4)
2.8
2.8
2.8(4)

0.45
0.45
0.45(2)
0.35
0.35
0.35
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the trial wave function O'T. Substituting (17) into (19), we
have

X @[F(R;,R; i)VT(RO), (20)

where%= IRO, R„R2,. . . ,R„J is a path in configuration
space.

A. Nodeless wave function

& e'"'lo leT &
= +o(R„)Q G(R; R;, )+'T( Ro),

R 1

(21)

Let us first look at the case for which VT has no sign
change as for the ground-state wave function of a boson
system. Equation (20) expresses a matrix element in
terms of an enormous sum of known quantities in
configuration space. This sum can be calculated by MC
integration techniques. Since only part of the terms can
be summed in a numerical calculation, it is highly desir-
able to select out those terms in the sum which have large
contributions. This strategy is called importance sam-
pling. It is accomplished by rewriting (20) as'

—[UN (R) —w —tzN]%'"'(R), (26)

where B,V'"'(R)=[%'"+"(R)—4'"'(R)]lro and z is the
number of nearest neighbors of a given lattice site. The 6
is the usual lattice Laplace operator:

b+(R)= g[%(R +6)—'P(R)], (27)

where 5 is the nearest-neighbor displacement vector
which connects R to R'H JV(R). The appearance of the
tzN term in (26) is caused by the subtractions in the lat-
tice Laplace operator (27). The large n solution of (26) is
the ground state of H.

The importance sampling replaces the diffusion equa-
tion for 4'"' by a generalized diffusion equation for
f '"'(R ) =0""'(R)O'T(R ). From the definition of
G (R ', R ), we have

f'"+"(R)=g G(R, R')f'"'(R') .
R'

(28)

Substituting the explicit expression for G (R,R ') and us-
ing (18), a generalized diffusion equation for f'"'(R) can
also be derived:

B,f '"'(R) = [tb, —g (R)]f'"'(R)

where the Green function G (R2, R i )

=+T(R2)P'(R2, R, )+T'(R, ). The Green function G is
factorized into a probability part and a weight part as where

+re, (R) g V.f'"'(R).V. p, (R) ', (29)

G(R;,R;, ) =P(R, ,R;, )m (R;,R;,),
with the normalization condition

gP(R;, R;,)=1 .
R,.

(22)

(23)

and

g(R)= UN (R) —w —tzN —tiIt'T(R)b, %'T(R)

Vgf(R)= g [f(R+5) f (R)] . —
6&0

The importance sampling is achieved when paths
are generated according to the distribution

ii;P(R;,R;, )4 (Ro). The sum over the weights of all
the generated paths gives the desired matrix element.

The ground-state energy can be evaluated exactly using
the above strategy as

The forward (backward) difference operator V+ (V ) ap-
pears because of the discrete nature of the diffusion pro-
cess. The large n solution of (29) is given by
f' '(R)=%'"'(R)+T(R).

C. Fixed-node approximation

where W(R) =ii; m (R;,R;, ). An approximate esti-
mate for the ground-state average of any arbitrary ob-
servable can be obtained from'

(25)

Since 'PT has both positive and negative signs for fer-
mion systems, (21) is unsuitable for a MC evaluation.
Following the idea of fixed-node MC approximation in
continuous space, ' we shall seek to solve an effective ei-
genvalue problem with nodeless wave functions. Impor-
tant differences exist between the fixed-node MC approxi-
mation in continuous space and the one we shall develop.
An eigenvalue problem for a nodeless wave function g is
posed as follows:

g H, ir(R, R ' )P(R ') =sg(R ),
R'

(30)

B. Diffusion interpretation

The Monte Carlo process described above can be inter-
preted as searching for the stationary solution of a lattice
diffusion equation by random walk and branching. From
the definition of +'"' and I', we have the following
diffusion equation for 4'"':

where R is restricted to a set V of connected
configurations inside which the trial wave function has
the same sign. A natural choice for H, s-(R, R ') is

H(R, R') if R,R'E V,
H,s(R,R')= '0 (31)
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This is equivalent to setting f(R)=0 for R 6 V. ' It is
conceivable to use a more sophisticated H,z than the sim-
ple choice (31). Ensembles of random walkers distributed
according to the product of gT(R) and g(R), which has
the lowest c, can be generated by the diffusion process
outlined in Sec. III A. For the Hubbard model, (30) takes
the form

(32)

from (30) we conclude

P(R ') if R + BV,
R'eA'(R)

H&R =
sg(R ) otherwise, (33)

where BV is the set of configurations which lie outside V
and can reach configurations inside V by hopping one
electron to one of its nearest-neighbor sites.

A variational wave function which has the correct fer-
mion symmetry can be constructed from f(R) as follows:

g(R)= g (
—1) g(rp, rp2. . . rp~)

P
(34)

, ~y(R')I/l (R)~

g~ p(R )gT(R )
(36)

where the sum in the numerator of the second term is
over all R HBVand R'H JV(R). Hence we have

EF ~C. . (37)

This is in contrast to the continuum case' where
E =EF=c. The above difference is caused by the fact the
nodal surface for a lattice system may fall between
configurations rather than on configurations.

where P is a permutation of (1,2, 3, . . . ,N). We have
E = (H )&~ Eo. However, the variational energy E can-
not be evaluated easily. We approximate E by

g Q(R)HQT(R)

(35)
g g(R)QT(R)
R

Using the fact that H is a Hermitian operator and (33)
and (34), we have

The normalization for I' then implies

m(R;, )=QG(R;,R;, ) .
R,.

The discrete distribution P(R, ,R;, ) is thus completely
specified. The ratio of determinants appearing in G is
calculated by a method described in Ref. 6. Zero proba-
bility is assigned to those positions which go beyond a no-
dal region.

The discrete distribution I' is sampled by arranging it
onto a line of unit length. " Each individual interval on
the line represents the probability of a specific position.
We generate a random number y, which is distributed
uniformly in the interval [0,1). The interval into which y
falls indicates the new position that the random walker is
going to take. This gives the electron and direction in
which the electron is to be moved.

The algorithm is summarized as follows
(1). Generate an initial ensemble of random walkers

[R; I distributed according to ~VT(R) ~ by the variational
Monte Carlo method.

(2). Propagate the random walkers in the ensemble one
by one through s time steps until the whole ensemble is
advanced by s time steps. This makes one interval.

(3). Do a death and birth process after each interval to
increase the statistical efBciency. One simply replaces m
by an integer [m]= [m+y] (truncation), where y is a
random number uniformly distributed in the interval
[0,1).

(4). Renormalize the ensemble size to its initial size
after T intervals by randomly deleting and copying
configuration. This completes a block.

The ensemble is chosen to contain about 1000
configurations. We compute as many blocks as the
desired accuracy is achieved.

The parameter m in the filter operator F is adjusted to c
such that the average number of random walkers in each
generation remains approximately constant. The basic
time unit ~0 is restricted by ~o(1/( UN/2 —tU) such that
F(R,R) is positive. This is a more strict requirement on

than (16). The local energy EL (R ) is measured
throughout the random walks. The measurement of local
energy in the initial block is discarded when the excited
components are still present.

IV. RESULTS FOR THE HUBBARD MODEL

A. Comparison with exact results

D. Computational details

In the evaluation of the sum in (21), paths IXI distri-
buted according to Q;P(R;,R;, )VT(RO) need to be
generated. The paths [AI can be viewed as random
walks in the configuration space. The random walkers
are driven by the Green function to diffuse from the ini-
tial distribution VT(R ) to VT(R)+o(R). A random walk-
er at position R,- i is moved to a new position R, accord-
ing to the probability P(R, ,R, &), where P is determined
by (23) and (22). Further conditions are needed to specify
P. For simplicity, we assume m (R;,R; &)=m (R; &).

To establish the accuracy of the approximation dis-
cussed in Sec. III C, we test it against the U =0 case of
(1). This case is chosen because the exact wave function
can be obtained easily. The system is oriented along (1,1)
direction of the square lattice and has a dimension of
8 X 8 (a /+2 X a /v'2). Periodic-antiperiodic boundary
conditions are applied. The exact wave function is the
paramagnetic solution of the HF equation, i.e.,
n, =n, m, =0 in (11).

The trial wave functions are constructed to be of the
Gutzwiller form as given by (12). The determinant in (12)
is chosen to be the exact wave function. The Gutzwiller
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TABLE II. Comparisons between the fixed-node energy EF
and the exact energy E,„„,. EGwF is the energy of the
Gutzwiller trial wave function. This system has 32 sites and 8
holes. The on-site interaction U is 0. The fixed-node energies
are exact even with trial wave functions which give poor varia-
tional energies.

1.20
,

g +
i~ '4

1.08 ~~

(
0.96

1.00

+ 0.60

0.20

0.6
0.7
0.8
0.9

EGWF

47.21(5)
48.83(3)
49.81(2)
50.32(1)

—EF

50.48(3)
50.58(1)
50.45(2)
50.48(1)

Eexact

50.47
50.47
50.47
50.47

53.63(4)
53.66(3)
53.62(3)
53.67(3)

0.84

072-

I

14 g +

Q-s

+g'+ ff+ 4

I I I i I I I I I P I I I I I I I I I I I I I I I060
1 5 9 13 17 21 25

—0.20

- —0.60

g factor controls the quality of the trial wave function
without altering its nodal structure. Hence we expect
that the nodal energy c. will not depend on the value of g,
although EF may. Energies obtained for g ranging from
0.6 to 0.9 are given in Table II. We see that indeed c. does
not depend on g. However, it is surprising to see that the
exact energy is achieved within the error bar even for a
rather poor trial wave function with g =0.6.

B. Domain-wall phase

Calculations are performed on a 28 X 8 square lattice to
study the stability of the domain wall phase at
U/t=7, 10. Only diagonal domain walls are considered
since in the parameter range we study it is the most stable
phase according to both HF and VMC results. The verti-
cal domain-wall phase is expected to be the stable phase
at U/t & 3.7. ' The number of holes in the system is such
that there is one hole per site along the wall line. There
are two domain walls in the system. The variational pa-
rameters for the Gutzwiller wave function are taken from
Ref. 4 such that the results can be compared.

Our results are in qualitative agreement with the inho-
mogeneous HF and VMC calculations. The energies are
significantly lower than those of the VMC and HF calcu-
lations. The energy difference between the domain-wall
and commensurate phases is smaller than that obtained
by VMC calculations. The VMC results are in between
the HF and FNMC. Energies are given in Table III.
One noticeable difference between our results and the
VMC is the behavior of the hole condensation energy

FIG. 2. Charge density (cross) and staggered magnetization
(triangle) profiles for U/t =7. Also shown is the charge density
(circle) and staaggered magnetization (bold cross) profiles from
VMC calculations. The HF results, which are not shown in the
figure, have the narrowest domain-wall structure. The lines are
simply a guide to the eyes.

E, =ECM —EDw with U. Our results show that E, is
nearly the same for U/t =7 and 10. On the other hand,
the VMC results show a monotonic increase of E, from
Ult =0 to Ult =10. For large U the Hubbard model
close to half-filling can be mapped onto a t-J model with
J =2tlU . ' It behaves for large U as a weakly interact-
ing system, excluding double occupied sites. Presumably
the system then prefers to have a ferromagnetic ground
state or even phase separation. ' This may imply that E,
will first increase, reach a maximum, and then decrease
to 0 with increasing U. Our results are consistent with
the existence of a maximum for E, between U!t =7 and
10.

The density profiles and staggered magnetization
profiles are shown in Figs. 2 and 3. Two general features
can be seen from our results. One is that the domain wall
becomes narrower with increasing U. This feature, also
present in the HF and VMC results, can be understood as
follows. The shape of the domain wall is controlled by
the competition between the loss of kinetic energy due to
localizing the holes in the wall and the gain in potential
energy from the antiferromagnetic ordering away from
the wall. With increasing U/t, the potential energy be-

TABLE III. Ground-state energies obtained by the FNMC method for a 28X 8(a/&2Xa/&2) sys-
tem. The system has 112 sites and 104 electrons. The trial wave functions used are GWF diagonal-wall
(GWF DW), GWF, commensurate (GWF CM), and self-consistent HF diagonal-wall (HF DW) types.
The Axed-node energies (EI;) are significantly lower than those obtained by the HF (EHF) and the
VMC(EGwF ) calculations. The diagonal domain-wall phase has energy lower than the commensurate
phase for both U/t =7 and 10.

7
7
7

10
10
10

—EHF

67.13
67.13
62.48
51.77
51.77
45.87

EGWF

75.70(5)
73.30(5)

59.42(6)
54.46(5)

76.3(5)
79.6(8)
78 ~ 5(1)
59.4(3)
64.3(2)
63 ~ 3(1)

77.9(9)
84.6(2)
84.9(5)
59.9(3)
65.8(2)
66.4(2)

—EF /N

0.734
0.765
0.755
0.571
0.618
0.608

Type

HF DW
GWF DW
GWF CM
HF DW

GWF DW
GWF CM
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1.20
Ii+

x+
1.08-

1.00

- 0.60
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FIG. 3. Same as in Fig. 2 for U/t =10.

comes more important and narrower walls are favored.
The second feature is that both HF and VMC results
have walls narrower than the FNMC ones. This is due to
the fact that both HF and VMC methods overestimate
the effect of potential energy and underestimate the efFect
of kinetic energy.

To check the dependence of the results on the nodal
structure of the trial wave function, the same system is
studied using the self-consistent HF wave function as the
trial wave function. Less satisfactory energy is obtained
as shown in Table III. It means that the nodal structure
of the self-consistent HF wave function is worse than the
one provided by the Gutz wilier wave function, as
specified by Eqs. (12)—(14).

V. DISCUSSION AND CONCLUSION

We have presented the extension of the fixed-node MC
method for fermions to a lattice model for hopping fer-
mions. Some of the extensions require only minor adap-
tations. The difFusion interpretation of the MC process is
still valid as well as the projection technique to filter out
the ground state. In lattice problems one does not need
to make the short-time approximation for correct filter-
ing. The random walkers diffuse according to probabili-
ties dictated by the Green function and not with an a
priori Gaussian distribution. The random walkers are not
allowed to cross the boundaries of a nodal region. In the
continuum case this has less consequences than in the lat-
tice version. Restricting the wave function to one nodal
region gives for the continuum case still the exact wave
function (provided the nodal boundary is correct). Also,
the kinetic energy, as a quasilocal operator, is only sensi-
tive to the wave function inside a nodal region. So the
extension of the wave function to the whole space by im-
posing the fermion symmetry is a formal operation which
does not interfere with the ground-state energy calcula-
tion from the behavior in one nodal region.

The restriction to one nodal region does change the
wave function for a lattice problem, since the nodal
boundary is located between two configurations and the
wave function does not vanish on either side of the
boundary. Moreover, the kinetic-energy operator probes
the wave function across the boundary, and so an exten-
sion of one nodal region to the whole space is not a pure
formal operation, but does inhuence the kinetic-energy
value. That this inAuence is substantial we see from the
large difference between c., the energy of the restricted
problem, and EF, which is a mixed estimate for the true
problem. '

Thus it is surprising and reassuring that poor trial
wave functions with exact nodal structure do give the ex-
act value for E~ (within statistical accuracy), while the
truncated value E is quite far off (Table II). Therefore, we
feel that also in lattice problems the main source of errors
in the energy is caused by the nodal structure of the trial
wave function.

We have applied the lattice FNMC method to study
the incommensurate domain-wall phase in the two-
dimensional Hubbard model. Our results agree qualita-
tively with VMC and HF calculations. Although the en-
ergy difference between the incommensurate domain-wall
and commensurate phases is smaller than that obtained
by the VMC calculation, it is large enough to see that the
diagonal domain-wall phase is the stable one. The
FNMC method can be used to study other types of
phases as well. For example, one can use it to determine
the phase boundary between the diagonal- and vertical-
wall phases. Also, the method is by no means restricted
to the Hubbard model.

Finally, we remark that the method developed here is
complementary to the popular Trotter-formula ap-
proach' to quantum MC study of the lattice fermion
models. The Trotter formula plus auxiliary- field ap-
proach is, in principle, exact; however, it is severely re-
stricted by the sign problem. Our method is free from
the sign problem and can be applied to relative large lat-
tice sizes with moderate amount of computer time (all
our simulations are done on a local network of SUN-
SPARC work stations).
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