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Ising model on Penrose lattices: Boundary conditions
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The zero-field ferromagnetic Ising model is studied on three different geometries that all approach
Penrose lattices. Two types of aperiodic boundary conditions are presented. By means of Monte
Carlo simulation and finite-size scaling we determine with high accuracy the transition temperature,
critical exponents g and v, specific-heat critical amplitude, and several finite-size-scaling amplitudes,
and we study the effects of different boundary conditions. In all cases, we find that g 4 and v 1.
Thus, we conclude that, despite its quasiperiodicity, the Ising model on the Penrose lattices belongs to
the same universality class as Ising models on periodic lattices. We find that the aperiodic boundary
conditions lead to finite-size-scaling functions different from those for periodic boundary conditions.
However, the rates of convergence to the finite-size-scaling regime are comparable between different
bound ary conditions.

I. INTRODUCTION

The present paper is the first of two papers where the
zero-field ferromagnetic Ising model on Penrose lattices
is studied. We shall present here high-precision Monte
Carlo simulations determining the universality class of
the model. The Penrose lattices are a family of pentago-
nal quasiperiodic tilings of the plane. In reality one can
only simulate finite systems and, consequently, one must
also specify the boundary conditions. For periodic lat-
tices one can always take a finite portion consisting of
several unit cells so that the usual, periodic boundary
conditions can be applied. Since the Penrose tilings are
not periodic, the same approach can be used only by ap-
proximating a Penrose lattice by periodic tilings with an
increasingly larger unit cell. However, in the thermody-
namic limit, any such periodic tiling belongs to the usual
Ising universality class. If the universality class were to
change in the limit of the Penrose tilings, one or more
of the (nonuniversal) critical amplitudes of the periodic
tilings would have to tend to zero or diverge, leading
to different critical exponents. We therefore study the
behavior of the exponents as mell as the critical ampli-
tudes as the Penrose lattices are approached through a
sequence of periodic tilings. Second we investigate the
effects of three different kinds of boundary conditions on
the finite-size scaling. The geometries considered are the
rational approximants to the Penrose lattices subject to
periodic boundary conditions, topologically a torus, and
two types of aperiodic boundary conditions, one with a
spherical topology and one with a toroidal topology. We
shall refer to these geometries as periodic, spherical, and
toroidal boundary conditions, respectively. In a planned

second paper we shall be concerned with the infIuence of
phason fluctuations on the ferromagnetic transition.

Our investigation is motivated by the discovery of
quasicrystals, some of which could undergo a magnetic
transition. It is thus of natural interest to study the
Ising model on Penrose tilings which are one of the pos-
sible conceptual models of quasicrystals. As opposed to
the well-known periodic lattices, for some of which the
Ising model is solvable in two dimensions, Penrose lat-
tices are quasiperiodic, making any analytical approach
very diKcult. This quasiperiodicity could lead to a new
critical behavior. Mainly this question will be addressed
in this paper. On the other hand, there is now experi-
mental evidence that some icosahedral and decagonal Al-
Mn-Si alloys are three-dimensional spin glasses. These
materials possess a large degree of the so-called phason
disorder. This is the main motivation for investigating
the effects of phason fluctuations in the Ising model on
Penrose lattices, which will be presented in the second of
our two papers.

For the one-dimensional quasicrystal, the Fibonacci
chain of long and short bonds (tiles), the Ising model
in a field is solvable by exact renormalization-group
methods. If the interactions along the short and long
bonds have different signs an interesting rich structure of
the ground state is seen. The phonon spectrum of the
Fibonacci chain was calculated and observed to have
a Cantor set structure. Also the quantum spin-z XY
Fibonacci chain in zero field is solvable and displays
similar properties. For Penrose lattices fewer proper-
ties are known. There is substantial evidence that the
Ising model on the Penrose lattices should belong to the
universality class of the periodic lattices, as well as
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some evidence that the aperiodicity could lead to a diA'er-

ent critical behavior. An Ising model including several
couplings has also been considered and recently the an-
tiferromagnetic Ising model on Penrose lattices has been
studied. A version of the eight-vertex model on the Pen-
rose lattices was solved by Korepin, and was seen to
have properties close to the periodic case. For three-
dimensional quasicrystals there are now results showing
that T, = 4.972 + 0.06.~5

We shall consider spins cr; = +3. located at the vertices
of a Penrose lattice [see Fig. 1(a)j and described by the
zero-field, ferromagnetic (J ) 0) Ising Hamiltonian

II = —J ) oo~,
&~,j&

where the sum is over all pairs of spins connected by the
edges of the individual rhombi (tiles). Previously, Bhat-
tacharjee, Ho, and Johnson, have performed Monte
Carlo simulations of the Ising model on Penrose lattices.

They obtained finite-size data by considering subblocks
of a master Penrose lattice. However, since the Penrose
lattices do not allow for periodic boundary conditions,
they used free boundary conditions which result in a dif-
ficulty in the finite-size analysis due to a large "surface"
energy caused by the unsatisfied bonds at the free bound-
ary. They obtained the estimate T,/J = 2.41 6 0.02 for
the transition temperature and observed no change in
the universality class away from the square lattice Ising
model.

Qkabe and Niizeki studied the Ising model both on
Penrose lattices and its dual lattices also by Monte
Carlo methods. However, rather than considering Pen-
rose lattices themselves, they studied periodic approx-
imations to Penrose lattices, the so-called rational ap-
proximants, which allowed them to use the ordinary pe-
riodic boundary conditions. These approximants are pe-
riodic tilings of the plane with a unit cell, such as the
one shown in Fig. 1(b), consisting of several Penrose
rhombi. A rational approximant is characterized by an
integer q. In the limit where q tends to infinity, the unit
cell of the approximant becomes infinitely large. and one
obtains a Penrose lattice. One can now obtain finite sys-
tems, such as the ones indicated by shading in Fig. 2,
for which the usual periodic boundary conditions can be
applied. By considering a sequence indicated in the first
column in Fig. 2, i.e. , a sequence of digerenf rational
approximants with increasingly larger unit cells, Okabe
and Niizeki~ applied the usual finite-size scaling analy-
sis and obtained an estimate of the critical temperature,

(1 x1) (2x2) (3x3)

q=t
///// ///// ~ &,&///7///, & & ///, ', ' F ////~ ~~i, 'lÃ // ~ll

' '/
kF/// Al",&// 8, ' ' '/

~ ~ ~ ~ ~ ~ (egg x(oo )

q=2

(lxl) (2x2) (3x3) ~ ~ ( x

FIG. l. (a) A section of the Penrose lattice. In our model,
spins are located at the vertices and interact along the bonds.
(b) Unit cell of the q = 5 periodic approximant to the Penrose
lat tices.

FIG. 2. Schematic presentations of difFerent periodic ap-
proximant routes to Penrose tilings. Each row represents a
periodic lattice approximating Penrose lattices. It is labeled
by an index q = 1, 2, . . . . The rhombic unit cell of each pe-
riodic lattice, such as the one shown in Fig. 1(b) for q = 5,
consists of many Penrose rhombi. The nth column represents
finite, (n x n) unit cells, subsets (shaded) of infinite periodic
approximants. Periodic boundary conditions are imposed on
the finite Ising models defined on these subsets.
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TABLE I. The critical temperature T„ the exponents g and v, the specific heat amplitude Ap,
the susceptibility amplitude yp, and g' for different boundary conditions.

b.c.

(2 x 2)
(oo x oo)
Spherical
Toroidal

2.400+0.002
2.401+0.005
2.398+0.004
2.398+0.002

1lv

0.96+0.02
1.00+0.01
1.02+0.01
]..00+0.01

0.242+0.003
0.252+0.00?
0.248+G.002
0.246+0.002

Ap

0.415+0.012
0.43

0.444+0.006
0.440+0.006

Xp

0.400+0.004
0.412+0.002
0.334+0.002
0.351+0.003

0.912
0.916
0.842
0.845

2.388 & T,/J & 2.396, and also observed no change in
the exponents away from those of the square lattice Ising
model. In this way they simul/aneously approach the
Penrose lattices and the thermodynamic limit. However,
the finite-size scaling analysis is well understood only for
periodic lattices, i.e., for sequences such as the ones cor-
responding to the rows in Fig. 2. Therefore, it is not a
priori clear how "good" their finite-size scaling analysis
should be. Also in this way it is not possible to study the
critical amplitudes as a function of the rational approxi-
m ants.

In this paper we apply periodic boundary conditions
in a different way and we also consider two new types
of boundary conditions. As a result we can examine the
effect of different boundary conditions on the finite-size
scaling analysis, and we obtain accurate predictions for
the transition temperature T„critical exponents g and
v, and the specific heat critical amplitude Ao. Our re-
sults are summarized in Table I, from which we conclude
that the ferromagnetic Ising model on Penrose lattices
belongs to the same universality class as the Ising model
on periodic lattices. The error bars given in the table in-
dicate that the accuracy of all approaches is comparable
so that the computationally least expensive one may be
used.

The periodic boundary conditions are applied on ra-
tional approximants. However, we first extrapolate to
the thermodynamic limit for a given rational approxi-
mant. That is, we erst apply finite-size scaling analysis
for each rational approximant (each q) by considering a
sequence of finite systems of n x n unit cells, n ~ oo
(each row in Fig. 2). Then we extrapolate the results

for the sequence of rational approximants to the limiting
case of a Penrose lattice (q ~ oo). This is illustrated by
the last column in Fig. 2. We shall refer to this proce-
dure as the (oo x oo) -periodic boundary conditions. A
sequence along the nth column will be referred to as hav-
ing (n x n) -periodic boundary conditions, whereas a se-
quence along the qth row will be referred to as (oo x oo)&-
periodic boundary conditions. Thus, Okabe and Niizeki
used (1 x 1)~-periodic boundary conditions. We have
also analyzed (2x 2) -periodic boundary conditions and
the results are included in Table I.

Although for a given approximant to the Penrose lat-
tices the unit cell has a rather complicated structure and
consists of many individual rhombi, the approximants
are still periodic lattices. Thus, the approximants should
be in the same universality class as the Ising model on
the usual periodic lattices. This is indeed the case, as
can be seen from the critical exponents listed in Table II.
They are not seen to vary appreciably as a function of
the approximants. One finds g 4 and v 1. How-
ever, as previously mentioned, this does not exclude the
possibility that Penrose lattices can belong to a different
universality class. Namely, as one approaches Penrose
lattices, one or more of the critical amplitudes could tend
to zero or diverge and thus lead to new critical behavior.
It would only be possible to detect this by studying the
critical amplitudes or the finite size-scaling amplitudes as
a function of the approximants. This is done here by ex-
tensive computer simulations. The relevant amplitudes
are also listed in Table II, and we see that they approach
finite, nonzero numbers in the limit q ~ oo. For ex-
ample, the specific heat critical amplitude is observed to

TABLE II. The critical temperature T„ the exponents g and v, the specific heat amplitude Ap,

the susceptibility amplitude yp, and g for different rational approximants characterized by q. The
entry for q = oo corresponds to the extrapolation we refer to as (oo x oo) -boundary conditions in

the text.

2.26918. . .

liv
1.0

Ap

0.494358. . .
Xp

0.916

2.376+0.004
2.390+0.004
2.397+0.003
2.399+0.002
2.398+0.003

0.98+0.02
1.02+0.02
0.98+0.03
0.99+0.02
1.02+0.02

0.237+0.003
0.264+0.003
0.258+0.003
0.250+0.003
0.252+0.003

0.465+0.011
0.465+0.011
0.436+0.020
0.431+0.011
0.432+0.015

0.413+0.004
0.407+0.004
0.414+0.005
0.410+0.004
0.415+0.005

0.922
0.913
0.914
0.914
0.918

2.401+0.005 1.00+0.01 0.252+0.001 0.43 0.412+0.002 0.916
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decrease, but it saturates at a finite value, Ap 0.43.
We also find that T„which is not a universal quantity,
varies with the approximants. However, its limiting value
T,/J = 2.401 + 0.005, like the values of v, rl, and Ao,
should be independent of the boundary conditions.

The toroidal and spherical boundary conditions are
described in detail in the next section. In both cases
we consider progressively larger segments of a Penrose
lattice and we prescribe the mutual bonding (identifica-
tion) of the surface spins so as to reduce the large sur-
face energy (which would result from the free boundary
conditions) while preserving the local matching rules of
Penrose lattices (which are violated in rational approxi-
mants). The toroidal boundary conditions correspond to
a toroidal geometry with variable radii and one expects
similar results as for rational approximants. Indeed, we
find T,/J = 2.398+0.002, g 4, v 1, and Ao 0.44,
which are close to the values obtained from rational
approximants. The spherical boundary conditions corre-
spond to a spherical geometry and we determine T,/J =
2.398 + 0.004, g 4, v 1, and Ap 0.44, which are
again close to the values obtained from rational approxi-
mants. Therefore, we must conclude that the Ising model
on the Penrose lattices belongs to the same universality
class as the Ising model on periodic lattices.

In Sec. II we present the model and the difFerent ways
of constructing the boundary conditions. Section III de-
scribes the numerical simulation procedure and the finite-
size scaling analysis. In Sec. IV we discuss the results
of the simulation and the finite-size analysis for the ap-
proximants and for the toroidal and spherical boundary
conditions.

FIG. 3. (a) Arrowed rhombi which force a quasiperiodic
tiling of the plane. (b) Inflation of the arrowed rhombi.

II. THE MODEL

We shall not go into much detail about properties
and various ways of constructing the Penrose lattices
on which our model, Eq. (1), is defined, since that
has been done elsewhere, we refer the reader to Ref. 19.
Here we shall only recapture some of the basic properties
necessary to define finite-size approximations (and their
boundary conditions) whose thermodynamic limit is a
Penrose lattice. The Penrose lattice shown in Fig. 1(a)
can be viewed as a tiling of the plane by 36' and 72'
rhombi of unit edge length. Clearly, these two rhombi can
tile the plane in many ways, including periodic tilings,
such as the one shown in Fig. 1(b). However, if the two
rhombi are equipped with arrows, as shown in Fig. 3(a),
and the arrows are required to match, the resulting tiling
is always a Penrose lattice as shown in Fig. 1(a). This
jigsaw puzzle method of constructing a Penrose lattice is
not very efFicient. The most efFicient way is by means of
the inflation-deAation transformation, which prescribes
a subdivision of the rhombi into rhombi rescaled by the
golden mean w = (1+ ~5)/2 as shown in Fig. 3(b). As
this transformation is iterated ad inPnitnm one obtains
a Penrose lattice. DiA'erent seeds, i.e. , different initial
arrangements of tiles, will, under the initiation transfor-
mation, generally lead to different Penrose lattices. Of
course, for the purpose of computer simulations, we need
to find a way of constructing similar sequences of finite

systems which reproduce a Penrose lattice in the ther-
modynamic limit, . In order to make the convergence to
a Penrose lattice as fast as possible, we first require that
the average coordination of spins in our finite systems be
as close as possible to 4, the value for the Penrose lattice.
For example, if we consider finite systems constructed by
the inflation, we see that the average coordination z is re-
duced from the Penrose lattice value by a term inversely
proportional to the length of the boundary (surface), i.e. ,

z = 4 —O(N i z), where N is the number of spins in the
system. This necessary consequence of the free boundary
conditions can be improved upon by connecting or iden-
tifying pairs of spins from the boundary. However, we
should also require that the resulting Hamiltonian con-
sists of quadrangular plaquettes, supplied by arrows as
in Fig. 2(a), with as few arrow mismatches and as few
new vertex types as possible.

YVe shall be concerned here only with the boundary
conditions which result in a spherical or toroidal topol-
ogy of the resulting Hamiltonian and we shall consider
only few simple cases. The average coordination can be
immediately calculated using the Euler characteristics for
a given topology and the fact that the Hamiltonian con-
sists of plaquettes which are quadrangles. Thus, z = 4 for
the torus while z = 4 —8N for the sphere. Therefore,
from the point of view of the coordination, one would



44 ISING MODEL ON PENROSE LATTICES: BOUNDARY CONDITIONS 9275

expect faster convergence for toroidal topology than for
the spherical topology.

A. Rational approximants

The usual method for constructing toroidal boundary
conditions is by means of planar periodic approximations
of Penrose lattices, the so-called rational approximants.
We shall refer to these boundary conditions as periodic,
since this is the most natural way of extending the no-
tion of periodic boundary conditions to Penrose lattices.
We shall only highlight the discussion of these rational
approximants which can be found in Ref. 20. For the
rational approximant the tiles are exactly the same as
for the regular Penrose lattice, however they are now ar-
ranged in a periodic fashion. It should be immediately
clear that any planar periodic approximation of a Pen-
rose lattice must contain arrow mismatches. In fact, it is
shown in Ref. 20 that each rational approximant has pre-
cisely two arrow mismatches and, thus, at least four new
vertex types. The unit cell of the rational approximants
is spanned by the two basis vectors

in this approximant. For higher approximants the full
range of coordination numbers from three through seven
is present. In general, there are two arrow mismatches for
the approximants and, therefore, also at least three dis-
allowed vertices. The coordination z is, however, exactly
four.

B. Spherical boundary conditions

The simplest way to obtain a spherical boundary con-
dition is by simply identifying spins on matching edges
of the 72' (or 36') rhombus. This procedure naturally
carries over to the infIations of the rhombus. However, at
certain stages of the infIation, this simplest case leads to
other than quadrangular plaquettes. This can be avoided
by joining along the matching edges not one but n 72'
rhombi. We consider in our simulation the case with
n = 5, as shown in Fig. 4(a). Here five vertices denoted

S(2r —1 i . 7ra('&=(P +Q) ~ 2 ' 5

Ri'i = (PT + Q) (0, 2 sin—
5

where

(2)

(4)

By choosing P and Q as consecutive numbers from the
Fibonnacci sequence

Q —p"

i
i
i

I

i

I

l
I

I
I

I
I

we obtain the qth approximant. The number of tiles in
a unit cell is

Nq
——F2q+g + 2I"2q. (6)

In the following we consider approximants with q=1 to
6, which have 4, 11, 29, 76, 199, and 521 rhombi per
unit cell, respectively. A unit cell of the q = 5 rational
approximant is shown in Fig. 1(b). The number of tiles
increases by approximately r 2.6 between subsequent
approximants. The number of 36' and 72' rhombi are
given by the equations

+36' —+2q —1 + 2+2q —2~ +72 —+2q + 2+2q —1 ~

The ratio N72o/Wsso thus approaches the value r for the
Penrose lattices when q tends to infinity.

For a regular Penrose lattice individual sites will have
coordination numbers ranging from three through seven,
though the average coordination number is exactly four.
It is interesting to compare T, for the Penrose lattice
and other two-dimensional four-coor dinated 1at tices such
as the square lattice (T, = 2.26918. . .) and the Kagome
lattice (T, = 2.1433. . .). The first of the approximants,
q = 1, has only 4-coordinated sites and is thus completely
equivalent to the square lattice, although the unit cell
consists of three 72' and one 36' rhombi. The second ap-
proximant, q = 2, has sites of coordination ranging from
three through six, with 7-coordinated sites being absent

S

(b)

FIG. 4. (a) Identification of spins and edges for "spher-
ical" boundary conditions. The points A, B, C, D, and E
correspond to the vertices not found in the Penrose lattices.
(b) Graphical illustration of how the five rhombi are joined
together to form the "sphere. "



9276 SQRENSEN, JARIC, AND RONCHETTI

by A, 8, C, D, and E, of a kind not, found in the Pen-
rose lattices, appear along the equatorial plane as shown
in Figs. 4(a) and 4(b). For these vertices the sum of
the angles is 216' if one considers the tiles as flat and
undistorted. On the two poles, denoted by N and S in
Fig. 4, the sum of the angles is 360' and the vertex is
one of the eight found in the Penrose lattices. Therefore,
the resulting structure can be viewed as flat, having five
144' disclinations located at A through E, where the en-
tire curvature of the sphere is concentrated. If we were
to use any inflation of n 72 rhombi, I ( n g 5, joined
along the matching edges, we would again get a structure
with the matching rules satisfied everywhere, but n dis-
allowed vertices would appear in the equatorial plane,
and the vertices on the two poles would also not be among
the eight allowed in the Penrose lattices. The third
through seventh inflation, of the original five rhombi,
that we consider have the following numbers of spins:
107, 277, 722, 1887, and 4937. Here the number of spins
is given by the relation

+torus —F2q+1 + F2q F2q —7 F2q-8 ~

Here q is the inflation number, q=0 for the original rhom-
bus, and q=4 for the first case where one can construct
the toroidal boundary conditions. These boundary con-
ditions also satisfy the arrow matching rules, and z = 4,
however, there are 2 disallowed vertices. We shall refer
to these boundary conditions as toroidal.

~sphere = 5(F2q+1 + F2q) + 2~

where q = 0 corresponds to the original five rhombi, and
the Fibonacci numbers, Fq, satisfy the familiar recursion
relation

Fq=Fq 1+Fq 2, F0=0, Fl =1

We shall refer to this as spherical boundary conditions.
As mentioned above, these boundary conditions satisfy
the arrow matching rules. However, z g 4, and 5 dis-
allowed vertices occur.

C. Toroidal boundary conditions

We shall discuss here a difFerent method of construct-
ing toroidal boundary conditions. We start with one 72'
rhombus which is inflated. The spins on the edges are
now identified as shown in Fig. 5(a). We can do this only
if the tiles match across the edges. As can be seen in
Fig. 5(a), this indeed occurs for the fourth and all sub-
sequent inflations of the 72' rhombus and we will use
these inflations in our calculations. ~i In Fig. 5(b) we il-
lustrate how the inflated rhombus is first folded into a
"double cone" and subsequently into a torus. Again, all
the arrow-matching rules are satisfied, but t, here are two
new vertices, marked A and B in Fig. 5(a) which are
not allowed in the Penrose lattices. If one considers flat,
undistorted tiles, the sum of the angles at 8 is 216~, while
at A it is 404'. Thus, these two points can be viewed as
a pair of +144' disclinations in a flat, periodic tiling.
We used this sequence of finite systems with toroidal
boundary conditions with total number of spins equal to
54, 141, 369, 966, and 2529 corresponding to the fourth
through eighth inflation. The number of spins, which in
this case corresponds to the number of rhombi since the
coordination is exactly four, is given by the relation

FIG. 5. (a) Fourth inSation of the 72' rhombus and iden-
tification of spins appropriate for toroidal boundary condi-
tions used here. (b) Two-step graphical illustration of how a
72' rhombus is folded first into a "double cone" and, then,
into a "torus" with nonconstant radii.
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III. MONTE CAB.LO SIMULATION

In order to determine the transition temperature it is
necessary to obtain thermodynamic quantities at diA'er-

ent temperatures. We use the method of Ferrenberg and
Swendsen22 to do this. A standard Metropolis impor-
tance sampling of the system is performed at a temper-
ature close to the transition temperature. For each of
the lattices considered the first 105 Monte Carlo steps
per spin (MC/S) is discarded for equilibration. For the
ensuing 2.5 x 10 to 5 x 10 MC/S a measurement of
the relevant quantities such as energy and magnetization
is written to a file for each 100 MC/S. Thus, the com-
plete Boltzmann distribution of the basic quantities of
interest is kept. From this information it is now possible
to obtain estimates at nearby temperatures, utilizing the
well-known form of the Holtzmann distribution. For ex-
ample, within the usual framework of importance sam-
pling, where one replaces ensemble averages by "time"
averages, one has for a quantity Q:

calculating the critical exponents. Therefore, we need to
calculate T, to a high accuracy. We shall also want to
evaluate certain nonuniversal amplitudes, some depend-
ing on the boundary conditions.

A convenient way of locating the transition ternpera-
ture and computing the critical exponents using finite-
size data has been discussed by Binder. Here we shall
make a similar approach. We study the following ratio
of cumulants:

where I is the linear system size, M the magnetization,
and ( ) denotes the ensemble average. This ratio of the
cumulants has simple properties that make it ideal for
determining the transition temperature in a finite-size
scaling analysis:

0, T&T, ;lim g(T, L) =

Q(T)= Z T )
where To is the simulation temperature, Z(TO) the num-
ber of measurements, and Q, the quantity Q at the ith
measurement. If in addition to Q, , the corresponding en-
ergy E, is stored, one can obtain Q(T) from the following
expression:

Q(T) ) Q (1/To —1/T)E,1

Z(T)

Z(T) ) (1/ T01/T)E~

(12)

where the sum is over the individual measurements. Us-
ing this method it is possible to obtain good estimates
of thermodynamic quantities for a range of temperatures
around the simulation temperature. Unfortunately, this
range narrows with increasing lattices sizes. It is, how-
ever, only necessary to make the actual simulation at one
temperature. Thus, if one has some knowledge of where
the transition is one can obtain good results from a sin-

gle high-quality simulation. For the simulations that we
report we have performed substantially longer runs than
have been previously reported. Another advantage
of this method is the possibility of obtaining, at a later
time, any quantity defined in terms of the basic variables
that were stored. For example, by storing just the distri-
bution of the energy and magnetizatian the susceptibility
and specific heat can be calculated later on. A drawback
is, of course, that extra storage space is required.

For the determination of error bars we split the se-
quence of measurements into bins of 1000 consecutive
measurements. Calculations are then performed for each
bin giving 25 to 50 nearly independent estimates. The
error is then abtained by standard methods.

Although, in contrast to the critical exponents and ra-
tios of certain critical amplitudes, the transition temper-
ature T, is not universal, it is needed in our method of

The transition temperature T, can be obtained by noting
that according ta finite-size scaling

g(z* I) = y (flu"),
where t. = (T —T,)/T, is the reduced temperature and,
for a given universality class, the function g depends
only on the boundary conditions. This implies that
g(T = T„I) = g(0) = g* is independent of the sys-
tem size. Curves for difFerent lattice sizes will, therefore,
intersect at the transition temperature. However, unlike
T„ the value of g* will generally depend on the boundary
conditions used.

We can also abtain the correlation length exponent v
from Eq. (15). It follows that

where g' denotes partial derivative with respect to the
temperature. As mentioned above, for the systems in the
same universality class the quantity g'(0) should depend
only on the boundary conditions. By plotting ln ~g'(T, ) ~

versus lnI. we should obtain a straight line whose slope is
1/v and whose intercept with the y axis is In[kg (0)~/T, j.

The exponent g can also be obtained from a finite-size
scaling analysis. Here, we make the standard finite-size
scaling ansatz 4

(M )I. ~T —T —Mo L"+

where M is the total magnetization and Mo is a finite-size
scaling amplitude which, for a given universality class,
will generally depend on the boundary conditions. There-
fore, a log-log plot of (M2) versus L should be a straight
line with the slope 4 —g and the y-axis intersection lnMO.

We also study the specific heat critical amplitude.
From the work of Ferdinand and Fisher it is known
that the specific heat of the 2D Ising model on a square
lattice has the finite-size scaling form



9278 SQRENSEN, JARIC, AND RONCHETTI

- 2
Ao ——(2/ir) ln 1+ V 2 = 0.494358. . . ,

B(0,1) = 0.138 149. . . .

(2o)

(21)

Using Eq. (18) as our finite-size scaling ansatz we can
determine Ao by making a semilog plot of the specific
heat at T, as a function of the linear size of the system.
A linear dependence will be interpreted in the usual way
to mean that the specific heat critical exponent n is zero.
Moreover, since the amplitude Ao is a critical amplitude,
it should be independent of the boundary conditions used
to calculate it. In the simulations we obtain the specific
heat through the relation

CI.(T) = T 2L d ((E') —(E)2), (22)

where E is the total energy.
In a similar manner one can analyze the susceptibility.

We define the susceptibility as

(T)-'L-" ((M') —
(~ M ~)'), T & T, ;+&( ) (T)

—i L—d (M2)

For a discussion of this definition see Ref. 26. In this case
t, he finite-size scaling ansat, z takes the form 27

CI.(T,)/k~ = Aoln L+ B(0, 1) + 0((lnL) /L ),

(18)

where Ao is the same constant as the one describing the
divergence of the specific heat for the infinite lattice,

C(T)/klan ——Ao ln
~ (T/T, ) —1

~
+Ai

+0( [(TITS) —II »
I (TIT.) —1

I ) (19)

Thus in this case the finite-size scaling amplitude and the
critical amplitude are the same. Ferdinand and Fisher
showed that

A. Periodic boundary conditions

The lattice sizes considered range from 4 x 4, 5 x 5, 6 x 6,
and 7 x 7 unit cells, for the q = 2 approximant, to
1 x 1, 2 x 2, and 3 x 3 unit cells, for the q = 6 approximant.
In Fig. 6, g(T) is shown for the q = 5 approximant. For
this approximant we consider lattices of 1 x 1, 2 x 2, 3 x 3,
and 4 x 4 unit cells. The number of spins in the different
lattices is then N=199, 796, 1791, and 3184. The sim-
ulation temperature is in this case T = 2.39. From the
data obtained in this simulation g(T) is then calculated
in temperature steps of 0.002. From the intersection of
the diA'erent curves we can read oA' the transition tem-
perature, T, /J = 2.399 + 0.002, at g* 0.914.

Using the same method we obtain the transition tem-
perature, as well as g', for all the approximants from
q = 2 to q = 6. The obtained values are tabulated in
Table II. It is seen that g* is in the range 0.912 —0.922
which is in nice agreement with Monte Carlo as well as
renormalization-group results, establishing that for the
Ising model on a periodic lattice g* indeed should be in
the range 0.915 —0.918. For the q = 1 approximant
T, is the well-known Ising value of T,/J = 2.269. . . . It
is now possible to extrapolate to the limit of a regular
Penrose lattice. We make the phenomenological assump-
tion that T, is some polynomial in 1/q. Presumably any
other quantity that parametrizes the approximants, such
as the number of rhombi in the unit cell, would work
equally well. A good fit is obtained with the polynomial
2.401 —0.076q —0.056q which is shown as a solid line
in Fig. 7. In this fit the linear term in q was fixed to zero.
The limiting value of T, (q) is T, (oo) = 2.401 + 0.005.
Only a small variation in T, is observed for the larger ap-
proximant, justifying the use of (1 x 1) -periodic bound-
ary conditions used by Okabe and Niizekii although our
value of T, is slightly higher.

XL, IT=7.-XoL' ", (24)
which follows directly from Eq. (17). Using the value
for T, previously obtained, yo can be extracted from the
log-log plot of the susceptibility at T, as a function of
the linear size of the system. For a given universality
class, the finite-size scaling amplitude, gp —Mo/T, is
proportional to the susceptibility critical amplitudes yy
(defined by y yy ( t

~
&), but the proportionality con-

stant will generally depend on the boundary conditions,
and will be nonuniversal. Thus, yo will depend on the
boundary conditions. Depending on which of the two
defintions in Eq. (23) one takes at T = T„determines
whether yo is proportional to y+ or y

0.95

0.94

0.93

0.92

0.9 1

I I I I

=199
796
1791
3184

IV. RESULTS
090 i i i i I I I I I I I I I j I I

2.370 2.380 2.390 2.400 2.410

We start by discussing our results for the periodic
boundary conditions constructed using rational approx-
imants. Then, the two other boundary conditions, i.e.,
spherical and toroidal, will be analyzed. For the simu-
lations subsequently described the temperature is mea-
sured in units of the coupling constant J.

FIG. 6. g(T), defined in the text, as a function of T for
the q = 5 approximant. The lines shown are for linear sizes
of 1, 2, 3, and 4 unit cells, consisting of 199, 796, 1791, and
3184 spins. In all cases 3x10 MC/S were performed. The
simulation temperature was 2.39.
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FIG. 7. T, as a function of q . The solid line shown is
2.401 —0.076q —0.057' . For q=l this fit passes through
the exact T, of the two-dimensional Ising model on a square
lattice.

We have also analyzed our data using the (2 x 2)
periodic boundary conditions (see Table I). The resulting
g(T) is shown in Fig. 8 for q=2 to 6. In this case, g(T) for
q=2 and 3 do not intersect, consistent with our previous
ending that T, for these approximants are substantially
difI'erent. For the larger approximants the lines intersect
at a temperature 2.40 in nice agreement with the limiting
value of T, for the approximants. However, since the
approximants in the sequence are really diferent periodic
lattices, we would like to emphasize again that it is not
a priori clear how fast the region of the validity of the
finite-size scaling should be reached in this case.

To detect a change in the universality class we must
study the exponents and the amplitudes as a function
of the approximants. Using I = ~N as a measure of
the linear size of the system and d = 2, we estimate 1/v
for the approximants q=2 to 6. In Fig. 9, a log-log plot

FIG. 9. g'(T, ) as a, function of I = ~N for the g = 5
approximant. The points shown are for linear sizes of 1, 2, 3,
and 4 unit cells, with N equal to 199, 796, 1791, and 3184,
respectively. In all cases 3xl0 MC/S were performed. The
error bars are smaller than the points shown. The simulation
temperature was 2.39.

of g'(T, ) versus I is shown for the q=5 approximant.
The T, used is the one determined above. Using a least
squares fit we obtain 1/v = 0.99 + 0.02 and ln (g'(0)[ =
—3.073 + 0.074. In Table II, 1/v are tabulated for the
rest of the approximants. No variation with q is observed
for v, and the estimated values agree very well with the
exact value for the two-dimensional Ising model, v = 1.
This is consistent with the assumption that all rational
approximants are periodic and, thus, belong to the same
universality clas~, i.e., that of the Ising model on periodic

1 I I I

v

~ g I,
'6,

I'g

0..95 I I I I
i

I 1 I I

i
I I I I

j
I I I I

0.9—

0.94 0.8—
hQ

0.93

0.92

0.91

0.90
2.380 2.390 2.400 2.4 10 2.420

FIG. 8. g(T), defined in the text, as a function of T for
different rational approximants with q =2 to 6. All the lines
are for systems of 2x2 unit cells. In all cases 5x 10 MC/S
were performed. The simulation temperature was 2.40.

FIG. 10. Scaling plot of g(x) as a function of tIi~". The
top curve is for periodic boundary conditions, i.e. , the rational
approximants. Only the results for q=5 are shown. The lower
curve is for toroidal boundary conditions. The results for
spherical boundary conditions are not shown since they fall
essentially on top of the results for toroidal boundary condi-
tions.
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lattices. In particular g, and therefore g'(0), should be
the same for all the approximants, In Fig, 10 a plot
of g(z) as a function of tL'~" is shown for the q = 5
approximant. The values used for T, and v are the ones
obtained above. For other values of q the same plot falls
essentially on top of this one and are not shown for clarity.
For the smaller approximants q=2, 3 the curve appears
marginally shifted upward.

A log-log plot of (M )~T 7 (zl versus I, is shown for
the q = 5 approximant in Fig. 11. A linear fit leads
to g = 0.250 6 0.003, in complete agreement with the
2D Ising value, g = &. For the remaining approxi-
mants studied, the obtained exponents can be found in
Table II. Again no significant variation with q is observed
for g. We therefore confirm that the approximants be-
long to the same universality class, i.e. , that of the two-
dimensional Ising model on periodic lattices.

Vfe must now study the amplitudes associated with
the critical behavior, Ao, yy, etc. , in order to detect a
possible change in the universality class at q = oo. Us-
ing Eq. (18) we determined Ao for each q as the slope
of the straight line in a semilog plot of the specific heat
at T, (q) as a function of the linear size of the system.
The results are shown in Fig. 12, with the corresponding
values listed in Table II. For q = 1, Ao must take the
Ising value. As previously discussed, a determination of
Ati by use of Eq. (18) also gives the critical amplitude,
defined in Eq. (19), since the two, in this case, are the
same. Therefore Ao should be independent of the bound-
ary conditions used. Assuming that Ao(q) will tend to-
ward a finite value as q —+ oo, we plot Ao(q) against 1/q.
It is seen that the specific heat amplitude, while decreas-
ing, indeed converges to a finite value as q ~ oo. Thus,
we must conclude that the Penrose lattice displays the
same logarithmic divergence of the specific heat as does
the square lattice Ising model. Hence, the exponent n is
equal to Q in both cases, although the associated ampli-
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0.0 0.2 0.4 0.6 0.8 1.0 1.2
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FIG. 12. The specific heat amplitude Ao at T, (q) as a
function of 1jq. The T, (q) used is as determined from the
analysis of g(T) for each q.

tude is diAerent.
Using the values for T, (q) previously obtained, we ex-

tract yo from log-log plots of the susceptibility as a func-
tion of the linear system size, where yo ——Mo/T, with
yo and Mo~ defined in Eqs. (17) and (24). We have al-
ready established that the exponent g is the same for the
difI'erent approximants, thus we expect parallel straight
lines with the slope 2 —g to be present in a log-log plot.
A variation in the amplitude yo, with q, would separate
the lines for diferent approximants. As mentioned above,
yo is proportional to yy through a constant depending
on the boundary conditions used. Thus a change in yy
will be reQected in yo. The interest is thus in the inter-
cept, lnyo, whose divergence in the limit q ~ oo would
reveal a crossover to a diA'erent universality class. The
results can be found in Table II. No significant variation
with q is observable. From this we verify that g retains
the usual Ising value also in the limit of the Penrose lat-
tices. Due to the scaling relations, the two exponents,
o, and q, are enough to determine the universality class
and we must conclude that the Ising model on Penrose
lattices belongs to the same universality class as the two-
dimensional Ising model on periodic lattices.

The above analysis of the rational approximants
demonstrates that the Ising model on Penrose lattices
is in the same universality class with the Ising model
on periodic lattices. In order to verify this conclusion,
and to investigate eA'ects of diAerent boundary condi-
tions, we have performed similar simulations for toroidal
and spherical boundary conditions.

10
10 10 B. Toroidal and spherical boundary conditions

FIG. 11. (M ) as a function of I = ~TV for the q = 5

approximant. The points shown are for linear sizes of 1, 2, 3,
and 4 unit cells, with N equal to 199, 796, 1791, and 3184,
respectively. In all cases 3xlO MC/S were performed. The
error bars are smaller than the points shown. The simulation
temperature was 2.39.

The results for g(T) are shown in Fig. 13. Although
the intersection determining T, is not, as well defined
as for the rational approximants, the obtained values of
T„- = 2,398+0.002 for toroidal and T, = 2.398+0.004 for
spherical boundary conditions are clearly consistent with
the results T, = 2.401 + 0.00.& for the (oc x ~) . — and
T, = 2.400+0.002 for the (2x2) - -periodic boundary con-
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the (oo x oo) — and (2 x 2) -periodic boundary condi-
tions is observed. For the specific heat critical amplitude
we obtain a value of Ao 0.44 for both spherical and
toroidal boundary conditions. This is in nice agreement
with the values Ao(q) 0.43 and 0.415 which we found
for the (oo x oo) — and (2 x '2) -periodic boundary con-
ditions, respectively.

For the three difkrent boundary conditions considered
one should obtain the same results for T„v, g, and Ao
when one extrapolates to the limit of the Penrose lattices.
However, the quantities g' and yo will depend on the
boundary conditions. This is in nice agreement with our
results.

As opposed to the rational approximants, the spher-
ical and toroidal boundary conditions in a sense take
the quasiperiodicity of the Penrose lattices into account
through the boundary conditions. Thus, any change in
the critical behavior would be more directly manifested.
No change in critical exponents is observed and, thus, we
again conclude that the Ising model on Penrose lattices
is in the same universality class as the Ising model on
periodic lattices.

0.84

0.82
2.37 2.38 2.39 2.40 2.41

FIG. 13. (a) g(T), defined in the text, as a function of
T for toroidal boundary conditions. The lines shown are for
systems consisting of 54, 141, 369, 966, and 2529 spins, re-
spectively. In all cases 5x10 MC/S were performed. The
simulation temperature was 2.40. (b) g(T), as a function of
T for spherical boundary conditions. The lines shown are for
systems consisting of 107, 277, 722, 1887, and 4937 spins, re-
spectively. In all cases 5x10 MC/S were performed. The
simulation temperature was 2.40.

ditions. For toroidal and spherical boundary conditions
we obtain g* 0.845 and 0.842, respectively. A scaling
plot of g as a function of CI1/v is shown in Fig. 10 for the
toroidal boundary conditions. For the spherical bound-
ary conditions the curve falls almost on top of the one
for the toroidal boundary conditions. Since the results
for the toroidal boundary conditions collapse better onto
a single curve than the results for the spherical bound-
ary conditions, only these are shown for clarity, Surpris-
ingly one finds that the scaling curves for periodic and
"aperiodic" boundary conditions are widely separated, a
fact also apparent from the values of g' ( 0.916 and

0.843 for periodic and "aperiodic" boundary condi-
tions, respectively).

A determination of the exponents, using the finite-size
scaling analysis, results in g 4 and v 1 for both
toroidal and spherical boundary conditions (see Table I).
Again no change away from the Ising values obtained for

V. CONCLUSION

New high precision Monte Carlo simulations of the
ferromagnetic, zero-field Ising model on Penrose lattices
have been performed. By analyzing the data for ratio-
nal approximants as a fuiict, iota of tlsc approxiH1allt, , g,
we obtain the limiting value of the transition tempera-
ture T, (q = oo) = 2.401 6 0.005. The exponents g
and v 1 show no significant variation with q. This
is to be expected since the approximants are really peri-
odic lattices. We emphasize that the proper place to look
for a cross-over to a new universality class would be in
the limit of infinite q. A change in the universality class
would be indicated if one or more of the critical ampli-
tudes either converged to zero or alternatively diverged
as q —+ oo. While a smaIl decrement in the specific heat
critical amplitude is observed as q ~ oo, the amplitude
saturates at a finite value. Similarly, all other relevant
amplitudes converge to finite, nonzero values. From this
we can rule out the possibility of a change in the uni-
versality class as q ~ oo. Consistent results are obtained
using spherical, toroidal, and (2 x 2) -periodic boundary
conditions. Therefore, we conclude that quasiperiodicity
of the Penrose tiling does not aA'ect the Ising universality
class.

Significant diA'erences are observed between the pe-
riodic and "aperiodic, " i.e. , the spherical and toroidal,
boundary conditions. The scaling function g is consider-
ably diA'erent in the two cases. A rapid convergence to
the finite-size-scaling regime is seen for the toroidal and
periodic boundary conditions. Therefore, it seems more
appropriate to use the toroidal boundary conditions for
finite-size studies of quasicrystals.

It is of interest to study the inhuence of phason fiuc-
tuations on the ferromagnetic transition. Currently such
simulations are in progress and will be presented in a
sequel to this paper.



9282 SQRENSEN, JARIC, AND RONCHETTI

ACKNOWLEDC MENTS

We are indebted to A. Peter Young for many
stimulating discussions and we would like to thank
Thomas L. Madden for many useful comments. Two of
us (M.V.J.) and (M.R.) are grateful to the Physics De-

partment, University of California, Santa Cruz, for hos-
pitality during a part of this project. This work was
supported in part by NSF Grants No. DMR8821802 and
DMR 87-21673, and also partially by the Italian CNR
"Progetto Finalizzato Sistemi e Calcolo Parallelo" —U.O.
Reatto.

'Permanent address: Physics Department, University of Cal-
ifornia, Santa Cruz, CA 95064.
C. Berger and J. J. Prejean, Phys. Rev. Lett. 64, 1769
(1990); F. L. A. Machado et al. , Solid State Commun. 75,
1 (1990); D. P. Yang et al. (unpublished).
Y. Achiam, T. C. Lubensky, and E. %. Marshall, Phys.
Rev. B 33, 6460 (1986).
H. Tsunetsugu and K. Ueda, Phys. Rev. B 36, 5493 (1987).
J. M. Luck, J. Phys. C 3, 205 (1986).
Th. M. Nieuwenhuizen, J. Phys. C 3, 211 (1986).
C. Godreche, J. M. Luck, and H. Orland, J. Stat. Phys. 45,
777 (1986).
I. Bose, Phys. Lett. A 123, 224 (1987).
A. Doroba and K. Sokalski, Phys. Status Solidi B 152, 275
(1989).
R. Abe and T. Dotera, J. Phys. Soc. Jpn. 58, 3219 (1989).
A. Doroba (unpublished).
C. A. Tracy, J. Phys. A 21, L603 (1988).
G. Amarendra, G. Ananthakrishna, and G. Athithan,
Europhys. Lett. 5, 181 (1988).
Y. Okabe and K. ¹iizeki, J. Phys. C 8, 1387 (1988).
V. E. Korepin, Commun. Math. Phys. 110, 157 (1987).
Y. Okabe and K. Niizeki, J. Phys. A 23, L733 (1990).
S. M. Bhat tacharjee, J.-S. Ho, and J. A. Y. Johnson,

J. Phys. A 20, 4439 (1987).
Y. Okabe and K. ¹iizeki, J. Phys. Soc. Jpn. 57, 16 (1988).
Y. Okabe and K. Niizeki, J. Phys. Soc. Jpn. 57, 1536 (1988).
N. G. deBruijn, Ned. Akad. Weten. Proc. Ser. A 43, 39
(1981); 43, 53 (1981); M. V. Jaric, Phys. Rev. B 34, 4685
(1986).
L.-H. Tang and M. V. Jaric, Phys. Rev. B 41, 4524 (1990).
There are many ways of constructing similar sequences. The
simplest one is to use infiations of the elementary hexagons.
They consist either of two 72' rhombi and one 36' rhombus,
of two 36 rhombi and on. e 72 rhombus.
A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61,
2635 (1988).
K. Binder, Z. Phys. B 43, 119 (1981).
V. Privman, in Finite Size Scaling and Numerical Sirnula-
tiori of Statistical Systems, edited by V. Privman (World
Scientific, Singapore, 1990), p. l.
A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832
(1969).
M. E. Fisher, in Finite Size Scaling and Numerical Simula-
tion of Statistical Systems (Ref. 24), p. 173.
M. N. Barber, in Phase Transitions and Critical Phenom-
ena, edited by C. Domb and J. Lebowitz (Academic, New
York, 1983), Vol. 8, p. 145.


