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This paper is concerned with the formation of spiral patterns in a broad range of physical, chemical,
and biomolecular systems. An overview of a series of experiments is presented followed by an analysis of
spiral reductions for several types of Landau-Ginzburg equations which are applicable to these exam-
ples. The main result here is that spiral patterns occur as exact solutions of the highly nonlinear order-
parameter equations of motion under three types of conditions: first, at criticality; second, at tricriticali-
ty, and third, in the presence of special types of defects which we have modeled with a nonautonomous
term. A particularly timely application to ferromagnetic thin films is discussed and provides a physical
interpretation of the spiral domain structures found experimentally to arise there.

I. INTRODUCTION

This paper has been motivated by the observation of an
ever increasing number of spiral and helical patterns be-
ing formed in a wide range of physical, chemical, and
biomolecular systems. An example of spiral structures,
well known for many years, occurs in crystal growth. ' In
fully developed crystals structural defects take various
forms including the so-called screw dislocation, which
falls into the category discussed in the present paper.
One of the most interesting examples of unusual defects
are the newly discovered curling crystals which form a
spiral staircase in a vial. Interestingly, these spirals are
always counterclockwise and the patterns are highly
reproducible. However, it is less well known that spiral
and helical phases and domains can be observed in a
number of magnetic systems. For example, in some
rare-earth metals and their compounds helical antifer-
romagnetism has been found as an equilibrium ordered
state . The growth of spiral magnetic domains has been
recently observed to occur under nonequilibrium condi-
tions and is associated with fascinating physical phenom-
ena. These experiments involved epitaxially grown
single-crystal garnet ferrite films of the material
(Y,Sm)3(Fe, Ga)sO, z. These authors demonstrated that,
when subjected to an alternating square magnetic field,
with a finely tuned amplitude, the ferrite films exhibit the
formation of macroscopic spiral domains with remark-
ably long lifetimes of the order 10 s. These structures ap-
peared to have soliton like qualities, with respect to their
spatial identity and form, and they were thermodynami-
cally metastable. A preliminary theoretical discussion of
this phenomenon can be found elsewhere. Another re-
cent paper reported the formation of spiral domains in
single iron garnet films subjected to a static magnetic
field, in a narrow magnitude range. The process of spiral
domain formation appears to be very sensitive to the
physical properties of the films and to the presence of de-

fects.
In their most recent study, Kandaurova and Sviderskii

found a most intriguing formation of quasiperiodic lat-
tices composed of spiral domains. We will address the
question of ensembles of spiral domains, and especially
their size fluctuations later in this paper. It should be
pointed out, however, that the spiral magnetic domains
had been seen in Permalloy-coated garnets some ten years
earlier. Furthermore, this earlier publication indicates
that spirals are related to concentric circles of magnetiza-
tion and both of these types of structure may originate
from magnetic bubbles. A possible theoretical explana-
tion of this effect is based on the definition of topological
charge. Since cholesteric order in liquid crystals exhibits
many similarities with helical antiferromagnetism it is
conceivable that spiral patterns may, in the future, be
detected in liquid crystalline systems under nonequilibri-
um conditions. A series of experiments carried out by
Joets and Ribotta demonstrated that the application of
an external electric field is capable of producing dramatic
structural changes leading to pattern formation cascading
eventually to chaos.

Spiral patterns are also well known to appear in oscil-
lating reaction-diffusion systems i.e., in chemical waves
(sometimes called Winfree waves") associated with vari-
ous types of reactions' ". A recent series of papers'
have reported the observation of spiral waves in an excit-
able medium, of a particular chemical composition,
which exhibit interesting dynamical behavior. In particu-
lar, it has been shown that a pair, consisting of a spiral
and a counterspiral, collide to produce a vortexlike near-
ly spherical structure' '"'.

In the last few years spiral patterns have been observed
in the hysteretic turbulence of Taylor-Couette Rows
where the regions of laminar and turbulent Aow coexist
and each of which is confined to a spiral shaped region
within a rotating cylinder. ' In an up-to-date
monograph' ",a section has been devoted to the various
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occurrences of spiral waves in a variety of biological,
physiological, and chemical systems. Electrochemical
waves in the brain tissue, propagation of signaling pat-
terns in slime mold, and waves propagating in the heart
muscle (associated with cardiac arrhythmias) are a few of
the examples cited. ' "Furthermore, spiral modes with a
definite range of stability have been experimentally ob-
served in the dynamics of premixed Games. '

It has been observed' that when a spiral and a coun-
terspiral, with the same magnitude of topological charge,
collide, they may annihilate each other and form a circu-
lar pattern (see Fig. 1). In this connection, in a theoreti-
cal paper' on the effects of magnetic-field penetration in
superconductors it has been demonstrated how spiral-like
superconducting order parameters and magnetic vector
potentials may arise very close to the superconducting
temperature. They may be interpreted as preceding vor-
tex formation as the temperature is lowered. Numerical
simulations for reaction-diffusion models indicate that
spiral waves may evolve in a natural way from plane
waves. ' ' ' Belousov-Zhabotinskii reactions give experi-
mental support to these predictions (see Fig. 2). Tyson
and Keener' have recently written an extensive review
on traveling waves in excitable media with a large part of
it discussing the origin and properties of spiral waves in
reaction-diffusion systems. The reader is referred to this
paper for consultation concerning chemical reactions. A
related phenomenon of the emergence of helical organiz-
ing centers in excitable media has been reviewed by
Henze, Lugosi, and Vr'infree. '

These are but a few examples of the areas in which
equations, describing the various nonhomogeneous phe-
nomena related to multistability, may be applied and ap-
propriate particular solutions with spiral geometry may
be found. We also see striking analogies to these con-
densed matter phenomena in such disparate areas as
cosmology (spiral galaxy formation) ' and biophysics
(spiral arrangements of cell microtubules ).

Our belief is that these diverse phenomena, which are
seemingly unrelated, have indeed a unifying physical
basis. We will attempt to demonstrate this to the reader
in the present paper. To keep the discussion at a
suKciently simple and yet fairly general level we will
adopt the Landau-Ginzburg approach ' to the modeling
of systems under consideration.

II. SPIRAL ORDER PARAMETERS

A large class of many-body systems composed of
Bose-Einstein or Fermi-Dirac particles can be described

(a)

FICr. 1. Collision of a spiral with a counterspiral following
Ref. 12.

(a) Cc)

FIG. 2. Evolution of a pair of spirals from a plane wave fol-
lowing Ref. 14(b).

(2)

It transpires that the standard method of minimizing the
LG Hamiltonian functional is indeed equivalent to the
equation of motion of the order-parameter field obtained
from the effective Hamiltonian in Eq. (1). It should be
pointed out that, for a particular physical system, namely
standard superconductors Gor'kov showed a similar re-
lationship between the BCS Hamiltonian [which is an ex-
ample of our Eq. (I)] and the LG picture.

In a later part of this paper we shall explicitly demon-
strate how spiral solutions can be obtained for a number
of nonlinear partial differential equations (PDE's)
describing the dynamics of order-parameter fields. The
method used in these calculations is called the symmetry
reduction method and, without going into detail, it re-
lies on finding a so-called symmetry variable g, such that
the classical order parameter @ takes the form

4&(x,y, z, t) =p(x, y, z)F(g) .

Here, p plays the role of a spatially dependent damping

using an effective second-quantized Hamiltonian of the
type

H ff g~k, 1~k I+ g ~k, l, k I k+1—
k, l k, l, m

where a& (ak ) are annihilation (creation) operators.
Many theoretical approaches to the analysis of this type
of Hamiltonian have been proposed and utilized in the
past, e.g., the Green function method, Feynmann di-
agrammatic techniques, or other methods of quantum
field theory. However, an approach has just been
developed to convert this problem to one of nonlinear
differential equations describing the time evolution of the
associated quantum field operator and which for systems
with a large number of particles is virtually exact. It has
been demonstrated in these papers that the classical
part N of the quantum field 4 plays a very similar role to
that of an order parameter. The latter quantity was in-
troduced some 50 years ago by Landau ' and, in itself,
constituted a breakthrough in the understanding of criti-
cal phenomena. It was, however, considered to be entire-
ly phenomenological for many years. The method of
coherent structures, however, clearly shows that this is
not the case and that there is a much more general and
fundamental origin of both the order parameter and the
Landau-Ginzburg (LG) Hamiltonian density,
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g =Q (z, t )+m 0+a(r ),. (4)

where r =x +y and the function Q(z, t) is the velocity
of rotation of the pattern, m is the number of arms on the
spiral, which defines the so-called topological charge, ' "
and cr(r) is a radial function in two dimensions whose
specific form describes the type of spiral which may
occur. For example, o =a(r —r0) for an Archimedian
spiral (where a and ro are constants) whereas
cr =aln(r ro) deno—tes a logarithmic spiral. In Fig. 3 we
have illustrated how the topological charge affects the
number of arms and helicity.

factor while F satisfies an ordinary differential equation
(ODE) obtained by reduction from the original PDE.
Among the many possible symmetry variables, g, one
often finds spiral and helical variables which provide ex-
act reductions under a specific set of circumstances to be
discussed later. The general form of spiral and helical
symmetry variables is

ously. Since, in general, these types of equation, which we
are interested in, possess translational and rotational
symmetries quasilinear, cylindrical, and spherical solu-
tions are found to exist in all cases. However, under spe-
cial circumstances, when the nonlinearity takes the form
of a monomial in the order parameter, scale invariant
symmetry of the equation results in the creation of a
large number of classes of exact solutions. One such
class very often contains spiral solutions. The conditions
required for nonlinear terms to reduce to a monomial can
be physically interpreted as implying that the system is
either in the vicinity of the critical or tricritical points.
In the remainder of this section we shall discuss the indi-
vidual cases.

Within the LG formalism there appear to be two main
approaches to investigate the dynamics of critical sys-
tems. The first one is based on a Hamiltonian or La-
grangian density while the second is a "phenomenologi-
cal" free energy expansion.

III. EQUATIONS OF MOTION
AND SPIRAL REDUCTIONS

In this section a survey will be provided of some of the
most important PDE's in the description of multistable
systems which are characterized by the presence of spiral
symmetry variables. The theoretical framework used is
that of LG formalism but several distinct cases will be
discussed, i.e., Hamiltonian versus free energy descrip-
tions and real versus complex order parameters. The
mathematical approach to the relevant equations of
motion is the method of symmetry reduction. This
method makes use of continuous Lie symmetries of the
original PDE in order to find dependent and independent
variables which will reduce the PDE to an equation one
order less. Often, it will transpire that the result is an
ODE in the variables. Within the class of reductions to
ODE s numerous distinct possibilities occur simultane-

A. The nonlinear Klein-Gordon equation (NLKGE)

We can write an LG Hamiltonian density which in-
cludes potential energy, a Ginzburg (VC&) term describ-
ing inhomogeneities, as well as a kinetic energy contribu-
tion, in the following general form:

H, =
—,'m(&5, ) + ,'D(V&5) +—A24& + A4@ + A6@ . (5)

In Eq. (5), @ is a real order parameter and
A 2a( T —T, ) where T denotes temperature and a is a
constant, the critical temperature being written as T, .
The associated transition is of second order if A4 )0 and
takes place at T= T, . It is of first order when A4 &0 and
occurs at T,*=T, + A4/4aA6. The kinetics of the tran-
sitions may be obtained by minimizing the Hamiltonian
function with respect to 4 to give the Euler-Lagrange
equations, which result in the real non-linear Klein-
Gordon equation.

,4= —2(A2%+2A4C& +3A6@ ):—F(@), (6)

where the symbol, is defined by

m=+$
(7)

iT) =+2

m =+3

and e is a signature given by e= —sgn(D). The indepen-
dent variables in Eq. (7) are defined by

xo=m ' t and (x„x2,x3)=iDi 'i (x,y, z) . (8)

First, in the case of cubic nonlinearity in Eq. (6) i.e., for
A 2

= A 6
=0, corresponding to the critical point T=T„a

spiral type of reduction is found as

N=pF(g),
where

p=28[(4A4/'IDl)(B +4)r ]

FIG. 3. Schematic illustrations of spirals with various topo-
logical charges m.

and r = (x
&
+x z )

' ~ . The symmetry variable g' is given
by
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g'= [4B/(B +4)][—(B/2)lnr+6)] . Among the reductions found for the NLSE, Eq. (18), one
also finds spiral-like solutions, namely

The angle 0 in Eq. (11) is defined by

0=tan '(x~/x, ), (12)
g=B lnr+ 8,

where the order parameter N is given by

(19)

and B is an arbitrary nonzero constant. A constant value
of g describes a logarithmic spiral. The reduced ODE for
F takes the form of an anharmonic dissipative oscillator
equation

B +4F"+F'+ F +F =0 .
4B

@=a[expiy(g)]F(g) .

In Eq. (20)

a=r exp[i(2A2t)],

and y is defined by

(20)

(21)

6~6 B +1
IDI

—1/4

(14a)

and

This has been extensively analyzed in a separate publica-
tion and, in order to assist the reader, we have summa-
rized its analytical solutions in the Appendix.

Secondly, for quintic nonlinearity in Eq. (6), spiral
solutions emerge from symmetry reduction only at a par-
ticular point on the phase diagram, i.e., the tricritical
point defined by 32=34=0, at which a line of first-
order transitions intersects a line of second-order ones.
The spiral solution found here is in the form of Eq. (9)
where

y =So J F exp[25$B /(B + 1)]dg . (22)

(B +1)F"—(B +1)F exp[45Bg/(B +1)]S&
—26BF'+ 5 F= —n A F" (23)

where n =4 or 6 in the two cases considered, respectively.

C. The time-dependent Landau-Ginzburg
equation (TDLGE)

Here, 6= —,
' when 24=0 and 5=1 when 36=0. The

remaining constants B and So are arbitrary. D in Eq.
(18) has been set equal to unity through an appropriate
scaling. The reduced ODE for F is

(B Inr+0)B
B +1

(14b)

The second type of approach used in LG modeling is
based on a free energy density expansion

The reduced ODE, in this case, becomes
6=2D(V4) +A 4+A44&+A 4 (24)

B +1F"+F'+ F +F =0 .
4B

(15)

B. The nonlinear Schrodinger equation (NLSE)

Equation (15) is also in the form of a damped anharmonic
oscillator and particular solutions can be found in the
Appendix but are not as numerous as those known for
the cubic case.

4, +V @=a2++a44 +a6@ (25)

We have scaled the time in (25) as well as polynomial
coefficients by

where G is the free energy density. The relaxation kinet-
ics of the order parameter N can be described by the
TDLGE obtained by minimizing the free energy func-
tional. This is obtained through an Onsager evolution
equation B4/Bt =56/M& as

2
(16)

For complex order parameters N and defining the con-
jugate momentum as

Dt 2~2—pr

4W4 6W6
a 4 D & 6 D

a

(26)

a more convenient approach is through Euler-Lagrange
equations obtained from the Lagrangian functional

(17)

where we have assumed that the e6'ective mass of the sys-
tem is negligible. The resultant equation of motion for
the order-parameter field takes the form of a nonlinear
Schrodinger equation given by

i 4&, =DVC&—+2A2@+4A41@l'++6A61@l'@ .

Here "~"indicates that t is scaled, P=(ksT) and I'
is a phenomenological damping coefficient. Therefore,
this is a macroscopic thermodynamic approach which is
strictly applicable to globally nonconserved order param-
eters. Steady-state patterns are readily obtained from Eq.
(25) by simply setting &5, =0. A series of papers ' have
been devoted to a complete analysis of the TDLGE using
the symmetry reduction method. Not surprisingly, spiral
solutions have again been found to exist both at criticali-
ty and tricriticality. In the first case, i.e., when
22=36=0 this procedure yields, in the same form as
Eq. (9),

This equation has been the subject of a symmetry reduc-
tion analysis carried out by Gagnon and Winternitz.

4B
la4I(B +l)r (27a)
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and

1——8 lnr+0
2

(27b)

(28a)

and
—2B (8 1nr+8) .

B +1 (28b)

At the tricritical point, when A 2
= A 4 =0 it is found, in a

similar way,

so that the position of the defect is given by r =0. This
may model both point-like defects and linear ones and
can be of use in the context of polar elongated molecules
present in the medium, such as is the case of microtu-
bules or liquid crystals. The 1/r dependence is known
to occur as the potential arising from a linear arrange-
ment of electric dipoles. Within the framework of LG
models position-dependent expansion parameters have
been used in the past to model the presence of defects in
crystals undergoing structural phase transitions and
more recently to include twin boundaries in the discus-
sion of high-temperature superconductors.

We therefore postulate as our starting point, in the
description of order-parameter dynamics in the vicinity
of a defect, the following modified NLKGE:

B +1F"+F'+ F+eF" '=0
4B

(29)

The reduced equation in both cases takes a similar form
which may be written as B4

Bx0

a'c
Bx i

8 N —2@+B @n —1 0
Bx 3

(31)

IV. SPIRALS IN THK PRKSKNCK
OF INHOMOjG'KNKITIKS

This section is largely based on an earlier study of spe-
cial types of solution of the NLKGE with a nonhomo-
geneous parameter. The main assumption here is that
the LG Hamiltonian in Eq. (5) may be adequate in the
discussion of critical systems with defects provided the
parameter A2 is modified as follows:

22= 3/(2r ), (30)

where E= —sgn(a~) for n =4 and e= —sgn(a6) in the
case when n =6. Equation (29) is also an example of the
damped anharmonic oscillator equation, some special
solutions for which may be found in the Appendix.

In summary, we have shown that spiral order-
parameter structures arise in a natural way as exact solu-
tions of several important classes of equations of motion
for multistable critical systems. It should be pointed out,
however, that the conditions on their existence require ei-
ther the system to be precisely at the critical point or at
the tricritical point. This may in fact mean that these
types of structure originate in the immediate vicinity of
these points on the phase diagram. In fact, Greenberg
demonstrated the existence of periodic spiral solutions to
multidimensional LG-type equations. They may exist as
approximate solutions in the vicinity of these points pro-
vided they are stablized. This possibility may be brought
about, first of all, by the conservation of topological
charge which has to be upheld as long as two spirals of
opposite helicity do not collide or come together in too
close a proximity. Thermal fluctuations may have an
effect on the size and shape of the spirals but do not
necessarily have to annihilate them. Finally, the presence
of structural defects in the sample may contribute in a
positive way, and indeed to the onset of their existence. '

There is another interesting aspect of spiral and helical
stability, i.e., their continued existence in the presence of
a local potential. We shall explore this in greater detail
in the following section.

B„=6A6 for n =6 .

We will be seeking anisotropic solutions in the form of
spirals or helices which are allowed to move and rotate
simultaneously with respect to a chosen axis x3. This
type of solution takes the general form

4=(x, +x2)'F coxo —f (x, +x2) —g(x, —uxo)

—5 sin
2

(x', +x,')'" (33)

where a, f, g, u, and 5 are to be fixed so that 4& of Eq.
(33) will satisfy Eq. (31) self consistently. It can be estab-
lished that two general classes of explicit solutions can be
found depending on the form of F. The first class has
been obtained assuming F=f (r ) is a constant with

=x +x 2 (34)

However, this case represents patterns which are neither
spiral nor helical. A list containing several other func-
tions of this type has been published in Ref. 32(b). On the
other hand, we may also assume that f (r ) =2Plnr with
a=(n —2) '. Then, it is found that the function g
satisfies the two equations below:

(1—u )g"=0, (co+ug') —(g') =0 .

Thus, g is a linear function of

g=coxo f (r ) g(g) 58 with g—=x3 ——uxo, —(36)

and the coefficient of proportionality clearly determines
the relation between the rotational and translational ve-
locities, cu and U, respectively. The equation on F is an
autonomous ODE in the now familiar form of a damped

where the independent variables have been defined ac-
cording to Eq. (8), with

B„=4A4 for n =4

and
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harmonic oscillator

(o +4P )F" 4—aPF'+(4a —A)F B—„F" '=0 . (37)

The reader is again referred to the Appendix. For n =4
and defining

is at the critical or tricritical point since the parameter A
is arbitrary. Within our ansatz, however, it is imperative
that the local potential due to the defect be proportional
to I/r F.or quintic nonlinearity in Eq. (37) a complete
set of solutions can be obtained based on Eqs.
(A20) —(A24) provided the parameters in Eq. (37) satisfy

b, =(4a —2)/(5 +4P ), S= —8„/(6 +4P )

Q = —(4a P) /(5 +4P )

(38a)

(38b)

1 3 P
1 ——

4 4 S'+4p' (41)

A. =3S' /(&2Q) . (39b)

In Eq. (39) C, and C2 are arbitrary integration constants.
A representative of this class of solutions is illustrated in
Fig. 4. It is worth drawing the attention of the reader to
the fact that certain arbitrariness in the choice of f,
through the parameter p, and freedom in the choice of 5
results in the possibility of forming spirals with various
topological charges. In addition, certain choices of pa-
rameters, which describe amplitude and argument, will
lead to discontinuities which would dramatically affect
the pictorial representation of these spirals. In the Ap-
pendix, two other types of solution of Eq. (37) are
presented.

When b, (0, S)0 and Q = —9b, /2, another type of
solution appears which may also give rise to spiral pat-
terns. This takes the form

1/2

1 —tanh

1/2

(g —go) (40)

and is a particular solution, there being only one integra-
tion constant go appearing in Eq. (40).

In conclusion, we have shown that spiral and helical
structures may arise due to the presence of low-
dimensional defects, especially linear ones. This possibili-
ty does not crucially depend on whether or not the system

FICx. 4. Plot of the spiral wave based on the solution in Eq.
(39) with topological charge equal to one.

produces a class of exact solutions whenever Q =96,/2
with A, S)0, which are given below:

F =C, exp( —Qg)cn[C, A, exp( —Qg)+ Cz, I /v'2j, (39a)

where

It should be noted that the solutions given by Eqs.
(A20) —(A24) are not singular in view of the fact that the
cn function oscillates between + 1 and —1.

V. AN APPLICATION
TO SPIRAL DOMAIN STRUCTURES
IN THIN FERROMAGNETIC FILMS

A. Background information

As already mentioned in the Introduction, several la-
boratories have observed the formation of spiral domains
in uniaxial ferromagnetic thin films. Such an observation
was made by Puchalska and Jouve and involved Sm-
YIG garnets coated with permalloy layers of different
thicknesses. Spiral domains were generated as a result of
n~-rotations of an in-plane magnetic field. Therefore, it
is not surprising that such structures did develop since
the in-plane field rotation induced the winding structure.
A much more surprising result was the work by Kandau-
rova and Sviderskii, which reported the formation of
spiral domains in the epitaxially-grown single garnet fer-
rite films. These spirals were formed when the film was
subjected to an alternating square magnetic field along
the easy magnetization axis normal to the plane. More-
over, a narrow amplitude range and a frequency thresh-
old were necessary for the spirals to develop with
80~H ~87 Oe and frequency ~300 Hz. The spiral
domains were of macroscopic area ( = 1 mm in diameter)
and emerged following a destabilization of a typical la-
byrinthine domain structure and a subsequent complete
randomization thereof. The lifetimes of the created
spirals were substantial ( = 10 s) and they persisted for as
long as the external field was applied. Furthermore, the
observed spiral domains exhibited soliton-like qualities of
stability with respect to collisions between neighboring
pairs.

In a later report, fascinating observations were report-
ed in the same magnetic compound. These authors docu-
mented the occurrence of self-organizational processes in
a system of moving spiral domains. They were able to
produce quasiperiodic chainlike structures composed of
spirals as well as nearly periodic lattices. The particular
pattern selection was sensitive to the frequency, the am-
plitude, and level of uniformity of the magnetic field ap-
plied. One of the latest publications in this area claims
the formation of spirals and their lattices, under equilibri-
um conditions, in the presence of a static magnetic field,
provided special types of defects are present.
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B. Solutions and their stability

where M is the z component of the magnetization vector
(along the easy-magnetization axis) and h is an external
magnetic field in the same direction. This type of model-
ing is quite common for ferromagnetic films and multilay-
ers. We have seen in the earlier sections of this pa-
per that spiral solutions which minimize the free energy
functional, with a density as in Eq. (42), exist in a strict
sense only under a very specific set of circumstances.

(1) At the critical point, where A 2
= A 6

=h =0, they
can be found in the form

M(x, y) =p(x,y)F(g),
where

—2B (9+ ,'B Inr—)
B +1

and
1/2

(43)

We wish to address the question of spiral domain for-
mation from a theoretical point of view. As usual, the
simplest approach is to follow the LG model and propose
the free energy expansion of the type

G= f I A, M'+A4M~+ A6M6 hM—+ ,'D(V—M)']dx dy

(42)

B +1F"+F'+ F —F =0 .
4B

(47)

Clearly, the experiments described earlier do not seem to
hinge on the proximity of the critical or tricritical points.
What is important, however, is the crucial dependence of
spiral formation on the amplitude of the alternating
square magnetic field. The phenomenon seems to persist
over a wide frequency range provided a threshold is ex-
ceeded (120—6000 Hz at least). In Fig. 5 we have
schematically illustrated a possible scenario to explain
the experimental results. In Fig. 5(a) we can see the
effective on-site potential V(M) as a function of tempera-
ture close to T= T, . Note that it becomes Oat-bottomed
at T= T, . Figure 5(b) shows that the same type of effect
takes place at the tricritical point T= T, . What we have
attempted to convey in Fig. 5(c) is that the alternating
square magnetic field may mimic the Aat-bottoming char-
acter of the potential curve provided the frequency of al-
ternation of the field is high compared with the relaxation
frequency of the collective modes of the strongly interact-
ing spin system ~ ', so that e»~ '. Under these condi-
tions, the system residing initially in the disordered phase
M =0 (grey background referred to in Ref. 4), never has
the chance to relax to its instantaneous equilibrium at the
bottoms of the double well. With a proper balance be-
tween expansion coefficients A2, A4, and A 6 on the one

4B
lcl(B'+1)r'

while F satisfies

B +1F"+F'+ F —F =0 .
4B

(44)
a

(45)

V(M) ~T)Tc
~T Tc

T(T

Here, B is an arbitrary parameter, 8=tan '(ylx),
p" =x +y, and p is given by p =434/D. Note that Eq.
(45) has only one stable equilibrium point given by F=0,
F'=0. Using a linearization procedure it is easy to find
the corresponding eigenvalues as

V(M)

M

A, += —
—,
'+ —,'+1 (B +1)/B—

Thus, for arbitrary values of B the eigenvalues are com-
plex numbers and consequently the solution F(g) is an os-
cillating function of its argument near F=O. Therefore,
the situation described by Eq. (45) can be classified as un-

derdamped. However as B—+~, the expression under
the square root (in A, +), i.e., the imaginary part of eigen-
values tends to zero and the limiting case becomes criti-
cally damped with a corresponding lack of oscillatory be-
havior.

(2) At the tricritical point, where A z
= A 4

=h =0, the
magnetization takes the same form as in Eq. (43). Here g
is the same but p is given by

(c) V(M)

H)0

M
H(0

H)0

H=O

1 /4
4B

Idl(B'+1)r'

where d is given by d =626/D and F satisfies

(46) FIG. 5. (a) The effective on-site potential V(M) as a function
of temperature close to T, ; (b) V(M) as a function of T close to
T, and; (c) the situation in the presence of an alternating square
magnetic field.
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hand, and the magnetic field on the other, the effective
potential "seen" by the spin system is composed of the
two top branches for each half-period. This gives the
efFective free energy density as

hE= 32M + 34M + 36M

+ ,'D(—VM) ]r dr d9, (52)

G = ~, IMI'+ ~, IMI'+ II I IM +(D n)(vM)' . (4g)

This can be translated into a condition between the mag-
netic field h and the temperature as

(49)

We have analyzed this requirement on lb l and shown it
to correspond to the disappearance of the mean-field part
of the free energy which results from the application of h,
occurring for magnetization ranging between 57% and
62%%uo of equilibrium magnetization. It is well known that,
since 22 =a(T —T, ) according to Landau theory, close
to T=T„magnetization scales as M —(T —T, )'~, giv-
ing rise to the relationship on the amplitude of the field
required for spiral formation, as

where 2 is the area traced out by the spiral when FWO.
Here, we take M as

M(g') = [ lclr ]

at the critical point and

M(g)=[ldl "] '",

(53)

(54)

2
r =roexp —0

where ro is found to be

at the tricritical point. These expressions are taken to be
valid within the width w along the length of the spiral.
The latter implies the following parametrization:

(50) ro =exp
—(8 +1)go

B2
(56)

with a precisely specified amplitude prefactor due to the
condition discussed above. In this connection we wish to
emphasize the amplitude value and not just the critical
exponent of —, which is standard in such situations.
Based on this result, we can predict that the lowering of
the temperature in this type of experiment would require
a larger amplitude of the field in order to produce spirals
and this amplitude would have to be proportional to
lT T, l

for—this to take place. Destroying this deli-
cate balance causes a departure from the Bat-bottom situ-
ation which, in turn, permits the nucleation of homo-
geneous domains of one phase. It should also be noted
that having the local minimum of the effective potential
at M=0 appears favorable from the point of view of slow
relaxation times for collective spin dynamics.

X 1 —exp
—8~NO

(57)

where m in this case is m =F0)cl '~ . For the tricritical
point we find

4 D 2 )B +1
s ' 4lal

and go is the chosen value of the symmetry variable. The
free parameter B can be deduced from the pitch of the
spiral when actual modeling is done. For the critical
point, the results are

r

AE= —m 34m +—m ro
D 2 2B +1

C. Energy calculations

The next property we wish to explore is the energy ex-
pense needed to form a spiral domain with No turns. An
exact calculation is, at the present time, not feasible since
solutions to Eqs. (45) and (47) are known only for particu-
lar values of the constant B and even then take the form
of very complicated special functions. However, in Fig.
6, following the discussion below Eq. (45), we have shown
a typical dependence of F on g for such an equation
which indicates a rather rapid damping as a function of

Therefore, we propose an approximate method which
represents I' as a rectangle of width m and height I'0, with

Fo being the space- and time-independent (constant) solu-
tion of Eqs. (45) and (47), i.e.,

1/( n —2)

X 1 —exp

where m is defined by

m =F0 ldl

4+No

Fp

(58)

(59)

B +1
4B

(5 l)

where n =4 or 6 for the two cases. With this approxima-
tion and the damping due to the presence of p in M(g'),
along the direction normal to the spiral, we calculate the
energy to form a spiral as

FIG. 6. graphical illustration of the approximation used for
F=F(().
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b,E= —5[1—exp( —aND ) ], (66)

where 6, a and 5 are defined by Eqs. (64) and (62) [or
(57)], respectively. Note that all of these parameters take
di6'erent values at critical and tricritical points. In Fig. 8
we schematically illustrate the radial dependence of AE
and AE' as a function of R and 0. The total energy ex-
hibits a definite minimum at R =R. The calculation of R
and the fluctuations about it will be given later in this
section.

FIG. 7. Plot of hE as a function of No for spiral patterns as
in Eqs. (57) and (58).

D. Statistical properties

We would like to carry out statistical calculations for
assemblies of such spiral patterns. First, the partition
function can be evaluated as

Figure 7 illustrates the dependence of AE on 1VO as given

by Eqs. (57) and (58). The spirals which we have de-
scribed here are expected to arise at T= T, or at the tri-
critical point T=T, and persist for a range of tempera-
tures below the two. Since the spiral profile represents
nucleation of the ordered phase, the energies calculated
in Eqs. (57) and (58) have a negative sign as energetically
favorable compared to the disordered background (which
is set at the zero energy) against which the spiral is
formed. However, the entire pattern requires our energy
input to sustain both the spiral and the background sur-
rounding it. We therefore, have to estimate this latter
contribution separately. This is calculated as the approx-
imate area swept out by the spiral arm multiplied by the
energy density of a mean-Geld disordered background.
Thus,

Z=e ~ f e [1—I35exp( aN0)]—dNO . (67)
0

The integral in Eq. (67) can be evaluated approximately
by expanding the third term in the exponential so that

Z=e~ f e ' [1—P5exp( —aNO)]dNO .
0

This approach is well justified due to the relative small-
ness of the spiral energy compared to its background,
particularly for large winding numbers. We now use

AE'

AE'=~R c, (60)

where R is the outer radius corresponding to the last turn
and c. is the mean background energy density. It is rela-
tively easy to find the value of c as

e, = A~/(424), (61) (b)

for temperatures close to T= T„while

e, = l9&p &4&6 —»~+2(&4 —3&2 &6)'"l &(27&26),

(62)

for temperature close to T=T, . Note that in the first
case e, scales with ( T T, ) while in th—e second case this

type of scaling is not so easy to describe by a power law.
The total energy of the spiral pattern, therefore, is given
by

(c) E=AE+AE'
E

E =DE+DE' . (63)

The background energy as a function of the angle vari-
able t9 is then

gE ~ 40/~BI (64)

Thus, for No windings we may write

bE'=b exp(aND), (65)
FIG. 8. Plots of (a) AE; (b} hE' as functions of R and 0; and

(c}the dependence of the total energy of a spiral E on its size R.
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standard formulas to evaluate Eq. (68) to give

Z=e~s Ei( —Pb, ) — EI (+1,PE)
—

jk 5p (69)

where Ei is the exponential integral function and I is the
incomplete gamma function. An approximate formula
can also be found for the average number of windings of a
spiral using

(No) = f Noe ~ dNO/Z=Z ' I (e —1)e [1—P5exp( —aNO)]dNO,
0 0

(70)

where we have used the same approximation as in Eq. (68), for Z, and made use of a series expansion for the exponential
function. The final result is

(N, ) = (pa)-'"r —',pa —5p(ap)'-"'r ',pa —uz
CX CX

c7Z (71)

It can be found that for high temperatuves or p~O, the
mean number of turns will vanish as expected. A similar
inspection of the asymptotic limit, p~ ~, or low temper
atures, shows a similar type of behavior. Thus, there ap-
pears to be a range of intermediate temperatures in which
spirals are most likely to arise. The formula (71), howev-
er, is too complicated to provide simple answers as to the
temperature dependence of the number of turns.

In this final part of this section we will provide another
insight into the size distribution of spiral patterns using a
minimization method. The starting point is to write the
energy of a spiral pattern in terms of its radius only, i.e.,

E =~ER —5(1 ro/R—) . (72)

Minimizing E with respect to R yields the most probable
radius, R, as

1/4
6ro

(73)

(R —R)— d E
dR

(74)

It is easy to evaluate this latter quantity and we find

d E =8~v .
dR

(75)

As a result, the magnitude of fluctuations relative to the
most probable radial size is given by

—
2

'/'
(R —R ) )~4

2
E,

R
(76)

Thus, the fluctuations in size distribution are even larger

This quantity diverges as T~T„since E —
( T —T, )~.

This would indicate high likelihood of the occurrence of
large spirals close to T=T, (where it is energetically
inexpensive to sweep a large area of disordered back-
ground). As the temperature is lowered, below T=T„
the energy associated with the disordered background in-
creases, giving rise to a shrinkage of the spiral. However,
an important aspect in this connection is the average Auc-
tuation in the mean radius, i.e., (R —R ), which is in-
versely proportional to the curvature of E(R). That is,

than the mean size of the spiral as T= T, is approached.
Assuming that the energy of the spiral AE is proportional
to the number of its arms leads to the conclusion that the
magnitude of fluctuations relative to the most probable
radial size scales with the topological charge raised to the
power —

—,'. We hope that the results provided in this
part of our analysis will be of use in future direct compar-
isons with experiment.

VI. CONCLUSIONS

In this paper we have provided an overview of recent
experimental observations which indicate a widespread
appearance of spiral order-parameter structures. More
importantly, we have attempted to provide a unified
theoretical framework within which spiral patterns arise
as exact solutions. The formalism used was that of an
LG model, which in view of recent studies, is much less
phenomenological than it has been thought hitherto. It
was demonstrated that spirals can be found as exact solu-
tions to a number of generic equations of motion provid-
ed the latter ones possess scaling properties. In physical
terms this implied the immediate proximity of either the
critical or tricritical points. This condition appears too
restricted perhaps, but indeed, in Sec. IV, we have shown
another avenue through which spirals can come into be-
ing. The presence of defects producing singular potential
curves was shown to lead to the creation of helical and
spiral patterns. Thus, defects can be thought of as nu-
cleation centers for the appearance of spiral domains.

In the final section an in-depth analysis was given of
spiral domain structures in thin ferromagnetic films.
First of all, it was argued that experimental conditions re-
quiring the presence of an alternating square magnetic
field of a particular amplitude, played the role of an
eAective mean-field potential at criticality or tricriticality,
on the scale of the relaxation time. Extreme sensitivity to
the amplitude of the applied field and lack of dependence
on a wide range of frequencies seem to support that state-
ment. We then obtained approximate expressions for the
energy stored in a spiral pattern together with its back-
ground and used these expressions to calculate the parti-
tion function and other statistical quantities. An impor-
tant qualitative result was obtained which indicates that
the average size of a spiral increases unboundedly as T
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approaches T= T, from below, but such is also the case
for the magnitude of size fluctuations. Due to the large
amount of Auctuation, one expects assemblies of spirals
to exhibit substantial variation and irregularity as has
been observed experimentally for thin films. We intend
to continue this research in the near future with the in-
tention of providing direct quantitative comparison with
experiment.

F= + —,
'

[ 1 —tanh[(1/2&2)(g —go) ][,
where go is an integration constant.

(A7)

c. Solution due to Cervero
and Esteuez (Ref. 43):P(F) = F F—

When the dissipation factor y =3/&2, a kink solution
can be found in the form
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APPENDIX

In this appendix we present a selection of solutions for
damped anharmonic oscillator equations of the form

F"+yF'=P (F), (Al)

where P(F) denotes a polynomial in the dependent vari-
able F, the independent coordinate being g in each case.
In each case we give the form of P(F) and the source
from which it arises. The symbols 3, B, and C below
denote constants which are not arbitrary, but have to be
carefully chosen for each solution.

1. Solutions in terms of elementary functions

a. The Chan solution (Ref. 40): P(F) = AF + BF + CF

This research has been supported by Grants from the
Natural Sciences and Engineering Research Council of
Canada and NATO. One of us (J.M.D.) would like to
thank the Faculty members and staA' of the Department
of Physics for their hospitality and kindness during his
stay at the University of Alberta. The authors are very
grateful to Dr. M. Skierski for providing many useful
references to spiral structures.

d. The Gordon (Ref 44) .solution for quintic
nonlinearity: P(F) = AF + CF + EF5

In this case a kinklike solution was found taking the
form

F=F, [1+exp( —p,g)] (A8)

where F, is a root of the quintic P (E) corresponding to a
global minimum of the underlying potential energy. "
The constant p is an elaborate function of the constants
A, C, and E, and for Eq. (A8) to be a solution these con-
stants must be related in a special way. The reader may
obtain further details from the original source.

e. The Parliriski and Zieliriski solution (Ref. 45):
P(F) = AF + BF"+ ' + CF " + '

Here, n denotes an integer. Their exact kinklike solu-
tion is

F=F0 ] 1+exp[v(g —g'o)] } (A9)

There is a consistency condition among the parameters
Eo, v, A, B, and C for this to be a solution but go is an ar-
bitrary constant. These authors also found an approxi-
mate solution, in the asymptotic limit g~+ ~, com-
posed of a pair of solutions like that in Eq. (A9), namely

F=FO [1+exp[v(g —go)] [

X [1+exp[—v(g —g, )]]
(A2)

where go and g, are constants.

The particular solution in this case is

F=F [13+ pe(xF&&C/2g)] .

Here F„Fz, and F3 are the roots of P(F)=0, namely

(A10)

F, =0 and F2,F, = — (B+VB~—4AC) . (A3)
1

This solution only exists provided the damping constant
y is given by

f. A solution due to Herernan and Takaoka (Ref. 46)
rand Wang (Ref 47)J: P(F). = F(F' 1)—

Solutions were discovered independently by the two
sets of authors and c is an arbitrary real number. They
found that

y = —
—,'&2/C (3+B 4AC B—) . —(A4)

F=2- '".1 —tanh
c

2&2c +4

2/c

(Al 1)

b. The Montroll (Ref. 41) and
Metiu, Kitahara and Ross (Ref. 42) result:

P(F) =a(F F&) (F F2) (F F—3)— —

One solution here may be written as

F=F, +(F~ F, )[l +e px(p()]— (AS)

where go is an arbitrary constant and y = —(c
+4)/&2c +4.

g. Solutions found by Otwinowski, Paul,
and Laidlaw (Ref. 48)

1. P(F) = A&
—A2 F+Az F . Three bounded solutions

where p=+(F3 F, )&a/2; a is a constant—. The stipula-
tion on y that (AS) be a solution is

y= +&2a (F3+F,—2F~) .

F(g) = [sgn(a z'a4)QE;tanh( —,'Qb, ;g)—a 2' ],
i =1,2, 3 (A12)
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have been found for
~
A

& ~

( ( —,4, A 4
'A

2 )', where A 2"
is one of the three roots of the cubic equation

and

a 2+ a2+ a =0,
2 2 4

F =Fo I 1+exp[v(g —go)]] (A13)

Fo being a constant amplitude and go an arbitrary con-
stant.

3. P(F) = A2 F+A3F . Provided the damping con-
stant is given by

@=+5+—A, /6, (A14)

+( 1 A )I/2 a(i)
4 —

2 4 & 0
2a2

6 =(a") —4a "a
The damping coeKcient must satisfy y = —3a 2'.

2. P(F) = A2 F+A4F +A6F . A solution is found by
the authors in the form

a are constants to be adjusted.

2. Solutions in terms of elliptic functions:
Cases with P(F)=A,F+pF"

where A, and p are fixed constants

a. P(F) = —2 F+F: y=1

This special form of equation satisfies the Painleve cri-
terion and the general class of nonsingular solutions take
the form

F(g) =+ —,'c, exp( —Ig)sdI&2[c, exp( —,'g)+c2], 1/&2I .

(A19)

Here, c
&

and c2 are arbitrary integration constants and
sd is the Jacobi elliptic function sd = sn/dn with the el-
liptic modulus k= 1/+2. Cervero and Estevez found
an analogous solution with a ds rather than an sd solu-
tion. Note that the solution in Eq. (A19) is nonsingular
whereas the one with ds replacing sd has an infinite num-
ber of divergent points.

a solution may be found of the form

232
I 1+exp[+ Q —Az/6(g —go)] I

3

h. Dixon, Tuszynski, and Otminowski solutions:
P($') = 8 ' —A Wand y = 1

(A15)

b. P(F)= ——F+F: y =1

The solution here is written in the form

F=A, g u(s),
V'3

4

where

(A20)

(i) For A =—,'and n =4 a kink solution is found and is
given by

2v'3 cz
exp

2 ci
2

(A21)

F=+&A /I I+exp[+&A (g —go)]I .

(ii) When A =
—,', with n =6 the authors find

—1/2

(A 16) and
1/6

C3

C)

cn(z, k) —1

(1—&3)cn(z, k)+(1+&3)

' 1/2

(A22)

—I 1+exp [ + —,
' (g —go) ] ]

3
(A17)

with

In Eqs. (A2), (AS), (A7), (A12) and (A16) solutions are
seen to take the form of a ratio of linear combinations of
exponentials, i.e., which may be written as

3C3

1/6

(4—ko) . (A23)

F= [A, ,exp(ag) +A2exp( —ag) +X3]

X [A~exp(ag)+A5exp( —ag)+A6] (A18)

where g=g —
go, go being arbitrary and l; (i =1—6) and

In Eq. (A23) go is an arbitrary constant and the Jacobi
modulus k is given by

k= '
4

(A24)
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