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We investigate the ordering process of an unstable system governed by a nonconserved scalar order
parameter using a theoretical approach developed previously. The two-time order-parameter correla-
tion function is shown to obey asymptotic dynamical scaling. The temporal evolution of the autocorrela-
tion function exhibits power-law decay with a nonequilibrium exponent. We find a relation between this
exponent and a nonlinear eigenvalue controlling the equal-time structure factor. This relation, as well as
the predicted values of the exponent, is compared with direct numerical simulations of a cell-dynamical-
system {CDS)model of the ordering process.

I. INTRODUCTION

An understanding is beginning to emerge that the
nonequilibrium kinetics of first-order phase transitions
lead to additional qualitative phenomena when compared
to the linear response kinetics valid near equilibrium. ' A
simple example is the phase-ordering process of a system
following a rapid quench from a high temperature to a
thermodynamically unstable state at a low temperature.
Most work in this area has focused on the late stages of
the phase separation process, where there is evidence of
universality and scaling. This robust behavior is due to
the existence of a single characteristic length, L (t), which
controls the ordering process. For pure systems, accu-
mulating experimental, numerical, as well as analyti-
cal studies demonstrates that the growth of L (t), typi-
cal of the growing domain size, follows an algebraic
growth law in time, L (t)-t", with n being a growth ex-
ponent. It is well established that n is independent of the
spatial dimensionality and that n =

—,
' in the universality

class of the model 2 with nonconserved order parameter,
while n =

—,
' for model B where the order parameter is

conserved. Moreover, the scattering structure factor
C(r, t) of the evolving system exhibits dynamics scaling

C(r, t)=/OF (r/L(t)),
where C(o, t) =$0, $0 is the equilibrium value of the or-
der parameter, and Fo is a universal function dependent
on spatial dimensionality and possibly other parameters
characteristic of the particular universality class of the
system. While the scaling (1.1) is reasonably well estab-
lished, theoretical determination of Fo remains formid-
able.

A widely known, quantitative theory for the scaling
function for a non-conserved order parameter was pro-
posed by Ohta, Jasnow, and Kawasaki (OJK). They
used an approach based on an equation of motion for ran-
dom interfaces. The structure factor given by OJK, when
compared with two-dimensional numerical simulations
available at that time, showed reasonable agreement.
However, a particular feature of the OJK coordinate-
space structure factor is its rather weak dependence upon

the spatial dimensionality of the system, which appears
only through a dimensionality dependent kinetic
coefficient. More recently, a functional-integral approach
to the domain growth problem was developed by one of
us, which accounts explicitly for the power-law growth
of L (t), as well as the dynamical scaling of the structure
factor. One central result of the theory is that the asymp-
totic universal function Fo is the solution of a nonlinear
eigenvalue problem with an eigenvalue p which is unique-
ly determined by proper boundary conditions. In con-
trast to the OJK result, our scaling function displays ex-
plicit dependence upon spatial dimensionality d. In a re-
cent work, we showed that our theory interpolated sen-
sibly between d =1 arid d = ~. In one dimension, our
scaling function recovers the exact result of the kinetic
Ising model of Glauber;' in d = ~, it coincides with the
form factor of OJK. We therefore believe that the OJK
form is only asymptotically valid in d = 00. The structure
factor we obtained in two dimensions has been compared
with accurate numerical simulations of the kinetic Ising
model, yielding very good agreement which is superior to
that of the OJK form.

In this paper we investigate the dynamical scaling of
the two-time correlation function and, in particular, the
decay of the autocorrelation function in a time-dependent
Ginzburg-Landau (TDGL) model for a nonconserved or-
der parameter. The method we employ is rooted in the
framework of the previously developed functional-
integral approach. The usefulness of multiple-time
correlation functions in phase-ordering dynamics was put
forward by Furukawa, " who pointed out the possibility
of dynamical scaling in the late stages. Although there
exist, though preliminary, numerical simulations of the
kinetic Ising and cell dynamical models, the multiple-
time correlation function has seldomly been explored
theoretically. Zannetti and Mazenko' examined the case
of an n-vector model in the large-n limit. This model was
recently studied by Newman and co-workers' using a
1/n expansion. In the case of a scalar order parameter,
Yeung and Jasnow' studied the multiple-time correla-
tion function and the non-self-averaging properties of the
OJK model. In this work, we shall derive (in Sec. II) and
solve the equation of motion for the two-time correlation

44 9185 1991 The American Physical Society



9186 FONG LIU AND GENE F. MAZENKO

function in the scaling regime. As in the case for the
equal-time structure factor, we find that the two-time
correlation function is also exactly solvable in one dimen-
sion, leading to the known result for the kinetic Ising
model. The OJK correlation function obtained by Yeung
and Jasnow is also recovered in the limit d ~ ~.

An interesting quantity in the phase-ordering process
is the autocorrelation function 2 (t, t') =—(g(O, t)g(O, t') ).
It can be regarded intuitively as the "overlap" between
order-parameter profiles at different times. Therefore we
expect its time evolution to contain interesting informa-
tion about the ordering process. For example, the rem-
nant magnetization in spin-glass models can be thought
of as a special form of the autocorrelation function, as
will be discussed later. It was recognized by Fisher and
Huse' that the decay of the autocorrelation function for
t &)t' is governed by a power law with the characteristic
length scale of the system, namely, A (t, t')-L(t)
where k is a nonequilibrium exponent, having no ap-
parent relation to the dynamical exponent n characteriz-
ing the growth of L(t) itself. Furthermore, it was sug-
gested, based on a scaling argument, that the exponent
satisfy the bounds d ~ A, ~ d /2. The exponent A, has been
calculated for the n-component Ginzburg-Landau model
perturbatively in 1/n. ' Recently, A, was estimated in
two dimensions via numerical simulations of the kinetic
Ising model by Humayun and Bray. '

We will demonstrate, utilizing the general equation of
motion derived for the two-time correlation function,
that the autocorrelation function follows a power-law de-
cay. Surprisingly, we discover a relation between the
nonequilibrium exponent A, and the nonlinear eigenvalue

p determining the equal-time structure factor:
A, =1 vr/4p. W—hen combined with the previously
determined values of p, we conclude that the bounds
mentioned above are strictly satisfied. The OJK model
predicts that A,

—:d /2 in all dimensions, while our analysis
suggests that the lower bound is approached only asymp-
totically as d —+~. To test our prediction for the ex-
ponent A, , numerical simulations of a cell-dynamical mod-
el is performed. The results of these simulations show
unambiguously that A, is larger than the lower bound d /2
for d ~ 3. Results of our numerical simulations are also
compared with currently existing results.

F=f dr[ ,'(V—P) + V(g)], (2.2)

where ( . . ) denotes ensemble averages over random in-
itial conditions and the noise. In turn, the autocorrela-
tion function is simply 2 (t, t')—:C(O, t, t')
=(f(O, t)g(O, t')) and the equal-time correlation func-
tion or structure factor is C(r, t)=C(r, t, t)
=(P(r, t)i)j(O, t)). We have assumed a spatially homo-
geneous system.

To derive the equation of motion for the correlation
function we employ a formalism developed by one of us.
We will not get into details of the method which were
thoroughly described in Ref. 7. However, we will illus-
trate the main steps of the theory as we proceed. The
first key step involves the decomposition of order param-
eter into two separate pieces: an ordering part o. and a
fluctuating part g:

g(r, t) =cr(r, t) +g(r, t), (2.4)

where cr reQects the bulk ordering on large, growing
length scales, and g is dominated by local fluctuations on
short-length scales ( —the equilibrium correlation length
g). The separation (2.4) is motivated by the recognition
that L (t) ))g for sufficiently long times and the fact that
noise does not seem to affect dynamical scaling for deep
quenches. The decoupling of these two fields cr and g
occurs in a relatively short time after the quench. Conse-
quently, the ensemble averages over P can be replaced by
that over o, e.g. , ( gP) ~ (o cr ).

Imagine the landscape of o. at long times, when o. has
taken its equilibrium value +1tt0 almost everywhere ex-
cept at sharp interfaces between the bulk $0 and —$0 re-
gions. It is advantageous, in representing this order-
parameter landscape, to introduce an auxiliary field
m(r, t) serving as a "coordinate" measuring the distance
from point r to a nearby sharp interface:

cr(r, t) =o(m(r, t)) . (2.5)

The relation between o. and m is chosen to satisfy the
classical equation of motion for an interface in equilibri-
um"

where V(P) is a symmetric degenerate double-well poten-
tial. We define the two-time correlation function

(2.3)

II. EQUATION GF MOTION
FOR THE CORRELATION FUNCTION 1 Bo.

2 am2
dV(o )

do
(2.6)

Consider the TDGL equation for a nonconserved sca-
lar order parameter P(r, t):

c)@(r,t) c)F(g(r, t))
aq(, t)

(2.1)

where g is a Langevin noise which is taken as Gaussian
distributed:
(rl(r, t) ) =0,(q(r, t)r)(r', t') ) =2T5(r —r')Bit t'), T is-
the temperature after the quench, and time scale is
chosen by setting the bare kinetic coefficient equal to uni-
ty. The coarse-grained free energy F is assumed to have
the form

Now the statistical properties of the ordering field o. can
be completely specified by the probability distribution of
the auxiliary field m. The virtue of introducing m is ap-
parent: though cr(r, t) shows rapid spatial variation due
to the presence of sharp interfaces, the variation of
m (r, t) in space is rather smooth. This smoothness is im-
portant as to allow us to make the key assumption that
the probability distribution P [m] is Gaussian, whose mo-
ments have to be determined self-consistently, as will be
shown later. Of course non-Gaussian distributions can be
tried if the Gaussian distribution is found unsatisfactory.
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So far this has not been the case.
Having introduced the auxiliary field, ensemble aver-

ages of functions of P over random initial conditions are
replaced by the averages involving o. with respect to the

probability distribution P [m], which can be readily eval-
uated. Suppose p(m(r„t)) and q(m(r2, t')) are two arbi-
trary functions, denoted by p ( 1 ) and q ( 2 ), respectively.
To calculate the average (p (1)q(2) ), we have

(p(1)q(2)) = f dx, dx2p(x, )q(x2)(5(x, —m(1))5(x2 —m(2)))
= f dx, dxzp(x, )q(x2)C&(x„x2), (2.7)

where

4(x),x~)=(5(x, —m(1))5(x~ —m(2))) = f e ' ' ' '(e ' ' )

—ik ] x
&

—ik2x2 —k lSO(1)/2 —k 2SO(2)/2 —k
1 k2 CO(12)

4m.
(2.8)

where So(1)= ( m (1)), So(2)= (m (2) ), and Co(12)= (m (1)m (2) ). Equation (2.8) is a Gaussian integral in ki and
k2, which equals

y' 1 X 24(x, ,x2 ) = exp +
2vrV S (1)S (2) 2 So(1) So(2)

2fx, x2

V So(1)SQ(2)
(2.9)

where

Co(12)f (12)=
V So(1)SQ(2)

and

(2.10) (2.17)

The procedure is to first compute Cii (12). From (2.7),

C»(12)= f dx, dxzo. (x, )o (x2)4'(x„x2),
which in long-time limit when So(1), So(2) )) 1 gives to
leading order

y=1/V 1 —f (2.11)

We are now in the position to derive the equation of
motion satisfied by C(12)=C(r, t, t') in the scaling limit
when both So(1) and So(2) are large. First neglect the
noise term in (2.1) and replace p(r, r) by cr(1), multiply by
o (2) on both sides and average over P [m], to obtain

=V', C(12)——,'C20(12), (2.12)

where the notation

(1)
8"o (1)
Bm "(1)

C„i(12)= (0'„( l )o i(2) )

(2.13)

(2.14)

is introduced and (2.6) is used to express the derivative of
the potential in terms of o (1). The convention
Coo(12)=C(12) is also implied. In the long-time limit,
one can express C20(12) back in terms of C(12) and thus
close Eq. (2.12). This is accomplished conveniently by
making use of two general identities

24o
C(12)= arcsin[f (12)] . (2.20)

Differentiation with respect to So(1) using (2.15) gives

C20(12)= — f(12)y(12) .
24o

77 Q 1
(2.21)

Eliminating f (12) between (2.20) and (2.21) leads to the
main result of interest here,

(2 )
CII(12)= (2.18)

V S (l)S (2)
plus terms of higher order in powers of So ' (1) and
So ' (2). Note that the leading term, which will dom-
inate the asymptotics, is independent of the particular
form of the potential V. We have only used the trivial
identity

f dx, o'(x, )=2/0 . (2.19)

Now using (2.16) with n =m =0 and integrating over Co,
we obtain to leading order

C„(12)= —,
' C„+2 (12)

a
0

(2.15) 2ito
C20( 12): tan

77 Q

mC(12)

24o
(2.22)

and

a
C (12)=—C +i +i(12)

0 2
(2.16)

Inserting this result back into (2.12) and choosing $0=1
without loss of generality, we arrive at the final equation
of motion for the correlation function:
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BC(r, t, t') q, + 1 tan[@'C(r, t, t')/2] large. Neglecting terms higher order in 1/So(t) in (2.23),
we obtain

+ +01 1

S,(t)' S,(t)S,(t')
(2.23)

ac(r, t, t') =V",C(r, t, t')+, tan C—(r, t, t')
L (t)

where we have used arguments t, t' instead of (1,2) in the
equation. We shall assume t ~ t' later on.

III. ASYMPTOTIC STRUCTURE FACTOR

First consider the equal-time correlation function or
the structure factor C(r, t) =C(r,—t, t) Noti. cing that

(4.1)

where L (t) =4p*t and iLt* is the eigenvalue that satisfies
(3.3) and the proper boundary conditions. Equation (4.1)
has to be supplemented by the condition
C(r, t', t') =C(r, t')

It is reasonable to look for scaling solutions of the
correlation function using the ansatz

BC(r, t) BC(r, t, t')
Bt Bt

(3.1) C(r, t, t')=C, , =F(x,r),r t
L(t)' t' (4 2)

it follows at once from (2.23) that

1 BC(r, t) z 1 tan[mC(r, t)/2]

where for convenience two independent variables,
x=r/2&t, and =rl (nt/t')/4, are used. Inserting the
ansatz (4.2) into (4.1), we obtain the equation of motion

+0 1

SQ(t)
(3.2)

=V F+2 7'F —F
C)7 )fc

(4.3)

with "initial" condition F(x,~=O)=Fo(x) where Fo
satisfies

For the late stages of the phase separation, we look for
self-similar scaling solutions. Inserting the scaling form
(1.1) into (3.2), and identifying L (t)—:ISO(t):4pt,—gives
for the asymptotic scaling function

V F0+x.VF0+ tan —F0 =0 .2 1

p
(4 4)

V F0+px VF0+tan —F0 =0, (3.3)

where x=r!L(t) and p is an eigenvalue to be determined
under proper boundary conditions. In deriving (3.3), the
late-stage condition t ))1 and L(t),So(t)))1 has been
used.

The eigenvalue problem (3.3) is solved under the
boundary condition Fo(0)=1 and the requirement that
the Fourier transform of F0 is well behaved. This fixes
uniquely the eigenvalue p*(d) as a function of dimen-
sionality. We showed earlier that (3.3) is analytically
soluble in d =1 and d = ~. In one dimension, the scal-
ing function is the same as that of the Cilauber-Ising
model

Fo(x) =erfc(&iu, /2x), (3.4)

IV. T%0-TIME CORRELATION FUNCTION

where erfc is the complementary error function; in the
other extreme d ~~, the structure factor agrees with
that of the OJK model. In between these two limits, the
theory displays explicit dependence of the structure fac-
tor on spatial dimensionality. The calculated structure
factor in two dimension was shown to be in good agree-
ment with recent numerical simulations of a two-
dimensional kinetic Ising model. '

Keeping in mind that as d —+1, p*~ ~, it follows easily
from (4.1), after a Fourier transformation, that

C(k, t, t')=C(k, t')exp[ k'(t —t')] .— (4.6)

Inserting (4.5) into (4.6) and Fourier transforming back to
coordinate space, we obtain the one-dimensional two-
time correlation function

arcsinv 2t'/( t + t ') r (1+tan u )C r, t, t' =— du exp
77 0 4(t +t')

(4.7)

and in particular the autocorrelation function

2
A (t, t')=C(O, t, t')= —arcsin

77

2t'
t+t'

1/2

(4.8)

Note that (4.4) is the same as (3.3) after a simple scaling
of lengths by a factor of +@*.

Equation (4.1) or (4.3) can be rigorously solved in one
dimension. It is somewhat easier to work with (4.1).
Fourier transformation of the equal-time structure factor
(3.4) gives

C(k, t') =&32t'/mid 8cos H. exp( 2k t'—cos 8) .
0

(4.5)

We now turn to the two-time correlation function in
the late stages when scaling behavior is expected. To this
end, suppose t )t'))1 and both So(t) and So(t') are

These results are exactly what one obtains for the one-
dimensional Glauber-Ising model. ' For t » t', the auto-
correlation function exhibits a power-law decay
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1/2
2&2

A (r, r')
7T

(4.9)

This power-law decay of the autocorrelation function is
believed to be a quite generic feature of the domain
growth problem. In general, one expects

walls are randomly distributed. As will be discussed in
the next section, numerical evidence in both d =2 and
d =3, as well as the exact result in d = 1 leads to the con-
clusion that the lower bound d/2 is not achieved in these
dimensions. Below, we shall determine the exponent A, in
our theory for arbitrary dimension d.

We propose, and derive below, that

A(r, r')- for r»r',
L (r)

(4.10)
A, =d —m/4p* . (4.13)

d)A, )d/2 (4.11)

to be valid in the pure Ising system quenched from
infinite temperature to zero temperature. We immediate-
ly observe that our result in one dimension, A, =1, takes
the upper bound value in (4.11).

Recently Yeung and Jasnow' investigated multiple-
time correlation functions within the OJK model. In par-
ticular, they obtained the two-time correlation function

where A, is a dynamical nonequilibrium exponent, which
has no apparent relation to the usual growth exponent n.
The exponent A, was introduced by Fisher and Huse in
their study of the remnant magnetization in spin-glass
models. ' They also proposed a bound for X based on
scaling arguments. The lower bound is easy to under-
stand through the following physical picture. Consider a
large domain of size /. At an early time t', the domain
contains many sharp interfaces. Therefore we can imag-
ine that the order parameter oscillates randomly between
the two equilibrium values +go within the domain. Then
the mean value of the order parameter per site within the
domain is, by the central-limit theorem, of the
order-l" /l"-1 " . By taking l equal to the typical
domain size at t, we obtain essentially the maximum pos-
sible value for the overlap between order parameters at t
and t'. Thus we have a lower bound A, ~d/2. Interest-
ingly, this picture of randomly distributed interfaces is
the key assumption underlying the OJK model. There-
fore it is not surprising that, as we shall see later, the
OJK model predicts a k strictly equal to this lower
bound. In addition, Fisher and Huse also conjectured an
upper bound A, ~d. This upper bound is in essence the
statement that biases in the initial order-parameter distri-
bution do not diminish in time. Combining both, they
suggested

0C
8p*t

(4.14)

Defining C(r, t, t')=t " C(r, t, t'), we find that
C(r, t, t', satisfies the diff'usion equation

(4.15)

The asymptotic behavior of the diA'usion equation in d di-
mensions is well known:

C(r, r, r') —r d "exp( r'/4r) . —

Therefore it follows as t )&t' that

A (r, r') = r "" C(0, r, r')

r
—d/2+@'IS@* L (r)

—(d —
m I4p )

(4.16)

(4.17)

which, in turn, leads to (4.13).
We have so far discussed the solution of (4.1) in two

limiting cases of one and infinite dimension. In principle,

0.8

Recalling from Ref. 9 that oo )p*(d) )~/2d, we see that
A, as given by (4.13) automatically satisfy the bounds
(4.11) set up by Fisher and Huse. The upper and lower
bounds are attained at d = 1 and d = ~, respectively. We
now derive the exponent relation (4.13). Consider the
long-time limit of (4.1) when t ))t' and C(r, t, t') is small.
We can then make the substitution tan(~C/2)-7rC/2
and obtain

~ =2
CoiK ( i' t, t '

) =—arcsin

0/2
2&tt' „~~4(i+, )et+t

0.6

0.4

(4.12)

It follows automatically that A (t, t') —(t'/t) " as t ))t',
and k=d/2. Going back to our theory, we point out
that (4.1) can also be solved perturbatively in the large-d
limit, in the same spirit as in Ref. 9. In fact, it is readily
verified by inserting (4.12) into (4.1) that the OJK result
solves Eq. (4.1) to first order in O(1/d). This reinforces
our assertion that the OJK theory is only asymptotically
correct as d~ oo. Note that the outcome A, =d/2 in al/
dimensions in the OJK model is an inevitable conse-
quence of the assumption in their theory that domain

0.2

I I I

0 0.5 l.0 1.5 2.0 2.5 5.0 5.5

&/2 Wt

FIG. 1. Two-time correlation function F ( r /2& t, ~) vs

r/2&t, where ~=ln(t/t')/4. Curves from top down corre-
spond to ~=0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. The curve for
~=0 is the equal-time scaling function.
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the two-time correlation function in any dimension is
given by the solution of (4.3) and (4.4). Unfortunately,
(4.3) appears analytically intractable in general. We can,
however, numerically integrate the initial value problem
using an implicit finite-di6'erence scheme. As a by prod-
uct, the validity of (4.13) was further checked to be
correct. In Fig. 1, we plot the two-dimensional two-time
correlation function at sequential times t ~ t'. Note the
absence of a cusp in the correlation function near r=0
for any t ) t'. On the other hand, the cusp for the equal-
time structure factor rejects the well-known Porod's law.
Although a direct experimental determination of the
two-time correlation function seems difficult, it may be
possible to compare our result with accurate numerical
simulations.

V. NUMERICAL SIMULATION

We showed in the previous sections the existence of
dynamical scaling for two-time correlation functions. We
have also related the nonequilibrium exponent A, to the
nonlinear eigenvalue p*(d), which was previously accu-
rately determined. In particular, p*(2)=1.1042 and
p*(3)=0.5917. These values imply for the nonequilibri-
um exponent A(d =2)=1.2887 and A(d =3)=1.6726. In
this section, we perform numerical simulations of a cell-
dynamical system (CDS) model to test these predictions.

Before presenting our own result, we first review the
existing numerical works. An early simulation was car-
ried out by Fisher and Huse, ' who studied a nearest-
neighbor kinetic Ising model quenched to zero tempera-
ture using a Metropolis algorithm. They obtained in two
dimensions A,2=1.25, derived from averages over 80 ran-
dom initial conditions on a 400 square lattice. The same
system was later studied using a slightly larger system
(500 ) by Furukawa, " who obtained a value consistent
with A. =1.30. Most recently, a more extensive simula-
tion was done by Humayun and Bray' using an even
larger (1000 ) system averaged over 160 histories. The
exponent they extracted was A,2=1.24. All these values
of A,2 are considerably larger than the lower bound
d/2=1.

In three dimensions, simulation results are scarce. We
are only aware of the simulation by Fisher and Huse' on
a 80 simple cubic lattice with Ising dynamics. Unfor-
tunate1y their result is not conclusive. While the simula-
tion suggested a value close to the lower bound A,&-1.50,
the authors cautioned, however, due to the quality of the
convergence, that any value in the range 1.50~ A, ~ 1.65
would be equally consistent with their data.

We have performed simulations in both two and three
dimensions, using a CDS model. The (deterministic)
CDS model, proposed by Oono and Puri, ' has proved
valuable in studying the late stages of phase-ordering pro-
cesses. The explicit CDS update we used is

f(r, t+1)=F(g(r, t)+D( &&g(r, t) » g(r, t)), —(5.1)

where && - . )) denotes averaging over nearest-, next-
nearest, and (in three-dimensionals only) next-next-
nearest-neighbor cells. The weighing ratio are 2:1 in two
dimensions and 6:3:1in three dimensions. We choose the

map function F(g) = A tanhP with A = l.3, and dif-
fusion constant D =0.5. The two-dimensional simula-
tions were performed on 600 square lattices. We fix
t'=30, and monitor the evolution of our system up to
times t =3000. At the latest time, the typical domain
size is about —,', of the system size. Smaller systems are
also comparatively studied to prevent Qnite-size e6'ects.
We averaged over 30 random initial conditions to obtain
the autocorrelation function

where N is the total number of sites on the lattice.
3 ( t, t ') is then fitted to the algebraic growth law—A, ~/2
A ( t, t '

) —t ' with an effective exponent A,,ff which
slowly changes with time. The truly asymptotic value of
the exponent A, can be extracted by interpolating to
t ~~. In Fig. 2, we plot the measured e6'ective exponent

ff as a function of 1 /&t for both two and three dimen-
sions. Our extrapolated two-dimensional exponent is
A,2=1.246+0.02. The error estimate is from the statisti-
cal analysis of data, and therefore does not include possi-
ble systematic deviations. Our result from the CDS mod-
el agrees with those obtained both by Humayun and
Bray' and by Fisher and Huse' in a difFerent model, the
kinetic Ising model. On the other hand, our predicted
value 1.2887 does appear larger, although only slightly,
than the numerical estimates.

Our three-dimensional simulations are performed on
lattice of sizes 64, 72, 80, 88, and 128, each averaged
over 200 random initial conditions, except for 128 where
50 initial conditions are used. We choose t'=40 and
evolve the system up to t =700. Unlike the two dimen-
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FIG. 2. EC'ective exponent A.,& vs 1/&t. The asymptotic
value of A, can be obtained by interpolating A,,z to t —+ ~. 0 cor-
responds to two-dimensional (2D) simulations on 600 lattices.
Symbols +, , 6, 0, and X correspond to 3D simulations on
64, 72, 80, 88, and 128 lattices, respectively. The two points
on the vertical axis are predictions from (4.13).
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sional case, we believe that the finite-size effects do
inhuence our data to some extent at the latest times. This
presumably accounts for the data scatter on Fig. 2 at
large t. However, we are unable to extract definitively
any systematic trend of the finite-size effects. The interpo-
lation of Fig. 2 gives A,3=1.838+0.2. This value is large
compared with the only available study by Fisher and
Huse. ' We believe that our result rules out the possibili-
ty of X3 equaling the lower bound 1.5. The predicted
value from our theory 1.6726 also agrees with the numer-
ical value within the rather conservative error estimates.
Caution is due, however, to the large statistical uncer-
tainties in both our study and that of Fisher and Huse.
An accurate estimate of A, 3 is still lacking at present. It
would be important to determine accurately the value of
A 3. This will not only check the true universality of this
nonequilibrium exponent, but will also provide an in-
teresting test for any theory of the phase-ordering dy-
namics. We believe that these aspects deserve further
study.

VI. CONCLUSIONS

To summarize, we have demonstrated that the two-
time correlation function associated with the growth ki-
netics of a system with a nonconserved scalar order pa-
rameter satisfies dynamical scaling in the late stages. The
equation of motion for the two-time correlation function
is derived in a closed form. The theory presented here
offers considerable improvement to the well-known ap-
proach of OJK, in several aspects. First, our theory is ex-
actly solvable both in one dimension and in the limit of
d —+ ~. In one dimension it recovers the exact result of
the kinetic Ising model. And in the limit of high dimen-
sionality, it includes the OJK result as a special case.

Second, study of the power-law decay of the autocorrela-
tion function reveals a relation between the nonequilibri-
um exponent A, and the nonlinear eigenvalue associated
with the equal-time scaling function. A direct conse-
quence of this relation is that exponent A, is always
greater than d/2, the value obtained from the OJK mod-
el. This fact seems to imply that the OJK assumption of
randomly distributed interfaces needs to be modified to
account for correctly the ordering process.

Our numerical results in both two and three dimen-
sions agrees qualitatively with our theoretical prediction.
In two dimensions, the measured value of A,2 also agrees
with the previous simulations of the two-dimensional ki-
netic Ising model. These agreements suggest that the
TDGL, CDS, and the kinetic Ising model are in the same
universality class regarding this exponent. In view of the
slight difference between the predicted and the measured
value of A,2, as well as the large statistical uncertainty in
k3 we point out that more work is certainly needed to ex-
amine the validity of this universality, especially in three
dimensions, where an accurate estimate of A, 3 is still una-
vailable.

The concepts of multiple-time correlation and the
power-law decay of autocorrelations should be investigat-
ed in the case of phase separation kinetics of conserved
order parameters. An interesting attempt has already
been made by Furukawa. "
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