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Spin spiitting and anisotropy of cyclotron resonance in the conduction band of Ga&s
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The recently observed spin splitting and anisotropy of cyclotron resonance in the conduction band
of GaAs is quantitatively explained using a conduction-band Hamiltonian derived from a 14 x 14 k p
model together with an established parameter set. We thus demonstrate the importance of remote
band contributions in the valence-band part of the Hamiltonian, which have been neglected so far.

I. INTRODUCTION

The anisotropy of the lowest conduction band in GaAs,
which is obvious from an overview of the band struc-
ture throughout the first Brillouin zone, has been de-
tected recently in a series of cyclotron-resonance (CR)
experiments. ' In particular, these experiments show
the splitting of cyclotron-resonance transitions from the
lowest (N =0) to the second (N = 1) pair of spin-split
Landau levels for magnetic fields B oriented parallel to
the crystallographic [001], [111],and [110]directions (Fig.
1). These data were analyzed also with respect to the
change of the mean resonance magnetic field relative to
that obtained for the [001]direction (Fig. 2). An interpre-
tation of these experimental results requires to extend the
conduction-band model beyond the isotropic parabolic
approximation, which is possible by considering contri-
butions up to fourth order in the kinetic momentum op-
erator k in the conduction-band Hamiltonian ' or by
calculating the conduction-band energies from a multi-
level k p Hamiltonian. The former can be obtained
from the latter in a systematic way by Lowdin perturba-

tion theory. Our calculations are based on a conduction-
band Hamiltonian which is obtained from a 14x 14 k p
model by fourth-order perturbation theory using the
computer algebra expert system MACSYMA. It turns out
that anisotropy of the conduction band results from k p
coupling between the p-bonding topmost valence-band
and the p-antibonding conduct, ion-band states (matrix
element Q) but also from terms bilinear in k, occuring
in the valence-band part of the multiband Hamiltonian,
due to second-order k p coupling with remote bands.
PfeA'er and Zawadzki employ the so-called five-level k p
model, using the same 14 basis states but without re-
mote band contributions in the valence-band block and
use the matrix element Q as fitting parameter. They
succeeded in reproducing the observed spin splitting but
failed to explain the anisotropy shift of the mean res-
onance magnetic field (dashed line in Fig. 2). In con-
trast, we take into account also the remote band con-
tributions appearing in the valence-band block, use pa-
rameters which are well known from other experiments,
and succeed in a quantitative interpretation of all these
experimental data.
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FIG. 1. Spin splittings of CR vs B for the conduction
electrons in GaAs for diR'erent field directions. Experimental
results: o, Sigg et al. (Ref. 2); &, Hopkins et al. (Ref. 3); A,
Golubev et al. (Ref. 1). The solid lines are theoretical results
calculated from our 2 x 2 model.
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FIG. 2. Shift of the mean CR field relative to that in the
[001]direction vs B for the conduction electrons in GaAs for
different field directions. Experimental results: 0, Sigg et ol.
(Ref. 2); 0, Hopkins et al. (Ref. 3); A, Golubev et al. (Ref.
1). The solid curves are theoretical results calculated from
our 2 x 2 model, the dashed lines are the results of Pfeffer and
Zawadzki (Ref. 8).
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II. THE k ~ p MODEL

where k = (p + eA)/h is the kinetic momentum
operator, which satisfies the commutation relations
kx k=(e/ih)B, p~ is the Bohr magneton, gp ———2 is
the free-electron g factor, and V(r) is the periodic crys-
tal potential.

The 14x 14 k.p model, which is discussed in this sec-
tion, describes the p-bonding valence bands (1s„, I'7 ),
the s-antibonding conduction band (rs, ), and the p-anti-
bonding conduction bands (I's„1"7,), cf. Fig. 3. Due to
the degeneracies within each of these five bands there are
14 quasidegenerate k -p basis states.

As a result of k p theory and the Lowdin decoupling
procedure we obtain a set of 14 coupled difFerential equa-
tions for 14 envelope functions f„(r). The k p Hamilto-
nian H is the associated matrix difFerential operator act-
ing on the 14-tupel of envelope functions. The 14x14
Hamiltonian falls into blocks with respect to the five

bands under consideration:

—7v 7vH
~H.7.—6c7vH

&, H

—7v8vH
H8v8v—6c8vH
—8c8v—7c8vH

—7v6cH
H8v6c—6c6cH
~H, 6,—7c6cH

—7v8cH
H8v8c—6c8cH
—8c8cH
—7c8cH

—7v 7c
~H„7,—6c7cH
~H, 7,

7c7cH

(2)

According to the generalized Wigner-Eckart theorem,
which in this context is known as theory of invariants,
each of these blocks may be formulated as a sum of in-
variants built as products of irreducible sets of basis ma-
trices and of irreducible tensor components. From the
comparison of this invariant expansion with the results
of perturbation theory we obtain the Hamiltonian matrix

remote
bands

In the presence of a magnetic field B = V' x A our
initial Hamiltonian reads

h2k2 hII = + V(r)+ (o. x VV) k —-'gppgy rr B,
2m 4rn2c2 2

of Table I, which is an extension of Table IV in Ref. 6.
Our model contains the following energy gaps and spin-

orbit splittings:

+1 71

L
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y3 =73

2m (P' Q2 Q2
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Q2)

+

2 Q 1Q 1

3Eo+&o 3&o

(4)

(6)

The reduction of the Luttinger parameters is necessary
because we include the k.p couplings between the p-

TABLE I. Invariant expansion of the 14 x 14 Hamiltonian.
For the definition of the block matrices T, U, cf. Ref. 6. J
denotes the j =

2 angular momentum matrices, o the Pauli
spin matrices. The symmetrized product is defined as (ab) =
~ (ab + ba).

E, = E(r„)—E(r,„), E, = E(r„)
Ao —E(rs„) —E(r7„), Q' —@(rs,) E(r7, )

We also include the inversion asymmetry induced ofF-

diagonal spin-orbit coupling between the I'8v + I'7v andI„+r„states through the parameter 4 . 2 Accord-
ing to our phase convention the momentum matrix ele-
ments P between rs, and I's„+I'7„states and Q between
I'8v + I'7v and I'8, + I'7, states are real, the inversion
asymmetry-induced parameters P' (momentum matrix
element between rs, and I s, + I'7, states) and 4 are
purely imaginary.

The remote band contributions to the efFective mass
and efFective g-factor tensors of the valence bands are
taken into account through the reduced Luttinger pa-
rameters y1, p2, p3, r', and q. These can be obtained
from the Luttinger parameters y1, p2, p3, and K by

p C,'

Eo

K
q

FIG. 3. Schematic band structure for the 14x14 model.
Besides the energy separations at the I' point (Ep, Ep, Ap,
Ap) the couplings within the model are indicated, an expla-
nation is given in the text.
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bonding valence bands and the 8- and p-antibonding con-
duction bands directly in our multiband model.

The explicit treatment of the off-diagonal spin-orbit
coupling 4 requires also that the Hermann-Weisbuch
parametersii C and C' are reduced to corresponding pa-
rameters C„and C„' by the resulting contributions to the
electron effective mass and effective g factor:

8m 1

9 h' E (E E' ——A')

(Eo+&o)(Eo—Eo))
'

4m 1
C„' = C'+ ,4 —P—P'-

9 & ( Eo(Eo Eo' —&—')

(8)

In principle the structure of the p-antibonding con-
duction band blocks within our Hamiltonian should con-
tain analogous terms to that weighted by the Luttinger
parameters. Because there is as yet no indication that
these terms are detectable in experiments, we consider
their infiuence on the conduction-band states as being
small enough to be neglected. The five-level k.p model
of Refs. 8 and 10 is obtained by neglecting in Table I
all remote band contributions in the valence-band block,
i.e. , by choosing p&

——1, yz ——p3
—K' = q = O.

III. CALCULATION OF LANDAU LEVELS

The standard procedure to calculate the Landau levels
from a k p Hamiltonian is t,o expand each of the en-
velope functions into harmonic-oscillator eigenfunct, ions
and to diagonalize the resulting number matrix. This
merely numerical treatment obscures the inHuence of the
various couplings within the 14x 14 model on the field
dependence of the conduction-band Landau levels. In or-
der to avoid this inconvenience and to give a, systematic
description of these dependencies we split the diagonal-
ization of the 14 x 14 model into two steps by introducing
an effective 2x 2 conduction-band Hamiltonia, n 'H as an
intermediate result. This Hamilt, onian contains all result, —

ing terms up to fourth order in k (i.e. , second order in

B) and can be obtained froni the 14 x 14 Hamiltonian by
performing an algebraic block diagonalization (Lowdin
partitioning). Its invariant expansion is well known (see
Ref. 5, Sec. 2.1):

) ~ ~{A)+(r., A)

e,A e

The second step in our calculation of the Landau levels
for the conduction electrons is the application of the stan-
dard procedure (see above) on the 2x2 Hamiltonian 'H

with the expansion coeKcients a„g, which are calculated
from the 14x 14 model parameters.

Our procedure to calculate conduction-band Landau
levels from the 14x 14 problem has the following advan-
tage over the method used by Pfeffer and Zawadzki: The
expansion coefIicients of the 2 x 2 Hamiltonian have clear
physical interpretations which are closely related to the
experimental CR spectra: The weighting factor ai 4 es-
sentially determines the anisotropy of the effective mass,
a43 determines the field dependence of the g factor in
the [001] direction, and a4 s —a44 determines the devi-
ations of this field dependence for the other directions
of the magnetic field relative to that for the [001] direc-
tion. Thus, using our 2x 2 model allows us easily to dis-
tinguish between symmetry properties, which are identi-
cal for all zinc-blende-type semiconductors, and material
specific properties, which is quite useful for the explana-
tion of experimental data.

IV. RESULTS

The theory outlined .in the preceding sections may be
applied to any semiconductor with zinc-blende symme-
try. For GaAs we use the parameter set of Table II.

From these parameters we determined the expansion
coeKcients a„g of the 2x 2 model for GaAs using the
general expressions which we obtained through the al-
gebraic block diagonalization of the 14x 14 Hamiltonian.
We expanded each of the conduction-band envelope func-
tions into up to 16 harmonic-oscillator functions and di-
agonalized the resulting number matrix. The eigenvalues
for a given orientation and strength of the magnetic field
form a ladder of spin-split Landau levels. We determined
the Landau levels for B j( [001], B (( [ill], and B ~( [110]
as a function of the magnetic-field strength. This finally
enabled us to give theoretical values for the shift in the
mean resonance field with respect to that for the [001] di-
rection and the spin splitting of the cyclotron resonance.

Figures 1 and 2 show that our results reproduce the ex-
perimental data. In particular, Fig. 2 demonstrates the
importance of remote band contributions in the valence-
band blocks of our 14x 14 Hamiltonian, which were ne-
glected by Pfeffer and Zawadzki. The agreement of our
results with the experiments is much better than that of
Pfeffer and Zawadzki, though they used the parameter Q
to fit the experiments. This proves the reliability of our
14x 14 model and of our parameter set.

TABLE II. Parameter set for GaAs, taken from Ref. 14
or calculated from the parameters therein.

The block diagonalization yields formulas for the expan-
sion coeFicients a„p in terms of the 14x 14 model param-
eters. In contrast to previous work the extensive alge-
bra which is necessary for the block-diagonalization was
carried out using the computer algebra expert system
MACSVMA.

Eo — 1.519 eV
0.341 eV

Eo —— 4.488 eV
Do —— 0.171 eV

= —i0.050 eV

Reference 2.

——6.85
q, = 2.10

——2.90
= 1 ~ 20I

q = 0.01

C' = —1.878
t."' = -0.021
P = 10.493 eVA
P' = i4.780 eV A

Q = 8.165 eV A
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FIG. 4. Directional dependence of the spin-splitting of CR
for the conduction electrons in GaAs for different transition
energies. The angle |II determines the direction of the magnetic
field in the (110) plane. Experimental results: o, Sigg et al.
(Ref. 2); &, Hopkins et at (Ref. 3.); A, Golubev et al (Ref. .
1). The solid lines are theoretical results calculated from our
2x2 model.

FIG. 5. Directional dependence of the shift in the mean
CR field relative to that in the [001] direction for the conduc-
tion electrons in GaAs for diferent transition energies. The
angle 8 determines the direction of the magnetic field in the
(110) plane. Experimental results: O, Sigg et aL (Ref. 2);
Hopkins et al. (Ref. 3); A, Golubev et al. (Ref. 1). The solid
lines are theoretical results calculated from our 2 @2 model.

We did not consider the magnetopolaron coupling in
our calculations because its influence on the anisotropy of
the cyclotron resonance is expected to be of higher order
in B than the experimentally observed splittings.

As a further test for our theory we investigated the di-
rectional dependence of the anisotropy shift of the mean
resonance field and that of the spin splitting for magnetic
fields in the (110)plane. A comparison of our results with
the experimental data of Sigg et a/. , Hopkins et al. , and
Golubev ef al. i is shown in Figs. 4 and 5. The angle 0 is
defined as 0 = arccos(z. BjB), i.e. , Osoi ——0', giio —90
and 0~~~

——54.73'. Again we find a very good agreement,
with the experiments.

In conclusion, we present a model capable of describ-
ing quantitatively spin splitting and anisotropy of cy-

clotron resonance in the conduction band of zinc-blende
semiconductors. The essential improvement over existing
concepts is the inclusion of remote band contributions
in the valence-band part of the 14x 14 k p Hamiltonian
and the application of a computer algebra expert system
for the I owdin partitioning procedure, which allows us
to consider also additional perturbations, e.g. , by exter-
nal stress, in a straightforward way. The strength of the
model is demonstrated by a quantitative interpretation
of experimental data for GaAs.
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