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Self-energy of a moving charged particle in the presence of a metal surface
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The general expression for the self-energy of a moving charged particle interacting with a metal sur-

face has been derived for its above-threshold speed. The dispersion of the surface as well as bulk

plasmon has been taken into account. Expressions for the energy loss and the effective mass of the in-

cident charged particle have been also derived. Numerical results for the self-energy, energy loss, and

the effective mass of the incident charged particle have been presented. It is found that effects of
plasmon dispersion are quite signi6cant.

I. INTRODUCTION

There has been considerable interest in the study of the
interaction of a moving charged particle with a polariz-
able medium, which can be a solid surface, metal-
insulator interface, etc. The knowledge of the interaction
potential is useful in the interpretation of a large number
of experiments, such as reAection electron-energy-loss ex-
periments and low-energy electron-diffraction experi-
ments. Attempts have been made to study the interac-
tion potential in the classical' semiclassical as well as
in the quantum-mechanical framework. The interaction
of the incident charged particle (ICP) with the excitations
of the medium has been considered a quantum-
mechanical description and related to the self-energy of
the ICP.

The self-energy is a function of the distance between
the ICP and the metal surface and is a complex quantity.
The real part of the self-energy saturates to a finite nega-
tive value at the surface and this becomes equal to the
classical image-potential value very far away from the
metal surface. There are two factors which are responsi-
ble for this saturation. One of them is the dispersion of
the plasmons which leads to the screening of the ICP
when it is inside or outside the metal surface. The second
factor is a quantum-mechanical one, arising out of the
real emission or reabsorption of the plasmons, depending
upon the speed of the ICP. If the ICP has a speed above
a certain threshold value, it is capable of creating real
surface- and bulk-plasmon excitations (see Fig. I) in the
medium. On the other hand if its speed is below the
threshold value, it creates virtual plasmon excitations in
the medium. The imaginary part of the self-energy can
be divided into conservative and nonconservative parts.
The conservative imaginary part of the self-energy is an-
tisymmetric in energy when ICP comes outside from the
surface compared to the case when it enters in the metal
surface. The nonconservative imaginary part is associat-
ed with the energy loss by the ICP. Mahanty, Pathak,
and Paranjape' '" and Pathak and Paranjape' have cal-
culated the self-energy of the ICP, taking dispersion

effects into account for a below-threshold speed of the
ICP. For the case of above-threshold speed, they have
neglected the dispersion effects. In the present work, we
derive general expressions for the self-energy of a moving
charged particle for speeds of the ICP above the thresh-
old value, taking dispersion effects into account.

The plan of the paper is as follows. In Sec. II we derive
a general expression for the self-energy. In Sec. III we
derive an expression for the energy loss and effective mass
of the ICP. Section IV contains results and discussions.

II. GENERAL EXPRESSION FOR THE SELF-ENERGY
A. Interaction Hamiltonian

The Hamiltonian of the ICP of charge Q and mass M
and the metal surface is

2
H= + g

A'co&(azar'+

—,')+H',

where a & and a& are the creation and annihilation opera-
tors of the quanta of plasmons in the metallic electron
gas, A. being the index sc and sc, q specifying the surface
and bulk plasmon, respectively. The interaction Hamil-
tonian H'(=H, '+Ht't ) between the ICP and the metal
surface is given in the hydrodynamical model as
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H,'= —Q g exp(ia"R)(a „+a„)I6( —z)8& exp( —az)+6(z)[8~ exp(az)+83 exp(yz)] j, (2)

H~ = —Q g exp(i~. R)(a „+a„,q) I6( —z)c, exp( x—z)+6(z)[cz exp(~z)+c3 cos (qz)+c4 sin (qz)] j,
v, q

(3)

ere B~ B2 B3 &1 &2 &3 and c4 are ihe coupling parameters and can be obtained from the work of Barton. ' These
are explicitly given by Pathak and Paranjape. ' In Eqs. (2) and (3) a and q are the wave vectors of plasmon parallel and
perpendicular to the metal surface and 6(z) = l for z )0 and 6(z) =0 otherwise.

B. Self-energy of the particle

Manson and Ritchie have expressed the self-energy in terms of the interaction Hamiltonian which is given as

exp[ir (k,—k)]&0,kO~H'~n, k & & n~H'IO&

Eo(ko) —E„(k)+i5

where c,„(k) is the energy of the system with the plasmon in the state
~
n & and the ICP in the plane-wave state

~
k & ~0 &

and ~ko & are the initial state of the plasrnons and the ICP with momentum Ako, respectively. The speed of the ICP is
described by ko = (~o, qo ), where ~o is its component parallel to the metal surface and qo is the component perpendicular
to the metal surface. After inserting the interaction Hamiltonian and evaluating the matrix elements in Eq. (4) we get
the expression for the surface and bulk part of the self-energy given as

2M 1 dk
E, (z) = — g exp(ik z)[6( —z)8, exp(+~z)+6(z)8 exp( ~z)+8 —exp( =yz)]

B) B2 B3+ +
K—Ek3 K+ l'k3 g+ lk3

(5)

where D
&

=k 3 +2gok3+ K +k, +2vo v —i5, k, =2M', /A, and

2M
E~(z) = — g f exp(ik3z) I6( z)c, exp—(~z)+6(z)[c2 exp( ~z)+—c3 cos(qz)+c4 sin(qz)] j

2m ~ D2

C) C2 C4 lC3+ +
~—ik3 ~+ik3 2(k3 —

q +iE)
C4+ LC3

2(k3+q i s)—

where D2 =k3+2qok3+x +ks+2xo ~ i5, ks—=2Mcos/A'. Here 5 and E are infinitesimally small positive quantities.
The limit of c,~o is taken after the integration over k3 in Eq. (6). The above expressions for the self-energy of the
ICP are quite general and are valid for any arbitrary speed of the ICP.

In order to integrate over k3 in Eqs. (5) and (6) we have to proceed separately depending upon whether the speed of
the ICP is above threshold at some value. If the speed of the ICP is below threshold the integration in Eqs. (5) and (6)
can be done by closing the contour in the upper or lower half of the k3 plan depending upon whether z )0 or z (0.
Expressions thus obtained are exactly the same as that obtained by Mahanty, Pathak, and Paranjape. '

The integration in Eqs. (5) and (6) can be done for the above-threshold speed of the particle with the help of Fig. l.
In this figure we plot [2M', (~)/fi]'~ vs x or [2Mcos(k)/fi]' vs k. For a given speed of the incident charged particle
the ko line divides the dispersion curve for surface and bulk plasmons into two regions I and II. Region I corresponds
to excitations of the real surface or bulk plasmons whereas region II corresponds to the virtual surface or bulk-plasmon
excitations. The point of intersection of the ko line with the dispersion curve is obtained by solving equation
(fi ko)/2M=fico, (a), which gives

g2k 4

~ =M —co PAk
2M2 0

A similarly critical wave number dividing regions I and II for the bulk-plasmon case is found to be

2 2 2
Ako
2M

Now the integration in Eqs. (5) and (6) for the above-threshold case can be done easily by choosing the appropriate con-
tour. The results for the surface part of the self-energy are
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E, (z) = —Q g [B~ exp( —~z)+83 exp( —yz)]e(s, —a )

k

u'
X 6 e

—i{q —u )z

u

B] B2 B3

gp
—u, —lK qp

—u, +1K qp —,+ly

282u, exp( —s'z)

(K lqo) +ug

exp( —yz)283u,

(y —iqo) +u,

2e(u, )+ s 0

U
+

K+ Vs

leap

+
Vs lg'p y —

U, +'~p

exp( —sz)282u,

(K iqo ) V~

28 3u, exp( —yz)

(y iqo—)'—u,
' (7a)

for z & 0. The corresponding self-energy for z (0 is

e( u,')
E, (z) = —Q 2 g 8, exp( —~lzl )e(~, —z ) .

us

i (qo+ u, )~z~
8

'p+ us l K

B2

qp+u, +iK
B3

qp+u, +i@

28, u, exp( —w lz I )

(qo —i~) —u,

e(v, )+ i(qO+iv, ) ~z~

e
K+ lgp Us

B2 B3+- +
K+U leap P+U +lgp

28, v, exp( —~lzl)

(~+iqo) —u, (7b)

The bulk contribution can be obtained from Eq. (6) and is given by

E~(z) = — g [cz exp( scz)+ cz co—s(qz} c4 sin(q—z)]e(k, —k )
2M 2 2

k, q

x e(u,')'
—i(qo —u~ )z

C)

p ug l K

C2

gp ug +lK
C3+ lC4

2(qo+ q
—u~ —i5)

C3 lC4

2(qo —
q

—u~ i 5)—
c2 exp( —xz) (c~+ic4)e

(qo+i~) us 2—[(qo q) +us i51— —
(c3+ic4)e'~'

2[(qo+ q) u~ i5]——

viz
+e(v~ ) e

2ug

C)

K+Ug+lgp

C2

K Ug lqp

C4+lC3C lC4 3

2(qo+q iu~ ) 2—(qo —
q iu~ )—

c2 exp( —gz) (c3+ic4)e'q (c3 —ic4)e

(qo+i~) +vs 2[(qo+q) +v~] 2[(qo q) +u~]—
u =q —K —k '

U = —u

(Sa)
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for z )0. Similarly the corresponding expression for z (0 is given by

E2) (z)=- 2M 1 g c) exp( —v~z~ )e(k, —k )
2 2

2~ k

(qo+u~) Izl

x e(u,')
2QB

C)

qp+uB —iK

C2

qp+ QB +lK
C3+lC4

2(q o+q+u 2)+i5)

B
—v Izl

+e(u,')
2UB

iqolzl
e '

"Izlc,eC lC3 4

2(qo —q+u&+i5) (qo —iv) —uz

C) C2+
K UB + lqp K+ UB lqp

c4 lc3 c4+ic3 c &e

2(qo+q+iu2) ) 2(qo —q+iu2) ) (qo il(:) —+v~

(8b)

Expressions for the self-energy given by Eqs. (7) and (8) take into account quantal motion of the incident charged parti-
cle as well as dispersion effects of surface and bulk plasmons. In the dispersionless limits expressions for the surface,
and bulk contribution to self-energy can be easily obtained from Eqs. (7) and (8). These agree with that obtained by
Mahanty, pathak, and paranjape. [The energy denominator in the fifth and sixth term of the bulk pa«« the self-

energy, i.e., Eq. (14a), should have + i5 instead of i5 ]—Ho.wever, the more useful form of these expressions is given as

E, (z) =— 2KZ2

K'+2iqo

)
1/2—iq z (qo

dK+e
p

—(k+, )

(iu —K)z
e K

dK
u, (2qo I~ 2qo" )

(9a)

forz )Oand

E, (z) =—P

K 2iqpK

(
2 k 2)1/2 (iu, —K) lzlqll qo ~ K eal~+e dK

0 (2qo —a., +2qou, )

—(K+ v, ) Izl
iqo Izl K e

(e, —«, )
/ v, (2qo ~, +2iqov, )

(9b)

for z (0. The corresponding bulk contribution for z (0 is

—i(qo —
u& )z

i e "e
2qp KB 2qpQB

2 2

—2KZ

x d a e(u )
K KB +2lKqp

B e ee( 2
)

—Ugz —lgpz

2qo KB
—»qoUB

Q ~2) „~2) Q ~~ ~ (2qo ~~) Q ~~2 2 2 2 2 2 2 2 2

E~(z) =—
4 2 2

dK K+
24 0 (Ir2) +4/pqo ) 2 o u2) (/l2) +4' q() ) (4~)

(10)

where u, =qo —~ —x„v, = —u, , for z (0, E2)(z) =0. The above expressions contained in Eqs. (9) and (10) can be easi-

ly separated into its real and imaginary parts and can be cast in the same form as recently given by Sols and Ritchie. '

At the surface (i.e., z =0) the imaginary part of the self-energy is given as
2 2

(
2 P)1/2 (2 2 2)

4m o ~s K+ Kq

2q ( q
2 &2 )

1 /2

2qp Ks
ln 1—

which can be evaluated analytically to be as

I~ Q
E,"(z=o')= '

qo

2q (q2 &2)1/2—ln 1+
2qp Ks

(12)
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Equation (12) is the total contribution of imaginary part of the self-energy at the surface. It can be shown by manipula-
tion that Eq. (12) contains both conservative and nonconservative imaginary parts of the self-energy in agreement with
the results of Mahanty, Pathak, and Paranjape. '

III. EXPRESSION FOR THE ENERGY LOSS OF THE ICP

The self-energy for all speeds of the ICP can be obtained either from Eq. (Sb) or from Eq. (12b) of Mahanty, Pathak
and Paranjape. It is given as

E21(z~ ~,ko) =—Q 2K2
1 k 2+K2 ( 1+gk2/K2 )1/2+ 2kkp p

2~k, o (1+Ak'/K')'/' k'+K'(1+ Ak'/K')' ' —2kk
(13)

It can be seen from Eq. (13) that E~(z~+ ~,ko) is always real for ko )K~ and is given by

Q2K2 k 2+K2( 1 + gk 2/K2 )1/2+ 2kk
E~(z~ ~,ko) = — ln

' dk.
11 k 2 +K2 ( 1 + g k 2 /K2 )

1 /2 (14)

On the other hand it is imaginary for ko & ~ which is

Q Kp max
2 2 I

E~(z~+ ao, ko)= — f dk
1

2kp min (1+Ak /K&)

where k;„and k,„are obtained from the argument of the logarithmic term in Eq. (13). The result obtained is

Q2 2 k +(k2 2 )1/2

Ei3(z~ ~,ko)= — ln
k, —(k,' —K,')'"

+ln
+ {K2+Q [2q2 K2 2k (k2 K2)1/2]1/2]

0 p 0 0 p

+ {K2+P[2q2K2+2k(k2K2)1/2]1/2

(15)

(16)

dE
dz

Np
E~ (z ~+ co, k 11 ) .

27TQ 0
(17)

The first term in Eq. (16) is the result when dispersion
effects are neglected and the second term is the contribu-
tion due to the plasmon dispersion effects. The energy
loss of the ICP is related with the imaginary part of the
self-energy according to the relation

where

4K k
k dk3' 0 (1+2k /K )'

X 1

{'k 2 +K2
( 1 + g k 2 /K2 )

1 /2
]

3

(20)

In the dispersionless limits our result for the energy loss
of the ICP reduces to that obtained by Mahanty, Pathak,
and Paranjape and by Sols and Ritchie. '

Effective mass of the ICP

It is also of interest to calculate the effective mass of
the ICP in the presence of a metal surface. Obviously the
effective mass of the ICP in the presence of a metal sur-
face depends upon its distance from the metal surface. It
will approach the free-particle mass when the ICP is very
far away from the metal surface. The depth inside the
metal efFective mass can be obtained from Eq. (14) by ex-
panding it to the O(ko ) and using the definition

1 d2+
g2 dI 2

It is given by

The integral given in Eq. (20) can be calculated analyti-
cally but it is too lengthy to be of practical value. How-
ever in the dispersionless case it is simple and is equal to

Q M
6~ A

1/2
M Q
m e' 63/23'/' ' (21)

IV. RESULTS AND DISCUSSIONS

%'e now proceed to the numerical calculation of the
complex self-energy of the ICP for its above-threshold
speed. Its real and imaginary parts are easily separated
for Eqs. (7a) and (7b). There are poles on the real axis in

where r, is the dimensionless electron density parameter.
Our result in Eq. (21) agrees with that obtained by Sols
and Ritchie. ' The value of the u can be easily calculated
in Eq. (20) when dispersion effects are included by numer-
ical integration.
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1 =P(x) i—m5(x),
x +i5 (22)
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some term of the bulk contribution to the self-energy
given by Eqs. (8a) and (8b). For these terms the real and
the imaginary parts are obtained by using the identity

where P stands for the principal value. The real and the
imaginary parts arising from Eq. (22) do not have a fixed
parity with respect to ko whereas other terms do have a
fixed parity. We replace the summation in Eqs. (7) and
(8) by integration as

f"f"kdkde, y f"f"f"kdkdqde
k, q

and we use the Simpson method for numerical integra-
tion.

The self-energy has been calculated for two speeds of
the ICP, namely, ko/v„=2 and 4. In Figs. (2a) and (2b)

0.0

(a)-0.2-

—0.4-
0a

IV —0.6-
CS

—a 4, .0
Kp

—1.2

0.0

I I I I

-8 -4 0
I I I

4 8

z(units of K ')

0.0
C

-0.2-
4J

—0.4-

O

—0 2 —
(b)

-0.4—

—0.6-

—0 8—

I
1

I

I
I
I
I
I
I
I

I

rr

/
I

I
I

I
I

I
I
I
I
I
I
I
I

k—=2.0 ',

Kp

-0.6-

—08
—24

0.0

-~6 -8 0 8

Z (unitS Of Kp')

I

16

—=20
Kp

24

0.0

—0-2-

-0.4-

—0 6-

—0.8 l -8

I I I

r~r~
0 /
I

/
I
I

Ii

k—= 4.0
Kp

—04-
O

Cf

—0.6-

0-0

N 0
LLJ

—0.4-

—0.6-

ko—* 2.0
Kp

ko—* 4.0
Kp

z (units of ~ )

FIG. 2. (a) Real part of the self-energy for the dispersionless
case. Dashed (3,3) and solid (3,4) lines represent the surface and
the total contribution for speed kp =2Kp of the incident charged
particle. Curves (1,2) and (1,1) represent the same contribution
but for speed kp =4~p. (b) Imaginary part of the self-energy for
the dispersionless case. Dashed and solid curves represent the
surface and the total contribution for speed kp=2Kp and 4Kp,

respectively.
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FIG. 3. (a) Real part of the self-energy for the dispersion in-
cluded case. Dashed and solid curves represent the surface and
total contribution for speed kp =2Kp and 4Kp respectively. (b)
Imaginary part of the self-energy for the dispersion included
case. Dashed and solid curves represent the surface and total
contribution for speed kp =2' and 4Kp respectively.
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we have plotted the real and the imaginary parts of the
self-energy of the ICP for the dispersionless case. Surface
and total contribution are shown by dashed and solid
curves, respectively. At the surface and outside the sur-
face bulk contribution to the self-energy is zero for the
dispersionless case. From Figs. 2(a) and 2(b) we observe
small oscillation in the real and the imaginary parts of
the self-energy when the particle is inside the surface. In
Figs. 3(a) and 3(b) we have plotted the real and the imagi-
nary parts of the self-energy when the dispersion of the
surface as well as bulk plasmons are included. Here also
the dashed and the solid curves represent the surface and
the total contribution to the self-energy. It is seen from
Figs. 2 and 3 that the numerical value of the self-energy
decreases when we take dispersion effects that are includ-
ed. At the surface for the dispersionless case the numeri-
cal value of the real and imaginary parts of the self-
energy of the ICP are equal to —0.43 and —0.58, respec-
tively, for speed k0=2~ . For the dispersion included
case these values reduce to —0.09 and —0.28, respective-

ly. Therefore effects of plasmon dispersions are very
significant.

We have separated the total imaginary part into con-
servative and nonconservative imaginary parts. The con-
servative imaginary part does not represent any dissipa-
tion effects while the nonconservative imaginary part is
associated with the energy loss by the ICP. In Fig. 4 we
have plotted the total conservative and nonconservative
imaginary part of the self-energy by dashed and solid
curves, respectively, when the dispersion effects of the
plasmons are taken into account. It is seen from Fig. 4
that the nonconservative imaginary part oscillates when
the ICP is inside the metal surface and oscillations de-
crease when we increase the speed of the ICP. The oscil-
latory nature of the imaginary part of the self-energy is
because of the quantum nature of the interaction and
partly due to finite speed of the ICP.

We calculate the energy loss of the ICP when it is very
deep inside the metal surface from Eq. (16) for its speed
ko =2~ . In Eq. (16) we have obtained an analytic result

0 4 s r s
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P

FIG. 4. (a) Dashed and solid curves represent the total conservative and nonconservative imaginary parts of the self-energy for the
dispersion included case for speed ko =2m~. (b) is the same as (a) except for speed ko =4Kp.
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for the imaginary part of the self-energy when ICP goes
very deep inside the metal surface (i.e., z —++ ~ ). From
this we obtain the values of the imaginary part of the
self-energy equal to —0.58 and —0.35 for dispersion
effects excluded and included, respectively. This implies
that the value of the energy loss by the ICP decreases by
39% when dispersion effects are included for its speed
equal to 2~p. Our computed results for the real and the
imaginary parts of the self-energy also attain a constant
value in the z~ ac limits as shown in the Figs. 3(a) and
3(b) and are in good agreement with the results obtained
from Eq. (16).

We also calculate the effective mass of the ICP when it
is deep in the bulk from Eq. (20). For the case of the ICP
being an electron it is found that M* = 1.14M and
M*=1.24M for the dispersion effects included and ex-
cluded, respectively. This amounts to about a 9% de-
crease in the value of the effective mass of the electron
when dispersion effects are included.

In this paper we have derived the general expressions
for the self-energy of the ICP interacting with a metal
surface within the hydrodynamical model. The numeri-
cal results are presented for two speeds of the charged
particle for the above-threshold case and for excluding as
well as for including dispersion effects. It is found that
the contribution to the self-energy arising due to spatial
dispersion effects of plasmons is quite substantial and
must be taken into account. This work along with the
earlier work of Mahanty, Pathak, and Paranjape provides
a complete theory for the complex self-energy of moving
charged particles interacting with a metal surface.
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