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Free optical vibrations of an infinite plate of homogeneous isotropic elastic matter
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We adapt the standard theory of the free acoustic vibrations of an infinite plate of homogeneous iso-

tropic elastic matter to the corresponding case of optical vibrations. Treating nonpolar material first, we

show that the effect of the free surface is to couple LO and TO modes, and we demonstrate the existence

of the optical analog of Rayleigh waves. Interface and guided modes are both present, and their respec-
tive mode patterns are derived. In polar materials the coupling between LO and TO is different because
of the frequency splitting due to the ionic fields, but surface modes are still present. This result contra-
dicts the conclusion of the hydrodynamic model that surface modes do not exist. The polar character
also allows the existence of surface polaritons. It is shown that the standard description of these modes,
which neglects the elastic properties of the material, is physically invalid. The effect of the free surface is

to couple surface polaritons and LO modes, and a description is given of the mode patterns that may
occur. General expressions for energy flux are given, and boundary conditions for the general case are
suggested. This treatment goes some way towards reconciling the various theoretical models of phonon
confinement that have been advanced recently.

I. INTRODUCTION

A description of the free acoustic vibrations of an
infinite plate of homogeneous isotopic elastic matter has
been available for over a century, ' but a corresponding
description for optical vibrations has not been given, to
the author's knowledge. Here we report such a descrip-
tion for nonpolar material, and subsequently for polar
material. The motivation was to establish a consistent
account of longitudinally polarized (LO) and transversely
polarized (TO) optical modes in a thin layer treated as an
isotopic elastic and dielectric continuum to act as a basis
for calculating the electron-phonon and hole-phonon
scattering rates in layered semiconductors. Here we limit
attention to the free-standing plate since this is the sim-
plest system that illustrates the basic physics. The latter
emerges in the form of an unavoidable coupling of LO
and TO modes brought about by the presence of a sur-
face. Such a coupling between acoustic modes (LA and
TA) is well known, but its significance for optical modes
has not been widely appreciated hitherto.

Models of confined optical modes which are currently
in the literature achieve differing levels of sophistication.
The earliest and simplest was the dielectric-continuum
(DC) model in which only electrical boundary conditions
were used to determine LO mode patterns. ' Such a
model, clearly, could not describe confinement in nonpo-
lar material, and it soon came into serious convict with
the predictions of linear chain models through its lack of
boundary conditions, which referred to mechanized sta-
bility. A more successful, but still overly simple, model
described LO confinement using hydrodynamic (HD)
boundary conditions, in which it was argued that since
an LO mode was characterized by zero electric displace-
ment it contained no electromagnetic energy, and so only
purely mechanical conditions had to be satisfied at a

boundary. The HD model showed much closer agree-
ment with linear chain models, though it was soon point-
ed out that HD boundary conditions were not strictly
consistent with the actual ionic motion at the interface.
Nevertheless, the HD model displayed the twin virtues of
conserving energy and establishing mechanical stability
through its expansion of the Born-Huang model to in-
clude dispersion. On the other side of the balance sheet,
it displayed the perceived defect of allowing tangential
electric fields, and with them, the scalar potential, to be
discontinuous at the interface.

As three-dimensional models of the lattice
dynamics —usually referred to as microscopic (M)
models —became more sophisticated, two aspects
emerged. One was the primacy of mechanical conditions,
and the other was the added complexity introduced by
the elastic anisotropy of the crystals considered (mostly
GaAs and AlAs). Huang and Zhu attempted to recon-
cile the DC and M models by ad hoc addition of scalar
potentials so both electric and mechanical boundary con-
ditions were satisfied, and by a reinterpretation of off-axis
modes. Bechstedt and 6erecke attempted a similar
reconciliation. Both pairs of workers obtained a hybridi-
zation of LO guided modes with Fuchs-Kliewer (FK)
surface polaritons. The additions conceived by Huang
and Zhu, besides being ad hoc, destroyed the orthogonali-
ty of the modes, but this has been rectified recently by
Haupt and Wendler' who have gone on to calculate
electron-phonon scattering rates. Some unsatisfactory
elements in all of these approaches have been pointed out
recently. "

A continuum theory of confined optical modes should
be able to stand on its own and be internally self-
consistent. It should also be applicable to nonpolar and
polar materials. Only when these criteria are satisfied
can a judgment be made concerning the validity of apply-
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ing it to a real system composed of atoms. The HD mod-
el satisfies these criteria by limiting itself strictly to LO
modes and seeing any discontinuity of the scalar potential
that may arise as resolvable only on an atomic scale. The
models mentioned above start from the basis of the DC
model, which is clearly not self-consistent. In what fol-
lows we develop a continuum model that goes beyond the
HD model in that it treats TO modes and the LO-TO in-
teraction and which rediscovers the HD model as a spe-
cial case. It bases itself on the firmly established theory
of elasticity.

Our approach is straightforward. We first identify the
dispersion of optical modes with the macroscopic elastic
properties of the material. This immediately allows us to
take over the theory established for acoustic modes in
nonpolar material and apply it to optical modes. In do-
ing so we discover the optical-mode analog of Rayleigh
waves. The transition to polar material is e6'ected simply
by taking into account the splitting of LO and TO fre-
quencies and introducing a new mode —the surface po-
lariton. Throughout, we assume that the medium is
elastically isotropic, which allows us to keep LO and TO
modes distinct and allows us to orientate Cartesian axes
irrespective of crystallographic direction. We take the x
axis parallel to the direction of propagation in the plane
of the plate and the z axis to be perpendicular to the
plane of the plate. Modes with displacements in the
plane of incidence (xz) are the LO mode and the p-
polarized TO mode (or just p-TO); the mode with dis-

Lo p TO

////////////////

FIG. 1. Coordinate system and mode designation. Depicted
are the propagation and polarization directions of the plane-
wave components that together with their reflections make up
waves with a standing component in the z-direction, which
propagate along the x axis.

placement at right angles to the plane of incidence (i.e.,
along the y direction) is the s-polarized TO mode (or s-
TO) (Fig. l).

II. OPTICAL PHONONS

The dispersion relation for long-wavelength optical
phonons in nonpolar material can be written as follows:

(co —coo)u(&) = —H(&)u(k),

where

Ak„+B(k +k, ) Ck„ky

H(it)= Ck k, Ak +B(k, +k„)
Ck, k„ Ck, k,

Ck k,

Ck k,

Ak, +B (k, +ky )

is a 3 X 3 matrix, u(k) is the relative displacement, and coo

is the frequency at k =0. We take H(k) to be identical to
the matrix for acoustic modes, from which it follows that

equivalent strains are given by

vL c11/ p &
8 = UT =c44/p

C =(ci2+c44)/p,
(3)

BQ~Si=-
Bx

BQy BQ

BZ

where vL, v T are the velocities of LA and TA modes, c»,
etc. are the elastic constants, and p is the mass density.
Thus the dispersion relations for LO and TO modes are

2 2 2k2
Q7 COP UL

=coo—vrk TO (s and p),
where k =k +k +k, for all directions provided the
material is elastically isotropic, viz. ,

C 11 C 12 2C44 —0

We will assume this to be the case.
Dispersion arises as a consequence of the elastic

stresses produced by a traveling optical wave. The

] BQ BQ
54= —— +

2 Bg Bz

BQ BQ
S~= —— +

2 az ax

] ~Qy BQ~
S,= —— '+

2 ()+ ()p

The minus signs arise as a consequence of the out-of-
phase vibration of the two atoms in the unit cell. The
stresses are given by the usual set of equations:
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T, =c»Si+ci2(Sz+S3),
T2 =c1,S2+c,2(S3+S,),
T3 Cf]S3 +c,2(S, +S2 )

4 44 4

T5 2c44S 5

T6 =2C44S6 .

Equations (6) and (7) allow us to calculate dilatational
and shear stresses produced by a travelling optical wave.

The assumption of isotropy allows us to decompose
any displacement u into a longitudinally polarized part
ul and a transversely polarized part uT

U=UL +QT

with uL and uT defined by'

VXuL =0,
V.uT=0 .

Of course, uL and uT must have the same time depen-
dence, i.e, the same frequency.

III. NONPOLAR MATERIAL

The boundary condition which must be satisfied when
the surface is free is that the dilational stress perpendicu-
lar to the surface and shear stress across the surface van-
ish. The situation is simplest for s-polarized TO modes.
A solution is

'o Oo

(b)

FIG. 2. Schematic dispersion relationship of (a) nonpolar and
(b) polar material.

2 — 2 2(k2+k2) 2 2(k2+k2)

from which

kL =(ys —l)k„, kT=(s —l)k„, (16)

where y =v T luL =c~ /c»2 2=
As indicated in the Appendix, the boundary conditions

can be satisfied provided the following equation is true:

(qr +pt)'sinkrL sinkL L

2qrpt [co—s(kL —kT )L —1]=0, (17)

where

It is convenient to define a "plate" velocity U and a pa-
rameter s such that

~2 ~2 U2k2 and s =U2yU2

ik„x ik z —k z
u =e "(Ae '+Be '),

which satisfies V-u=O. It must also satisfy

(10) p =y(s —2), q =2y&s —1,
r =2&ys —1, t =s —2 .

ik x
u =g cosk z, k L =n'll, (12)

where n is an integer. In this case no mixing with other
modes is required.

The surface couples LO and p-polarized TQ modes.
Thus we take

T3=0, T4=0, T5=0

at z=O and z=L. For this wave the stresses T3 and T5
are zero everywhere. To obtain T4 =0 we must have

This admits of two waves. One is a guided mode consist-
ing of coupled phased-matched LO and TO waves, the
other is a surface mode consisting of coupled evanescent
LO and TO waves. The latter is the optical analog of the
Rayleigh wave in acoustics. Some mode patterns are de-
scribed below.

A. Guided modes

These waves have phase-matched components with the
following wave vectors:

kLL =nI m, kTL =nTa, nT —n~ =2m, (19)

where nI, nT, and m are all integers. The displacement
in the z direction can be described by sine or cosine. The
sine solution is

We distinguish the z components of the LO and TO wave
vectors kL and kT, respectively. Equation (9) is satisfied
for the individual LO and TO components, and it is clear
that the condition T4=0 holds everywhere. The wave-
vector component along the surface must be common to
both components. They must also have the same fre-
quency, from which (Fig. 2)

u„=2Ae " k„coskLz +kT —coskTz
q

ik x
u, =2i Ae kl sinkL, z —k sinkTz

and the cosine solution is

(20)
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FIG. 3. Relation between kL. and k„ for guided modes in

nonpolar material with y= 3. L is the width of the plate and

2m =nT —nL (nL, =kLL/m, nT=kTL/~).

LO and TO modes which arises because their frequencies
lie close together. The frequency of the TO mode is the
higher as a consequence of the smaller velocity of TA
modes. One consequence of this is that the smallest TO
vector component in the z direction that is allowed is one
where nI =1 and nT=3, to satisfy Eq. (19). Confinement
eliminates n T

= 1 and n T
=2.

B. Surface modes

No surface-wave solutions exists for s-polarized TO
modes, but Eq. (17) allows both k' and kT to be imagi-
nary. For brevity we quote mode patterns only for
L —+ ')0 and L ~0, since simple expressions are obtained
in these limits

For L ~ ao, the antisymmetric solution is, with

kL =iaL and kT=iaT,
ik x —aLL/2u„=2Ae " k„e cosha2(z L/2)—

ik„x r
ux =2i Ae " k„sinkLz —kT —sinkTz

ik x r
u, =2 Ae kL coskLz+ k —coskTz

t

(21)

—aTL/2+iaT e coshaT(z L/2)—
q

ik.x . -~,L/2
u, =2Ae " —iaI e sinhaI (z L/2)—

g7
—aTL/2+k e sinhaT(z L/2)—

(22)

Figure 3 shows the relationship between kL and k when

3
The spectrum can be seen as consisting of

branches defined by the integer m. Figure 4 depicts the
corresponding dispersion. A11 branches are associated
with a velocity factor s =3, corresponding to a velocity u

close to v'. Note that the choice of y (=c4'/c») to be
one-third in these examples is reasonable in view of the
actual ratios of elastic constants found among semicon-
ductors.

These guided waves are a profound hybridization of

and the symmetric solution is

ik x —aLL/2
u =2Ae " —k„e sinhaz(z L/2)—

g —aTI. /2
iaT —e sinhaT(z L/2)—

(23)
ik x . —aLL/2

u, =2Ae " ia2e coshaI (z L/2)—
p —i aTL/2—k —e coshaT(z L/2)—

10' I I

In this limit Eq. (17) reduces to

qr+pt =0 (24)

which leads to a cubic equation for s, the velocity factor,
viz. ,

s —8s +8(3—2y)s —16(1—y) =0 . (25)

0.9— This equation is just that found in the theory of Rayleigh
waves. '

With y =
—,
' this reduces to

(s —4)(3s —12s+ 8)=0 . (26)

0.8—
The solutions are, therefore,

1 1s=4, s=2 1+ —,s=2 1—
V3 ' V3

(27)

FICx. 4 Dispersion for guided modes in nonpolar material
with y= —,

' and co+/vTm. =20. (O LO modes; ch TO modes. )

(nL =kLL A ).

Only the last is consistent with having kL and kT imagi-
nary. We thus obtain the relationship between aL, aT,
and k, viz. ,
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Ux
1 21+

i/2

2
V'3

1/2 (28)

L

Note that the LO component drops off from the surface
more rapidly than does the TO component.

For L ~0 only the antisymmetric mode survives, the
mode pattern being that of Eq. (22) with
exp( aTL—/2) = l. In this case we find

s =2(1—2y),
from which

a~=(1—2y+4y )', aT=(4y —1)' k, .

(29)

(3O)

This completes our description of the allowed modes of
a nonpolar plate. A depiction of mode patterns is given
in Figs. 5 and 6.

IV. POLAR MATERIAL

FIG. 5. Mode patterns for nL =1, n„=3 in nonpolar materi-
al. (Dashed line, LO; dotted line TO; continuous line, LO +
TO .)

When the two atoms in the unit cell are oppositely
charged their oscillations are accompanied by long-range
electric fields that modify the elastic restoring forces and
alter the frequencies of LO and TO modes. The disper-
sion relation for long-wavelength optical modes becomes
modified along the following lines:

(co co'T)u(k) =—[ H(k)+(co—' —co'T)I(k)]u(k), (31)

where cuL, coT are the LO and TO zone-center frequen-
cies, and

k kk kk,
I(k)= k k„k k k,

1

k
k, k„k,k„k,

(32)

Uz

The LO frequency is shifted upwards relative to coo of
Sec. III. The main effect is this shift in frequency. For
simplicity we will continue to regard the material as
elastically isotropic with effective elastic constants
modified by the polar fields. Consequently we can em-

ploy the analysis of the previous section, merely changing
the definition of certain terms,

Thus we maintain the distinction between irrotational
and divergenceless modes according to Eq. (9). It is con-
venient to modify the definition of the plate velocity v as
follows:

2 2 2k2
COL, CO —V

from which it follows that Eq. (16) becomes

kL=(ys —1)k, kT=(s —1)k2 —ko,
where

2 2
COL, COTko=

VT

(34)

(35)

FIG. 6. Mode patterns for surface waves in nonpolar materi-
al (designations as in Fig. 5).

The secular equation, Eq. (17), remains valid, but now
Eq. (18) becomes
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p =y(s —2), q =2y[(s —1)k„—ko]'i /k„,
r =2&ys —1, t =(s —2) —(ko/k ) .

(36)

The splitting of the LO and TO frequencies profoundly
modifies the ability of the surface to couple these modes
together. Over the frequency range ~L —coT coupling of
guided LO modes can only be accomplished with rapidly
varying TO evanescent modes, and for co~coT, only
short-wavelength LO modes can be involved. Because of
these consequences, a description of coupled modes tends
to stretch any continuum model to its limits of validity
and perhaps beyond it. With the caveat we will proceed
first to describe the guided modes.

A. Guided modes
and

kl =yk o+ k„(ys —1), kT =(s —1)k„ (38)

(37) satisfies the electromagnetic boundary conditions.
The electric and magnetic fields associated with the TO
mode are vanishingly small, so they do not enter. The
LO mode has zero magnetic field and zero electric dis-
placement D. Thus D, =0, and since kL = n m., the
tangential electric field vanishes at each surface. The
continuity of D, and E is then satisfied by having no
fields in the vacuum.

The coupling between guided LO and guided TO for
co ~ coT gives the mode patterns already given in Eqs. (2)
and (21) but now with coT replacing co& in Eq. (33),
kz-L =nTm. , kll. =nl m and nl —n. T=2m,

It may be noted that our results for s-polarized TO
modes remain unaffected by the ionic nature of the ma-
terial, and so we turn immediately to the coupling be-
tween guided LO and evanescent TO modes. Taking
kT =iko and assuming for simplicity that ko is large, we
obtain,

p =y[ko+(s —2)k, ]/k, , q =2y&s —1,
r=(2/k„)+yko+k„(ys —1), t =(s —2) .

B. Surface modes

(39)

ik„xu„——2ae " ik„sink, x

—iko —[e ' cos(kIL—)e ' e '
]

(37)
ik„x

z 2Ae kLcoskLz

There are still no surface s-polarized TO modes, but in
general, surface waves consisting of mixed LO —p-
polarized TO modes do exist, and their mode patterns for
L~oo are described by Eqs. (22) and (23) with p, q,
aL =ikl, aT=ikT, given by Eqs. (34)—(36). Specific
magnitudes must satisfy Eq. (24), which now leads to a
quartic for the velocity factor s:

xt

s —2(4+a)s +[8(3—2y)+12a+a ]s

—[16(1—y)+8a(3 —2y)+4a ]s+4a =0,
where

(40)

with kL L =nl vr, nl an integer (Fig. 7). In this coupling
the contribution of the TO mode to the dilational stress is
negligible, but the presence of the TO mode is still vital
to cancel out the shear stress. If shear is neglected, no
TO mode need be involved, and this is exactly the impli-
cit assumption underlying the HD model, whose bound-
ary condition V.u=0 at the surface is exactly the same as
our condition T3 =0 when y =0.

It is interesting to observe that the mode pattern of Eq.

s =2 (41)

independent of y, from which

a =(1—2y)k a =k —k (42)

Note that when a =0 Eq. (40) reduces to the nonpolar
equation [Eq. (25)]. In the limit a ~ oo, the solution is

0 P"

ux

0 .."-

uz

In this limit solutions exist provided y —,. Waves propa-
gate with surface phase velocity equal to 2' vT. The an-
tisymmetric solution is

T

ik x —aLL/2u„=2 A k„e " e coshal (z L/2)—
+L —koL2—2 e 'coshko(z L/2)—

0

ik x —a&L/2
u, =2i A al e " —e sinhal (z L/2)—

FIG. 7. Mode patterns for nL =1 in polar material {with
k„=kL ) {designations as in Fig. 5). Mode patterns for surface
waves are approximately those of Fig. 6 in the absence of the
TO component.

—koL /2+2
z

e ' sinhko(z L/2)—
0

and the symmetric solution is
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ik„x —aL L /2u„=2Ak e " —e sinhl (z L—/2)

ik x —k„L/2u„=+2i A e e " k„sinhk„(z L—/2),
ik„x —k L/2

u, = —2Ae " e " k„coshk„(z L/—2) .
(46)

—koL/2 .+2 e sinhko(z —L /2)

(44)

When k is large compared with the wave vector of light
at the same frequency, these solutions, share the same
frequency that lies between AT and coL and is given by

ik x —a L/2
u, =2iAal r " e coshal (z L/2—)

1 —koL /2—2 e '
coshko(z L /2—)

0

The existence of this optical-mode analog to Rayleigh
waves in polar material, as well as its appearance in non-
polar material, depends upon the shear modulus being
nonzero. If y=O, Eq. (42) shows that al =k„. In this
case the LO component has the property V' Xu=0 as well
as VXu=O. Such a mode must have zero amplitude,
which is consistent with the prediction of the HD mod-
el' that no surface modes are possible in a free-standing
plate. However, this conclusion derived from the HD
model appears to be incorrect for real elastic solids, even
though Eqs. (43) and (44) show that the amplitudes of the
TQ components are vanishingly small. We note that in
this limit (a —+ oo ), the solutions obtained above are valid
for all plate thicknesses of interest. However, we also
note that the tangential component of the electric field,
which is proportional to u, is not zero at the surface,
and so conventional electric boundary conditions are
violated.

C. Surface polaritons

One well-known consequence of polarity is that it al-
lows electromagnetic waves to directly couple with TO
modes to form surface polaritons, as described by Fuchs
and Kliewer. We will refer to these as FK modes. Their
dispersion is depicted in Fig. 8. For large k the mode
patterns are of the following forms: antisymmetric,

ik x —k L/2
u =2Ae " e " k coshk (z L/2), —

ik x —k„L/2
u, = 2iAe —e " k„sinhk (z L/2)—

and symmetric,

+Ep
~FK. +E~+Fp

(47)

lk x
u, =2Ae " [kl coskiz

—k z —kLkz—kI(e ' +coskILe " e )j
(48)

where e„e are the static and high-frequency permittivi-
ties and ep is the permittivity of the vacuum. For simpli-
city in our discussion we will assume that this condition
is met.

Two comments can be made. First, it would appear
from Eqs. (45) and (46) that we are dealing with a null
mode since both V u and VXu are zero. This, however,
is not really so since the decay constant in hyperbolic
terms is only approximately equal to the wave vector k .
In fact the modes are TO modes with finite, but in the
present approximation, vanishingly small rotation, which
describes the rate of change of magnetic field. The solu-
tions quoted are those obtained neglecting retardation
(i.e., assuming the velocity of light to be infinite). They
match smoothly with an evanescent electromagnetic
wave in the vacuum.

The second comment is that these solutions violate the
condition that the elastic stress vanish at the surface.
Fuchs-Kliewer modes, conventionally described, are
therefore unphysical. This rather important defect can
be rectified by coupling with an LO guided mode of the
same frequency, as was done in Sec. IV A. For I.~ ~
only cosine waves couple, and the corresponding mode

ik x
u =2Ae " [ik„sinkLz

—k z —k„L k„z+ikz(e ' coskl Le "—e " )],

cd,

/

E

/
I

Or

FIG. 8. Fuchs-Kliewer dispersion.

Z

FIG. 9. Mode patterns for hybridized FK modes in polar
material (with KL =4~, k L =m. ). (Dashed line, LO; dotted
line, FK; continuous line, LO + FK.) Note that this combina-
tion of FK and LO is possible only if the two modes have the
same frequency. In general only certain values of k are al-
lowed.
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with kL L =na, satisfying

aiFK ~r. UL, (kx+kL, ) . (49)

This mode pattern (Fig. (9) satisfies all elastic and elec-
tromagnetic boundary conditions. Note that when n is
an odd integer, corresponding to an asymmetric guided
mode, the coupling is to the asymmetric FK ode, and
when n is an even integer both components are sym-
metric. In other words, like parity hybridizes with like
parity.

A further discussion of hybridization of FK and LO
modes taking into account FK dispersion will be reported
soon in the future.

the medium cannot be ignored. The important parame-
ters are the wave vector ko, Eq. (35), and the dimension
of the unit cell ap. So for a continuum theory to be valid
we expect

(50)

For GaAs, kpap =1.
(2) The relation between HD boundary conditions and

those arising from the linear-chain model was illuminated
by Akero and Ando. When the force constants on either
side of the interface are the same, and when the interface
is taken to lie midway between atom A and atom 8, the
condition for mechanical stability simply entails the con-
tinuity of the displacements u ~ and u~, viz. ,

V. DISCUSSION
ap

u~+
2 Bz

ap Buz
ug +

2 Bz
Our extension of classical elasticity theory to include

optical modes has allowed us to described the mixing of
LO and TO modes at a free surface and to obtain the
confined phonon spectrum. In particular, it has allowed
us to demonstrate the existence of surface optical modes,
which are analogous to Rayleigh waves. Hitherto only
HD theory has predicted interface modes, but only at
internal surfaces and only for LO modes. DC theory and
the more sophisticated versions mentioned in the Intro-
duction do not predict interface modes other than FK
polaritons, so our conclusions here are quite new. Decid-
ing the ontology of surface waves is of some importance
for the electron-phonon interaction, since under some cir-
cumstances surface modes can interact strongly with elec-
trons. ' For the same reason it is important to ascertain
the strength of the interaction with FK polaritons. It has
been argued elsewhere" that such an interaction has the
nature of a magnetic ( A p) rather than of an electrical
(eP) interaction, but clearly an even greater reappraisal
of the FK interaction is now necessary as a result of our
demonstration of hybridization of FK and LO modes.

The foregoing treatment has included nothing but the
simplest cases and has merely sketched a rough outline of
the topic. An extension to the quantum-well situation 1s

underway, where continuity of stress replaces the vanish-
ing of stress, and continuity of energy How is entailed. It
is clear that a self-consistent picture of confined modes
can emerge from this program, so it is of interest to ask
how valid such a picture can be as a description of optical
waves in real matter. There are at least four problems,
and there may be more. These have to do with the fol-
lowing: (1) The spatial variation of the mode pattern, (2)
the relation of relative displacement (u) to ionic displace-
ment, (3) the elastic anisotropy of real crystals, and (4)
The electrical boundary conditions. We will comment on
each in turn.

(1) It has already been remarked in Sec. IV that the
polarity of the medium typically forced one of the com-
ponents of a LO-TO hybridization to be rapidly varying,
the more so the stronger the polarity, i.e., the more
disparate the LO and TO zone-center frequencies. When
the spatial variation of the mode function becomes
significant over a primitive unit cell, the atomic nature of

ug
ap

ug
2 'Bz

ap Bug

2 c)z

(51)

(Note there are no shear stresses here. ) The parameter ao
is now the interatomic spacing, assumed to be identical in
both materials, and it is also assumed that u ~ and u~ are
describable by slowly varying envelope functions.
Optical-mode relative displacement u for long wave-
lengths is related to u~ and u~ as follows:

1+(M„/Mii ) 1+(M~ /M„)u~=, (52)

where Mz, Mz are the atomic masses. Substitution into
Eq. (51) yields the connection rule

u

Bu
ap

(53)

where

—'(R +R ') —'(R —R ')
r) 2 4

rp 2

(54)

Here r=r +r ', r =(M&/M&)', R =r i/r 2. This
connection rule satisfies continuity of energy Row. The
corresponding connection rule for the continuum theory
1S

T12
1 0

2 7

r&
(55)

which agrees with microscopic theory only when R = 1,
i.e., the mass ratios are common. In reality, the interface
is never as precisely located as conventional microscopic
theory assumes, and the position and properties of the in-
terface affect the off-diagonal elements in Eq. (54). Con-
sequently, boundary conditions relating relative displace-
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ment and elastic stresses in a continuum theory may not
be a major source of error.

(3) Elastic anisotropy adds significant complexity. In
directions other than the major crystallographic ones
there is no clean distinction between LO and TO, and the
degree of surface-induced hybridization depends upon
direction following the directional dependence of disper-
sion. However, orientational effects of this sort are not
likely to add anything qualitatively new to the picture ob-
tained on the basis of an isotropic model. In any case, a
straightforward application to the problem of the
electron-phonon interaction will require some angular
averaging. Anisotropy is therefore not likely to lead to
significant problems.

(4) There is no question but that a transversly polar-
ized wave of electromagnetic character must satisfy elec-
tromagnetic boundary conditions. The same is true of
static fields. The question however is open concerning
the applicability of electric boundary conditions to LO
fields. We noticed that the surface optical modes de-
scribed in Sec. IV B did not satisfy these conditions. Nor
do linear-chain models in certain situations. Indeed, it
was this problem that brought the DC model into clear
convict with microscopic models. The same question
arises in the context of plasma waves. The special prop-
erty of LO waves is that they have no electrical energy
because the permittivity is zero. Electrical fields under
this circumstance cannot exist in the absence of ionic po-
larization. At the surface of an ionic solid the electric
field must therefore drop to zero over a distance of the
order of atomic dimensions. If this is true, there is as
much need for a continuum theory to address the issue as
it would be for it to address the problem of continuity of
interatomic forces, or indeed the continuity of matter. A
surface or an interface is already a discontinuity of
matter plus its properties, including polarization and as-
sociated fields, which suggests that it is unnecessary to
add nonmechanical boundary conditions. If this view is
adopted, it becomes clear that the DC model, insofar as it
refers to the confinement of LO modes, is fundamentally
Aawed, and discontinuities of LO fields are to be expect-
ed. On the other hand, if this is denied, then one of the
things that follows is that the surface modes of Sec. IV B
cannot survive. This implies that surface modes exist in
nonpolar material but not in polar material irrespective
of the strength of polarity, provi. ded the latter is nonzero.
We appear to have exchanged one type of discontinuity
for another. Note one final comment. The necessity for
any boundary condition must be justified by arguments
based on the physics of the situation. Hitherto there ap-
pears to be no such argument specifically directed at
e(co)=0 LO modes for ensuring the continuity of the
tangential component of the electric field.

It turns out, however, that both elastic and electromag-
netic boundary conditions can be satisfied by invoking a
scheme of triple hybridization involving LO, TO, and FK
modes and distinguishing carefully between scalar and
vector potentials.

We conclude with some comments on energy Bow.
Cieneral expressions for the energy Row in the z-direction
may be written as follows:

PQ) VL
S, = —

. (uV u —uV u) LO,
l

pQ) VT
[u'(VXu)» —u (VXu*)»] TO,

2l
(56)

where p is the reduced density. The solutions we have
derived all obey S, =O. In the general case a basic
boundary condition must be the continuity of S, . Simi-
larly we must have continuity of the stress components.
These considerations suggest that if the z axis is perpen-
dicular to the interface, the general boundary conditions
to be satisfied for LO and TO modes are

S, , T3 T4 T5 continuous . (57)

In general, we must add the usual electromagnetic
boundary conditions.
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APPENDIX

The displacement of Eq. (13) must satisfy the following
boundary conditions at z =0 and L:

BQ BQ
T = —c (1—2y) +

ax az
(Al)

BQ BQ
T5 = —

C44 + =0. (A2)

This entails the vanishing of the determinant

T r

Pfs. Pgt.

r~l.

=0, (A3)

where

p =1 2y+(kl /k ) q =2ykT/k

r =2kt /k„, t =(kT/k„) —1,
ik~Lfl =e

—ik& L (A4)

with the constraint on the frequency, namely,

ikTL —ikTLfT=e gT=e

This leads to the secular equation

(qr +pt) sinkTL sinkt L 2qrpt [cos(kt kT )L——1]=0—
(A5)
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2 2 2(k2+k2) 2 U2(k2+k2) (A6) ~ =qr (fT g—T )+pt (fT+g T 2gL, ) (A10)

The amplitudes are as follows: Sometimes it is useful to express the secular equation
(A5) as follows:

[qr(fr g—T)+pt(2fL, fT——gT)]8=
q (fL+gL 2gt)+pt(fL, gL )C=

qr(2fT fL,
——

gL, )+pt(f, —g, ) pD= ~ —3,

(A7)

(A8)

(A9)

(qr»n&t cos&T+pt cosOL sinOT )

X (qr cosOL si nHT+pt sinOLcosOT ) =0,
where

OL =kl L/2 and BT=kTL/2 .

(A 1 1)
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