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Spin efFects play an important role in weak-localization theory. In addition to tne well-studied
influence of spin-orbit and spin-Aip scattering, electron-spin precession can be important when a magnet-
ic field is present. A simple derivation of the spin-precession effect is given, which reproduces the results
of impurity-diagram calculations by Maekawa and Fukuyama. Spin precession becomes important when
the precession rate co~ satisfies co~ ) ~1/r„—1/r„~, where 1/r„and 1/r, t are the spin-orbit and spin-fhp
scattering rates. In this case, the ac conductivity will show a resonance at ~=co~. The resonant line
shapes are examined for the ac magnetoconductivity in quasi-one- and quasi-two-dimensions, and the
feasibility of experiments is considered.

I. INTRODUCTION

The now-standard theory of weak localization, which
deals with quantum corrections to the conductivity of
weakly disordered systems, has explained a large body of
data, particularly low-field magnetoresistance measure-
ments. ' An important role in the theory is played by
spin-orbit and spin-Hip (magnetic impurity) scattering,
the effects of which were discussed in the works of Hi-
kami, Larkin, and Nagaoka and Maekawa and Fukuya-
ma. In magnetoresistance measurements the precession
of the electron spin in the applied magnetic field can also
be important. However, the precession effect has only
rarely been included in descriptions of data, and its ex-
perimental consequences have not been fully explored.
As will be discussed below, spin precession becomes im-
portant when the precession rate co =g*p~8/A satisfies
co~ ) ~1/r„—1/r, t~, and this must occur at a magnetic
field that is not so large that weak localization is
suppressed by orbital effects. Spin precession does not
have a dramatic inAuence on the dc conductivity, but the
ac conductivity o.(co) may develop a resonant peak at
co=co . The precession effect may therefore be relevant
to experiments now being conducted on weak localization
in disordered metals at microwave frequencies.

Below I first derive the effects of spin evolution on
weak localization, using a direct method related to that
of Bergmann and Chakravarty and Schmidt, but includ-
ing spin precession. I then consider the specific predic-
tions for the longitudinal ac magnetoconductivity in
quasi-one- and quasi-two-dimensions, and discuss the be-
havior of the resonant peak in the conductivity.

II. DERIVATION
OF THE SPIN-PRECESSION EFFECT

corrected at times t ))~ by the coherent backscattering.
The corresponding quantum correction to the conductivi-
ty is given by

5o(co)= —4 DrI e' 'C, (t;x,x)dt,
'T

where C, is the orbital part of the cooperon propagator,
found by solving the equation

D —tp' — A(x) + + C, (t;x x')2e a 1

Bt

=5( t)5(x —x') /r,
where D =

—,'uF~ is the diffusion coefFicient, and UF is the
Fermi velocity. When the vector potential and the in-
elastic dephasing rate 1 /~& vanish, C, satisfies a simple
diffusion equation, and the conductivity depends on the
probability that the electron returns to the origin by
diffusion. The dephasing rate 1/r& has the effect of
suppressing the contribution of those pairs of time-
reversed paths which take longer than ~& to traverse,
while the vector potential suppresses the contributions of
paths which enclose more than a Aux quantum, except in
multiply connected geometries, where it can lead to
Aharonov-Bohm oscillations of the conductivity.

To include spin eff'ects, we consider an initial spin state
~s), and a rotation operator U(1~N) under which the
spin state evolves along the forward path from the first
scatterer to the Xth, and another rotation operator
U(N~1) under which it evolves along the time-reversed
path. The interference between the final states will then
involve the matrix eleinent (s~U (N~1)U(l~N)~s).
Assuming that the orbital and spin parts are uncorrelat-
ed, the full cooperon is given by the product

Weak localization is a coherent backscattering effect,
due to interference between pairs of diffusive paths which
are related by time reversal. The classical velocity corre-
lation function for an electron at the Fermi surface,
which decays with the elastic-scattering time ~, is

C(t;x, x) =C, (t;x,x)C, (t),

C, (t) =
—,
' g (s~ Ut(N 1)U(1 N) ~s ),

S

where the overbar denotes the average over all pairs of
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paths of duration t, and the dependence of C, on t is
through X, the number of scattering events. The equally
weighted sum over initial spin states is appropriate for
the limit kT))Ace . However, the two terms in the spin
sum turn out to be equal, so that the final result is valid at
all temperatures. The normalization is chosen so that
C, = 1 when there is no spin rotation.

The operator U(1~N) is composed of a sequence of
small rotations

—(i/2)b ace & —(i/2)~y'a ('/2)~g a
U(1~N) —e ' e

Each individual rotation is infinitesimal because we re-
quire that the spin-precession rate and the two spin
scattering rates are much smaller than the elastic-
scattering rate, as is always the case in experiments. The
reversed operator involves the same set of infinitesimal
rotations but in the opposite sequence, and with the sign
of the spin-orbit rotations changed, because the electron
velocity has changed sign:

+(i/2)5( (T —(i/2ia( r t—.(i/2ib (Ttt)UN —+1 =e e e p ~ ~ ~

+(i/2)5 .a —(i/2)c a —(i /2)b. aug ~Xe e e . (6)
—(i/2)b. ace ~ —(i/2)s1. a —(&'/2)~1 a

x p e (4)

From the right, the first three factors are a spin-orbit ro-
tation from the first scatterer, a spin-Aip rotation, and the
spin precession during the first time interval ~ with b a
unit vector in the direction of the applied magnetic field.
We assume that the average over paths can be handled by
taking the components of the spin-orbit and spin-Aip-
rotation vectors to be mean-zero independent random
variables satisfying

To evaluate C, (t) it is convenient to introduce a
direct-product space lss'), with operators subscripted by
a operating on the first spin index and those subscripted
by b operating on the second:

C, (t) = ,' g &s—lUt(N 1)ls' &(s'l U(1 N) s )
S,S

=
—,
' g (ss'l Ut(N —+1)Ub(1~N)ls's ) .

S,S

g2 g2 g2 —g2 2 2 2 —2
ix iy iz ~ ix iy iz (5) We then have

+(i/2)b (a ab ~ & +(i/2)cN (a —ab (i/2)5N o +aba b p ~ ~ ~

+(i/2)b (oa ab u v +(t/2)&1 oa ab (~/2)51 oa+1 a b

Expanding each factor, averaging, and retaining only the lowest order in the infinitesimals yields N identical factors
and gives the result

(:,it)= —,'X(ss' sxp + —b (tr, —trs)ts t ——,'(a, —as) tlr„,'(a+trs—) t—lr„, s'sl .
SS

Here we have used t =X~, and the spin scattering rates have been defined as

N —
2 1 t X—

2 1Q2—
8 6~„' 8 6~f' (10)

with the numerical factors chosen to agree with previous definitions in the literature.
Equation (9) is easily evaluated if co& =0, for then the spin operator is diagonal in the coupled basis

lj m ),

(o..+orb)'Ijm &=4j(j+1)ljm &, (~.—ob) ljm &=[12 4j (j +1)]ljm &, —

and we find a standard result

t

3 '4 1 2 1 —(2/r )tC, (t) =—exp — — + — t ——'e
2 +so 3 +sf

The first term comes from the triplet (j = 1) diagonal matrix elements, and the second term from the singlet.
When the precession term is retained, evaluating Eq. (9) is more involved because the argument of the exponential is
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not diagonal in the
~ jm ) basis. However, it may of course be diagonalized by a similarity transformation, and then ex-

ponentiated. After some algebra we find the result

'4 1 2 1
C, (t) =exp — — +—37" 3 7.f

1 1
t +—

2 v'1 —y

2 1
exp

3

2 2 1

+sf 3 +so

1 &1—y
+sf

2 1 2—exp. — — +
+so +sf

2 1

3
1 &1—y

+sf
(13)

where

—CO2 P

1/r» —1/est
(14)

For co « ~1/r» —1/v;t~ we have y &&1 and Eq. (13)
reduces to Eq. (12), while for co~ && ~1/r» —1/r, t~ the
spin part of the cooperon becomes oscillatory: 1 1 1 —( 1 /ran+1/r&)t

C.'"(t;x,x) =— e
4~Dt A

(16a)

when co~ & ~1/r» —1/r, t~. For the case of quasi-two-
dimensional films, we therefore consider the magnetocon-
ductivity with the applied field in the plane of the film,
and for quasi-one-dimensional wires, we orient the field
along the length of the wire. For these cases the orbital
part of the cooperon is given by

4 1 2 1
C, (t) =exp — — + — t

3 Tso 3 T f
—(1/r~+1/r )t

C,' '(t;x, x)=- —e
~ 4+Dt s

(16b)

( 1/r„—1/r, t)
3
~ COp

Xexp
2 4+ t sin(co t) .

+sfso
(15)

D eB
2~ A'

2

(17a)

where A is the cross-sectional area of the wire and s is the
thickness of the film. For a wire with a circular cross sec-
tion, the dephasing rate 1/~~ due to the applied longitu-
dinal field is given by

According to Eq. (1), the conductivity is proportional to
the Fourier transform of the cooperon, so there will be a
peak in the conductivity at u=co .

while in the two-dimensional case, the magnetic dephas-
ing rate is

2

III. LONGITUDINAL MAGNKTOCONDUCTIVITY 1 D eBs
3

{17b)

To observe the resonance at co, it will be necessary to
reduce as much as possible the efFect of the applied mag-
netic field on the orbital part of the cooperon, or else the
weak localization correction will no longer be substantial

The conductivities, computed form Eqs. {1) (with C,
replaced by C), (13), and (16), may be expressed in both
cases cn the form

5 ' '=F'"' + —Eco+ +1 1 . 4 2

so sf

1 1+—
2 v'1 —y

F(d) 1 + 1

7 p

2 1 2—in+ — +
+so +sf

+—
+so +sf

F(d)]. 1 1 1

2 v'1 —y

2 1 2—i co+ — +
+so +sf

2 1 1

+so +sf
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where 1 1 1 2 4+ + +
3+so 3&s

(20)

e 1P(11( )
— 2 QD —I/2

h

(19)

In terms of the dimensionless frequency Q=(co —co )r',
the resonant terms in the conductivities are

1 e 1F' '(z) = +— —1n(rz ) .
h s

V Dr f111(Q),e 2
1 (1/r„—1/r, r)

h A —Q7
(21a)

In the two-dimensional case the result may be compared
with expressions obtained earlier by Maekawa and
Fukuyama using the impurity-diagram technique. They
are found to agree.

Now taking the limit co~ &&
~
I/r„—I/r, &~, we examine

the resonant terms. The net scattering rate 1/~' which
determines the linewidths is given by

with the line shapes

(21b)
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1 —iQ
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In Fig. 1 we plot the real and imaginary parts of the line
shapes.

The features of the spin precession resonance may be
read from Eqs. (20)—(22). For the resonance to be sharp,
in addition to the requirement that co„))~1/r„1/r, r~,

—
it is also necessary that co &) 1/~', which means that the
precession rate must be greater than all of the other
scattering rates: spin-flip, spin-orbit, inelastic dephasing,
and field dephasing. The sign and magnitude of the peak
depend upon the factor (1/r„—I/r, &)/co, and the reso-
nance vanishes when there is no spin scattering. This
is to be expected because without spin scattering both
paths are subject to the same rotation, and
U (%~1)U(1~N)=1. A distinctive feature of the reso-
nance line is that the peak occurs in the imaginary part, a
consequence of the sin(co t ) factor in Eq. (15).

IV. CONCLUSIONS

-2
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FIG. 1 Real (solid) and imaginary (dashed) parts of the spin
precession line shapes for (a) quasi-one and (b) quasi-two-
dimensions.

When the spin-precession rate co exceeds all other
scattering rates (except the elastic rate I/r) the ac con-
ductivity will develop a resonance at co=co . The ques-
tion remains as to whether this effect can be observed in
realistic experiments.

We assume that one would measure the ac conductivi-
ty at a fixed frequency, and sweep the applied field
through the resonance. If the frequency chosen is too
low, the on-resonance precession rate will not exceed
1/~~, 1/~„, or 1/~, q. If it is too high, then the on-
resonance precession rate will be less than 1/~z ~8 .
Low-Z materials, such as lithium and magnesium, are at-
tractive because they have long spin-orbit scattering
times. Lithium films reported by Sharvin, ' which have
spin-orbit and spin-flip scattering times greater than 10
ns, are an example of a suitable material. With films 20
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nm thick, one could obtain co ~'=10 at co =2m X1 GHz
and T=1 K. To avoid suppression from transverse mag-
netoresistance, in the two-dimensional case it would be
necessary to align the magnetic field with the plane of the
film to =0.5', but in the one-dimensional case accurate
alignment is not necessary.
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