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We study the orbital magnetic response of mesoscopic metallic systems. The response in singly (Lan-
dau) and multiply (Aharonov-Bohm) connected geometries is considered. It is argued that the absence
of phase and energy relaxation at the sample boundaries in a typical magnetic measurement has dramat-
ic consequences for the magnitude and the scale of variation of the response with the magnetic flux. We
identify several regimes, depending on the strength of the magnetic field and the degree of disorder, and
investigate the response in each of them. In particular, we discuss the mesoscopic fluctuations of the
response and its average properties including the interaction-localization correction.

I. INTRODUCTION

Quantum phenomena in disordered electronic systems
have been a topic of intense scrutiny in the past decade.
Their effect on electronic transport attracted most of the
effort. Initially, researchers studied the ensemble-average
properties of the systems, such as the weak-localization
corrections to the conductivity.! More recently, it has
also been realized that the same kind of quantum-
interference effects can lead to the sample-specific phe-
nomena, such as conductance fluctuations,? which were
called mesoscopic. Unlike kinetic properties, the quan-
tum effects on thermodynamic properties of disordered
conductors have only been of occasional interest, espe-
cially in the experimental area. Nonetheless, in the
theoretical area the subject has been addressed quite ex-
tensively by Altshuler, Aronov, and Zyuzin,® who evalu-
ated the interaction-localization corrections to the mag-
netic susceptibility and specific heat, and by Altshuler,
Khmelnitskii, and Spivak,*> who investigated the super-
currents in SNS junctions. For a long junction, the latter
problem is in one-to-one correspondence with that of
Aharonov-Bohm (AB) response. This problem can be
traced back to the pioneering works of Altshuler, Aro-
nov, Spivak, and Khmelnitskii,®’ who pointed out the
sensitivity of quantum-interference effects to the pertur-
bations at the sample boundaries, such as the AB flux and
the phase difference between the superconductors in an
SNS junction. Another seminal contribution, the theory
of level statistics in disordered metals, forms a foundation
for the understanding of mesoscopic thermodynamic
effects and is due to Altshuler and Shklovskii.® In the
past few years, interest in orbital magnetic response of
disordered metals has been revived in part by new experi-
mental effort.® For instance, some of the results derived
in Refs. 4 and 5 for the interaction-localization correction
and mesoscopic fluctuations have been reproduced in the
context of the AB response of thin metallic rings. !%!! Of
greater interest, in our view, was the realization of the
canonical nature of the system in a typical magnetic mea-

surement. The striking effect it can have on the AB
response has been first investigated numerically'>!* and
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subsequently analytically.'#!® Attempts to evaluate the
mesoscopic fluctuations of the Landau response to the
flux through metal (FM), as opposed to the AB case,
should also be mentioned. '°

The subject of this paper is the mesoscopic aspects of
orbital magnetic response of small metallic systems. We
point out the crucial distinction between transport and
magnetic measurements: while in the former case the
sample is in contact with electron reservoirs, in the latter
case it typically is not. This has major implications.
Indeed, a mechanism whereby the electron phase and en-
ergy relaxation take place in a transport measurement—
via inelastic collisions in ideal metallic leads (electron
reservoirs), is not ordinarily invoked in a magnetic mea-
surement. In other words, provided that scattering off
the sample boundaries is elastic, sample size L is no
longer a valid scale for the breakdown of phase coher-
ence. To emphasize this circumstance, in what follows
we shall consider the extreme quantum coherence limit,
L 2min§LT,L¢}, or ECEﬁD/LZSmax{T,T(;l}, where
L;y=V#D/T is the thermal length, L, is the phase
coherence length, and D is the diffusion coefficient. For
definiteness, it is assumed that min{LT,L,p} =Ly or
max{T,7, '} =T, which is believed to be true in metals.
Mathematically, E, appears as the effective level
broadening in the calculations for samples with open
boundaries,? meaning that at low temperatures sample
size would be the minimal effective phase coherence
length. This may not be the case for isolated samples. !
Whereas the fixed number of electrons, coupled with the
absence of energy relaxation in the system, has been em-
phasized!> !> by means of the canonical ensemble treat-
ment of orbital magnetic response, our emphasis is on its
intimate relationship to the issue of phase coherence of
an isolated sample. In particular, we establish the
significance of the magnetic field of strength H, such that
H.LL;~¢,=hc/e, which corresponds to the flux
through the sample, H,L?, of order ¢, ~¢o(L /Ly) <<,

It should be mentioned that the notion of the impor-
tance of the exact nature of the phase coherence breaking
mechanism in an isolated system versus the system at-
tached to electron reservoirs had been previously invoked
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in the context of absorption fluctuations by Serota
et al.'” They argued that the lack of phase relaxation at
the boundaries would lead to the order-of-magnitude ab-
sorption fluctuations, in contrast with the relatively small
fluctuations of the conductance (transmission). Further-
more, they showed that if the sample is weakly coupled
to the reservoirs via thin leads, the typical period of the
fluctuations could be much less than the flux quantum ¢,.

In what follows, we study the Landau (FM) and the
AB orbital magnetic responses. The model for the form-
er will be a disk and for the latter a narrow ring. Both
are taken to be of the same circumference L and are
placed in the uniform perpendicular magnetic field. We
restrict our discussion of the simply connected geometry
(disk) to weak magnetic field such that ¢ ~BL%< ¢, Due
to gauge considerations, the AB response is periodic with
the period ~¢,. It turns out that, aside from the periodi-
city of the AB response and certain geometrical factors,
in quantum coherent samples the Aharonov-Bohm and
the Landau responses are of the same order of magni-
tude. Clearly, this is because the orbital magnetic
response is the response to the vector potential, under-
scoring its quantum-mechanical nature. However, the
AB effect is more sensitive to the destruction of phase
coherence; the absence thereof along the paths surround-
ing the AB flux leads to the exponential decay of the
response as exp( —L /L). In contrast, the FM response
decays as a power of (L /L).

The conventions used in this paper are as follows. For
simplicity, we shall consider only the two-dimensional
samples and three-dimenstional slabs of thickness a << L.
We shall always refer to the total magnetic moment of
the sample and the magnetic susceptibility per unit
volume (area). Denoting N(0) the single-particle density
of states at the Fermi level and YV the volume (area) of the
sample, we shall make use of the following parameters
defining the energy and length scales in the system in ad-
dition to E_, temperature 7, and sample size L: the
elastic-scattering time 7, the average interlevel spacing
A=[N(0)¥]"!, the cyclotron frequency w,=eH /mc,
the electron mean free path ! =vp7 (vp is the Fermi ve-
locity), the Landau orbit size Ly =(#c/eH)!/?, and the
cyclotron radius L =vg/wc.

This paper is organized as follows. In Sec. IT we give a
qualitative outline of our central results. In Sec. III we
derive the gauge-invariant perturbative expressions for
the diffusion propagators of an isolated system subject to
the magnetic field. In Sec. IV, we evaluate the rms fluc-
tuation of the response. Sec V is devoted to the average
response of an isolated system. In Sec. VI we calculate
the interaction-localization correction to the average
response. Discussion in Sec. VII includes a simple repre-
sentation of our results in terms of the dimensionless con-
ductance and addresses their experimental implications.

II. QUALITATIVE CONSIDERATIONS

Consider first the FM response. In strong magnetic
fields, w-7>>1 or L <</, energies are grouped into Lan-
dau levels, leading to the de Haas—van Alphen (dHvVA)
oscillations of the magnetic moment. In two dimensions
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(2D), for instance, the differential susceptibility and the
envelope of the dHvA oscillations of the sample moment
are given by!®

XdeAZXL(EF/ﬁwC)Z and MdeAz/‘LB(eF/A) ’ (1)

respectively. Here pugz=e#i/2mc is the Bohr magneton
and x; = -—%,u%,N(O) is the Landau susceptibility. Physi-
cally, the above expression for the magnetic moment in-
dicates that each state contributes ~up to the magnetic
moment. Averaging over the period of the dHVA oscilla-
tions yields'® (xug,a)=x.. Recently, predictions of
mesoscopic fluctuations (Akkermans and Shapiro!®) and
the AB oscillations'® of the magnetic moment, superim-
posed on the dHVA oscillations, have been made. How-
ever, only the case of a few Landau levels, fio. ~¢f, was
discussed so that presently it is not entirely clear how
these effects match the mesoscopic fluctuations at
®c7<1 (see next paragraph), at which point the dHVA
oscillations fall off exponentially.

In the opposite limit, oc7<1 or Lc >/, the structure
of energy levels is determined by the impurity
configuration. As a result, the orbital response will fluc-
tuate from sample to sample. At present, the fluctuation
pattern is not fully understood in the case of ¢ >>¢,, or
L >>Ly. However, the result for the disorder-averaged
susceptibility,?® {x) =y, is well established and applies
equally to canonical and grand canonical ensembles.

In the linear-response regime for the sample-specific
response, identified as ¢ < ¢, or L < L, the evaluation of
the rms fluctuation of the magnetic susceptibility yields

[—In(¢./do)]'?, ¢<¢,
SX=ILlWeD (4807172 854, )

which translates to M ~pug(«pl)($/¢,) for the rms fluc-
tuation of the sample moment. The significance of the
flux scale ¢,, mentioned in the Introduction, is already
clearly seen in the above equation, albeit through a weak
logarithmic dependence. The existence of such a scale in
an isolated sample is manifested even more dramatically
in the average response. This is because on the average
the response is due to a single level, closest to the average
chemical potential, whose dependence on the flux is
directly related to the repulsive level correlations trying
to avoid crossings.!>” !> The latter can be expressed in
terms of the correlations of the chemical potential (an in-
tensive quantity), in contrast with the correlations of the
free energy ( an extensive quantity) which determines the
fluctuations of the response. Consequently, the depen-
dence on the length scale L;>>L is much more pro-
nounced.

Translating these ideas into an analytical calculation,
we show below that the average magnetic moment grows
linearly along the magnetic field (paramagnetically) for
¢ < ¢, until it peaks at ¢~¢,. The average susceptibility
in this regime is found as

(2)

() =~ Ix kgl XA/T) , 3)

which saturates to x;(kpl) at T=~A. The maximal mo-
ment is then (M) ., ~{x)é.. For the magnetic field
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such that ¢=¢., the moment falls off universally as
(M) ~ug(dy/¢). It will match (M ) ~x, ¢ at ¢ =¢,, in-
dicating a crossover to the diamagnetic Landau suscepti-
bility (see above). The paramagnetic sign of the suscepti-
bility can be attributed to the ability of an electron to
take advantage of the potential energy of impurities (or
the confining potential at the sample boundaries of clean
samples). It should be emphasized that the fluctuation
being larger than the average response points to the ran-
dom sign of the response as a function of the impurity
configuration.

An interesting question of the “clean-limit” behavior
arises when / ~L. Clearly, this condition applies to sam-
ples with a great deal of variety in sample surfaces, in-
cluding rough surfaces considered by Gor’kov and Eliash-
berg,® smooth surfaces with chaotic scattering,?! such as
elliptic billiards, and smooth surfaces with inte-
grable underlying classical dynamics such as the round
disk. Since the latter have zero measure among all possi-
ble surfaces, the condition / ~L does not by itself have
any bearing on the applicability of Dyson statistics to the
electron energy levels in the presence of random (chaotic)
scattering. On the other hand, it is the energy-level
correlations® in random systems, described by Dyson
statistics, which are responsible for the mesoscopic effects
in discussion, both average and sample specific. As a re-
sult, we find that &y~ |x.|(kpL)~I|x.IN'? and
<X>~|XL|N1/2(A/T), where N is the total number of
electrons in the system. At zero temperature,
QO ~Ix, N2

A recent numerical study?! of the diamagnetic
response of an elliptic billiard with a fixed aspect ratio
clearly points towards Dyson statistics for the level struc-
ture in the system in a sufficiently strong magnetic field.
It was found that the magnetic moment shows large fluc-
tuations in magnitude and sign with the number of elec-
trons. We point out that even for integrable systems
breaking of rotational symmetry leads to the paramagnet-
ic?? (second-order term in perturbation series) term in the
response known as the Van Vleck polarization
paramagnetism. The diamagnetic term is the usual
Langevin response'® which is due to the shrinkage of or-
bits in the magnetic field. In disordered metals, the rela-
tive magnitude of the Van Vleck and Langevin responses
varies from sample to sample and the already large
response, < N!/2, of a typical sample is a result of near
compensation of these two contributions.

Turning to the AB case, we note that for ¢ < ¢, the
magnitude of the response is of the same order of magni-
tude as the FM response aside from the geometrical fac-
tors, which can be traced to the conductance and will be
discussed later, and a greater sensitivity to the destruc-
tion of quantum coherence, which was already mentioned
above. On the other hand, it is well known that the AB
flux can be gauged away from the integer number of flux
quanta. This leads to the periodic oscillations of the per-
sistent current. The mesoscopic nature of the response in
quantum coherent rings is reflected in this case by the
random phase shift®> from sample to sample, in addition
to the fluctuations of amplitude. The average persistent
current oscillates with the period of half the flux quan-
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tum since it is described by the Cooper propagator with
the charge 2e. It should be noted that if the rings are at-
tached to electron reservoirs (leads), the average AB
response will fall off exponentially.”> An important ob-
servation concerning the experimental situation has to do
with the magnetic field penetrating the annulus (metallic
part) of the ring. In this case, one should take into ac-
count the FM response of the annulus, adapted to its par-
ticular geometry.

Finally, in what follows we shall also consider the
interaction-localization correction to the average
response. We show that the magnetic moment of singly
connected samples of oblonged shapes does not scale with
the area of the sample. The physical reason behind this
phenomenon is the sensitivity of the Cooper-propagator
eigenvalues to the boundary conditions in a quantum
coherent sample. It can have remarkable consequences
such as the larger magnetic moment in a sample of small-
er area subject to the same flux. Alternatively, the two
samples of unequal areas can have equal moments in the
magnetic fields of equal strength. It must be stressed that
this is the average effect and as such is amenable to exper-
imental verification on a large number of identically
prepared samples. We also point out that whereas the
average response of noninteracting electrons peaks at the
flux of order ¢., and is repeated periodically in the AB
case, the interaction-localization correction depends very
weakly on ¢., suggesting that the two effects can be
separated experimentally at sufficiently low temperatures.

III. COOPER AND DIFFUSION
PROPAGATORS IN ISOLATED SAMPLES

In this section we present the perturbative derivation
of the particle-hole propagator in the presence of magnet-
ic field, which reduces to the evaluation of the shift of the
energy eigenvalue. In zero field, the energy is
[w,, +E({n;})], where w,, =2mmT is the Matsubara fre-
quency and the function &({#n;}) depends on the sample
geometry.? In a rectangular, for instance, it is given by

&({n;})=#Dw*(n}/L}+n}/L}) .

As was mentioned in the Introduction, a typical magnetic
measurement does not involve sample contact with elec-
tron reservoirs. Therefore phase and energy relaxation
will not necessarily take place at the sample boundary, as
would be the case in a typical transport measurement. In
particular, the electron may still retain its quantum
coherence after collision with the sample boundary.
Mathematically, this fact is reflected by the existence of
the “zero mode” of the propagator,!” {n;} ={0}. More-
over, at very low temperatures the zero mode gives the
largest contribution to the response. Accordingly, our
calculation is limited here to the evaluation of the zero-
mode eigenvalue shift by the magnetic field.

Consider the Cooper channel as it appears in a locali-
zation correction.! The crucial observation for the evalu-
ation of the zero-mode energy shift by the weak magnetic
field is that the usual stationary state perturbation theory
has to be modified here to account for the boundary con-
dition of zero covariant derivative for the Cooper propa-
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gator.> The latter circumstance ensues the following
consequences. First, in integrations by parts, one has to
keep track of the surface terms and, second, the higher-
order corrections cannot be expanded in terms of the un-
perturbed Cooper propagators which satisfy the Neu-
mann boundary conditions. As a result, we obtain that
the first-order correction to the energy of the zero-mode
Cooper propagator is zero, as is expected on the basis of
time-reversal symmetry invariance. For the sake of the
argument, we express the second-order correction in the
Schrodinger equation notation:

eti
2mec

2
86,= %delwoi%tlz , @)

where 1,=%Y"!/? is the normalized zero-mode ‘“‘eigen-
function,” A = A+ (ic /ey,)Vy,;, A is the vector poten-
tial, 1, is the first correction to the zero-mode ‘“‘eigen-
function,” and A is such that V- A=0 and
n-A ibouﬂdary=0. Since v, is a constant in space, we con-
clude that A is actually the vector potential in the
Coulomb gauge tangential to the boundary. This, and
the fact that VXA =H, will define A uniquely as a curl
of some function.?* It should be pointed out that 1, is all
but irrelevant for this derivation which should be con-
trasted with an ordinary case of a Schrodinger equation
with the Dirichlet boundary conditions, where the first-
order correction to the lowest zeroth-order eigenstate ad-
mixes with all zeroth-order eigenstates and the eigenvalue
correction is actually evaluated in a selected gauge.
Here, the gauge A “selects” itself by forcing ¢, into a
gauge transformation and no actual calculation is per-
formed with the gauge A. The significance of the gauge
in which the vector potential is tangential to the surface
is tied to the condition of zero current through the
boundary. The same conclusion is drawn via minimiza-
tion of the energy with respect to the gauge.

It is clear that for a round disk, subject to the field per-
pendicular to the surface, the correction given by Eq. (4)
will be expressed in terms of the radial gauge. Returning
to the diffusion equation notations, we obtain the follow-
ing expression for the eigenvalue shift of the Cooper
propagator (A=1):

86,=75'=2mE,(2¢/d,)* , (5

where E.=D /L? and L is the circumference of the disk.
The generalization to an ellipse with the axes L and L,
is obvious upon realization that A=H{L %,
—xL 2} /(L7?+L f), whereof Eq. (5) is recovered if
the relation L ~[27 (Lf +Lﬁ )]1/2 for the disk circumfer-
ence is used. In a similar fashion, we can evaluate the ei-
genvalue shift for the Cooper and diffusion propagators
encountered in the cumulants? describing the correlations
of the mesoscopic fluctuations. As a result, we find the
following expression for the eigenvalues:

' =2mE.(2¢/¢,) , 6)
Ot Thys Ty, =2mE($1/60) (6"

@, +'r,}1’

where? ¢, =¢,+¢, for the Cooper and diffusion propaga-
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tors, respectively. Unlike the FM case, the problem of
the eigenvalue shift by the AB flux is exactly solvable for
a thin metallic ring.® Neglecting the contribution of the
transverse mode, the eigenvalue is defined by the energy
of the longitudinal mode, Dgj, where g,=(27/L)(n
+2¢/¢o) or qy=02m/L)n+d./¢y):

@, F4T’E (n +24/$,)? , (7)
©,, F4TE (n+¢ /¢y . (7)

As was mentioned in the Introduction, the problem of the
response of a long SNS junction to the phase difference ¢
between the superconductors can be exactly mapped to
that of the AB response of a thin metallic ring via the
substitution @<«>27¢ /¢y, 2L<>L.

IV. MESOSCOPIC FLUCTUATIONS
OF ORBITAL MAGNETIC RESPONSE

The problem of mesoscopic supercurrent fluctuations
in a disordered SNS junction has been solved in Ref. 5.
For a long junction, this problem is equivalent to the
problem of the AB persistent current fluctuations in a
thin metallic ring. In this section we evaluate the fluctua-
tions of the Landau response in a singly connected
geometry. The calculation is based on the following ex-
pression for the correlation function of the thermo-
dynamic potential:’

(8QUHSUH))Y=V2 [ [dede,[ee,f(e))f (e))
X{v(e (e, ],
(8)

where f(g) is the Fermi distribution function and the
contribution of the zero mode to the correlation function
of the density of states is given by®

2
<v(£1)v(82)>=;:2—cv; %Re[—i(sl—52)+7,",li]_2 ,  (9)

where T;,Jlr =27"E (¢, /¢, is taken from Eq. (6'), and s

is the degeneracy, for instance, of spin degrees of free-
dom. Equation (9) should be compared with the similar
expression® for the AB case. Indeed, with the help of Eq.
(7') we obtain

SZ
<U(51)U(82)>:W

X § > Re[ —i(g;—¢g,y)

n=—owt *

+72E (n+¢y/d)?] 2.
9"

Converting the integral in Eq. (8) into Matsubara sums,
we obtain with the help of Eq. (9)
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1
(8Q(H | )8Q(H,)) = 72—77—4277T
X i > 1
" o, 1yt )?
1
, (10)
(a)m+71}1 )?

where we have kept only the sum which gives the largest
contribution at low temperatures. The expressions for
the correlation functions of the magnetic moment and the
susceptibility are obtained by successive differentiations
on H; and H,. The variances of these quantities are ob-
tained by setting H, = H, after the differentiation.? Fol-
lowing this scheme, we find

2

2
(8M2) =512 (e,7) In(E, /T*)
o

0

*=max{T,(21T'rH)_1} , (11)

where E, was used as the upper cutoff of the logarithmic
divergence. This result applies to 2D samples and 3D
slabs. From Eq. (11), we obtain for the variance of the
susceptibility,

27s

2
X3 (epT)In(E, /T*) . (12)
T

(8y?) =

For a 3D slab the above result should be multiplied by
(m/kpa)”%. Notice that the logarithmic dependence
changes its form for the flux given by

be ~do(T/E)*=doL /Ly <<y . (13)

The significance of this flux scale is due to the absence of
phase relaxation at the boundary of an isolated sample,
which is mathematically represented by the zero-mode
contribution. It corresponds to the field strength such
that H,LL;=~¢,. Its role is especially dramatic for the
disorder-averaged susceptibility (see next section).

The linear dependence of the rms fluctuations on the
flux, predicted by Eq. (11), ends when the flux penetrating
the sample becomes of order of the flux quantum, at
which point 75!=~E, and (8M?)=~(3s?/m")u}(ep7)’.
Further calculation requires taking higher modes into ac-
count, as well as the use of a modified form of the propa-
gator, and has not been fully completed at present. Thus
it is not entirely clear whether the rms fluctuation satu-
rates at the above value or scales as a power of the sample
area.

Comparing our results and the results of Ref. 5 for the
supercurrent fluctuations is an SNS junction, as translat-
ed to the persistent current fluctuations in a ring, we em-
phasize that in Ref. 5 the Cooper channel was omitted
under the assumption of time-reversal symmetry break-
ing. Its contribution is easily recovered in a general situ-
ation from the expression for the diffusion channel via the
substitution ¢—¢'—>@+¢’'. Converting the expression
for the current into the expression for the magnetic mo-
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ment, we arrive at Eqgs. (11) and (12) up to a numerical
coefficient.

In concluding this section we would like to comment
on the previous attempts of evaluation of the fluctuations
of the FM (Landau) response.'® In the first two papers
on the subject, the reciprocal space formalism has been
used. It leads to erroneous results in a mesoscopic situa-
tion since the g vector, appearing in the cross product for
the magnetic field with the vector potential, couples to
the electron momenta which are quantized by the sample
size. In addition, the zero-mode contribution has been
omitted in these calculations as well. Serota and Oh!®
have realized the importance of the zero-mode contribu-
tion when there is no sample contact with electron reser-
voirs. However, since they used the reciprocal space for-
malism, they found the variance to be (g£;7)* larger than
the correct answer in Eq. (12). Akkermans and Shapiro!®
have correctly used the real-space formalism. If evaluated
properly, the zero-mode contribution (suggested by Sero-
ta and Oh'!%) in their paper would be in complete agree-
ment with Eq. (12).

V. AVERAGE RESPONSE
OF A CANONICAL ENSEMBLE

In recent papers'?”!° it was shown that in a canonical
ensemble the AB (persistent) currents have, on the aver-
age, the paramagnetic sign. This phenomenon has been
attributed to electron level correlations (Dyson statistics)
in a disordered metal.® The physical picture emerging
from these papers can be summarized as follows:
Whereas a standard derivation of the response function
assumes a fixed chemical potential, it would be appropri-
ate only in a circumstance of a conductor connected to
electron reservoirs with well-defined chemical potentials.
However, in a magnetic response measurement the sam-
ple is typically detached from electron reservoirs there-
upon leading to quite dramatic consequences in a mesos-
copic situation. The difference between the grand canon-
ical and canonical ensembles is that in the latter the total
number of electrons in the system remains constant,
while in the former the electron at the Fermi level can
leave or enter the sample once its energy crosses the aver-
age chemical potential with the change of the AB flux.
Consequently, whereas the average AB current in a grand
canonical ensemble is exponentially small, '° in a canoni-
cal ensemble its maximal value will be of order!*
(eA/#)E,/T)* when T>>A, or (eA/#NE./A)'?
when T'<A. Obviously, on the average it is a single level
current. It has the same (paramagnetic) sign for the lev-
els crossing the chemical potential from above and below
since those levels have slopes of the opposite sign as a
function of the AB flux.?® Since the average interlevel
spacing is of order A, the maximal current is ~A/¢,
(A=c=1), where ¢, is given by Eq. (13). The absence of
energy relaxation at the boundary of an isolated sample,
emphasized in Refs. 1215, parallels the absence of phase
relaxation,!” provided the reflection from the sample
boundary is of elastic nature. As a result, the average
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current assumes its maximal value when the flux becomes
of order ¢, << ¢, (see Secs. I and IV). This translates into
the magnetic moment M=~uz(2¢/¢ NE,/T)"?
~pp(2¢ /P (E./T) and the susceptibility y=~x;(E./
T). The same argument applies, of course, to the FM
response as well.

In this section we derive the exact expressions for the
average magnetic moment in both the AB and FM cases.
As was discussed above, for an isolated sample the
derivation in the FM case can be limited to the zero-
mode contribution. As a result of our calculation, we
find that above ¢, the magnetic moment falls off as ¢ 1.
In the AB case, it is driven to zero at ¢,/2 due to periodi-
city imposed by gauge invariance. In the FM case, it falls
to the value of order }; between ¢, and ¢,/2 and satu-
rates to exactly the Landau diamagnetic®® value for
¢ >>¢d,. Since the average susceptibility is A/T times
smaller than the root-mean-square fluctuation of the sus-
ceptibility, found in the preceding section, we conclude
that for a given sample, that is, specific impurity
configuration, the susceptibility can have either the di-
amagnetic or paramagnetic sign, with the average ten-
dency towards the latter. However, the flux scale of ¢, is
not pronounced in the sample-specific response, the typi-
cal distance between peaks and valleys being of order ¢,
Although the effect of having a fixed number of particles
was not considered in the preceding section, its contribu-
tion to the fluctuation is of the order of the average sus-
ceptibility and is therefore smaller than the one found
there.

We begin with the derivation of the paramagnetic com-
ponent of the AB (persistent) current in a narrow ring.
Our derivation will largely follow those of Refs. 14 and
15. There, it was shown that the average free energy F of
the canonical ensemble can be expressed in terms of the
average free energy ) of the identically prepared grand
canonical ensemble as

32Q

F=Q—1
23(u)?

((Bp)*)=Q—LA71((8u)?) . (14)

In Eq. (14), {u) is the average chemical potential of the
canonical ensemble, which is also the true chemical po-
tential of the corresponding grand canonical ensemble,
A=[N(0)¥]™!, and ((8u)*)={(u—{p))*) is the mean
variance of the chemical potential of the canonical en-
semble given by’

(B =[NO)]2 [ [dede,(v(e)n(e,))
X f(e)f (&5) . (15)

Combining Egs. (9'), (14), and (15) and setting ¢, =¢, in
Eq. (9'), we obtain, upon differentiation on the flux, the
following expression for the persistent current:
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:ﬁgf [ deide,f(e)f (&)

X ¥ Re

n=-—oo

(81—82)

+idE, m?

ngqu—Z
+¢0H '

(16)

Converting the integral into a Matsubara sum and
evaluating the sum on n first?® we find

2 in(47d /dy)
r=eas — 0 9/ o , (17)
27% cosh§—cos(4md /d,)

where £=(27T /E.)'"*~(L /L)"? is a small parameter.
Multiplying the current in Eq. (17) by the enclosed area
A=L?/47, we obtain the magnetic moment of the ring
of width a << L,

_ L s? sin(4m¢ /)
M=ty coshé —cos(4md /dg)

(17"

The moment of the disk is evaluated in the same fashion
[using Eq. (9)], and is given by

s?A 977" ™ Ta'

" 4x? OH fo sinh(rx ) XP | TX (18)
2

2 |20

B 3 bo

2
© - 47324 /dy)?
X -_— —
f 0 dx sinh(mx ) xp * §2 ’

(18"

where Eq. (5) is used for 75!. For 3D slabs, the expres-

sions in Egs. (17’) and (18’) will be multiplied by (7 /kga).
Equations (17) and (18) are obtained under the assump-
tion, held throughout, that T >>7_ 1, T, being the dephas-
ing time. In general, we have §,‘=[(27'1'T+'r‘;1)/Ec]1/2
and the exponent  in Eq. (18) reads as
exp[ —x (75" +7,")/T].

The magnetic moments of the ring and the disk, given
by Egs. (17') and (18), are plotted in Fig. 1 for £=0.5, 1,
and 2, respectively. Notice that the maximum of the mo-
ment shifts towards the origin as the temperature
reduces. In fact, the maximum serves as the end point of
the linear-response regime and is reached at ~¢,.. Based
on the form of the eigenvalue in Eq. (5), this can be anti-
cipated in the FM case. To gain a better insight in the
AB case, we notice that even in the form of Eq. (16) the
AB current is clearly periodic with the period of half the
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flux quantum. Therefore, upon taking the Fourier trans-
form, we can eliminate summation on n by means of ex-
tension of the range of integration on ¢ to infinity.
Differentiating on the flux, we obtain the following ex-
pression for the AB current:

24
o

Imz—zeA——f d¢exp i2mm

Aside from the factor-of-2 difference in the coefficient in-
side the square brackets, the energy integral in Eq. (20) is
identical to that found in the expression for the zero
mode of the disk. Neglecting the Cooper-propagator
dependence on ¢ for 2¢ < ¢, and taking the integral, '* we
find

I A(s?/2mt)exp(—mE) , 1)

m

meaning that the sum in Eq. (19) is effectively restricted
to £ ! terms. Consequently, the sine can be expanded in
Eq. (19), resulting in the following linear-response expres-
sion:

=~e S —Q “’”é

resgs 3 oo | ¥

=eA ;22 522 217? §"1—‘E (22)
0

which is confirmed by the expansion of Eq. (17). The
current peaks to its maximal value of the order of
eAETI=A/p, at 2¢~¢,.

Beyond the linear-response regime, 2¢ >>¢,_, the mag-
netic moment falls off as ¢ ! barring the sine dependence
in the AB case. For the FM case, for instance, it is given
by

s A 5 o
27% ugH b 27 ¢

The result of Eq. (23) applies until the flux through the
sample becomes of the order of the flux quantum. To un-
derstand what happens in even stronger fields we first
note that in the process of derivation of Eqgs. (17) and (18)
we have neglected azﬂ/aHzmexp(—l/L) 1n the AB
case” and V~13?Q/8H?=y, in the FM case,? respec-
tively. The latter, however, will be the only surviving
contribution to the FM susceptibility for 2¢ >>¢, since
the Cooper channel will be suppressed and the effects
considered in this section no longer survive. As for the
persistent current, its dependence on the flux will be
periodically repeated with each half the flux quantum, as
is seen in Fig. 1.

To stress the role of the flux ¢, in the problem of aver-
age response, we calculated the correlation function of
the chemical potential. For a disk, for instance, it is
given by

M=ug (23)
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9
gf [ dejde,f(e)f(e))Re

S

=1 0

I= ¥ 2I,sin [27rm%¢é’ , (19)

where the current harmonics are given by

29

(e;—¢,)+idE. 7
bo

21-2
} | 20

I
([8,u(¢)—8,u(0)]2)=%{4[C+¢(§)+§¢'(§)]

—[C+y45)+4Ey'(48) ]},
(24)

where §=27%$ /¢, )% 1 is the digamma function, and C
is Euler’s constant.?® Here, the right-hand side scales
linearly with § for ¢ <<¢, and saturates to the In depen-
dence at ¢ =¢,.

Moment (disk)
6

Flux

Moment (ring)
6

A A A
Y

FIG. 1. Leading contribution to the average magnetic mo-
ment of a ring of thickness a <<L and of a disk of equal cir-
cumference in units of p(s*/7)(L /4ma) and pg(s?/7), respec-
tively; £=0.25, 0.5, and 1, respectively [see Egs. (17) and (18)].
The moment of the ring is actually bigger due to the smallness
of its conductance in the factor (L /4mra)~' (see Sec. VIII for
the discussion).
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VI. INTERACTION-LOCALIZATION CORRECTION

The problem of interaction correction in the Cooper
channel to the orbital magnetic response, raised initially
in the context of superconducting fluctuations, was first
applied to the normal metals by Aslamazov and Larkin.?’
Subsequently, their results were generalized from the
point of view of weak-localization theory.>*?® For in-
stance, the evaluation of the magnetic moment in Ref. 3
yields the following result:

%‘S—ln[ln( T,/T*)/In(T,7)]
0

= — 2 (epr) 2 n(T*r) (25)
9 $o

MZ%MB(EFT)

where T,=¢gexp(1/A) for A>0 (repulsive interaction)
and T,=wpexp(1/A) for A <O (attractive interaction),
op is the Debye frequency, |A| <1 is the dimensionless
interaction strength, T*=max{T,Qg/27}, and® Qg
=2eDH. Equation (25) yields y~Ax(exm)In(T*7) for
the magnetic susceptibility. This can be understood as
follows. A localization correction should always have the
smallness of (x7)~!. On the other hand, the diffusion
equation for the Cooper pair is formally equivalent to the
Schrédinger equation with the “mass” (2D)”!, which is
(ep7) times lighter than the electron mass. Since the sus-
ceptibility is proportional to the squared Bohr magneton,
which is inversely proportional to the mass, this factor
alone yields the largeness of (ex7)%. The overall effect
has, therefore, the largeness of (gx7), that is, it will be
larger in cleaner systems.

Equation (25) and analysis of Ref. 3 in general applies
to the case when L;<L. Turning now to the case of
quantum coherent samples, L < L, we begin our analysis
with the AB response. Converting the results of Ref. 4
for SNS junctions to the AB notations, we find, after per-
forming a few simple mathematical manipulations, the
following expression for the persistent current:

s . @ x %sinhx
=-—\eE_sin(47dy/P) dx
T ¢ méo/$ f§ [coshx —cos(4m¢ /d,) 1
(26)
or in terms of the magnetic moment,
M= —S—ZKuB(sFT)sin(4v¢/¢o)
2
0 2 i
X [ “dx X sinhx 7. (26')
§ [coshx —cos(4md /d,)]

In Fig. 2, we plot the magnetic moment for £=0.003,
0.03, and 0.3, respectively. It is clear that except for very
small flux values, the curves are indistinguishable. This
should be contrasted with the average response of the
noninteracting electrons (see preceding section) where we
found dramatic changes at the flux scale of ¢, ~ £¢,,.

Next, we consider the FM case for the disk shaped as
an ellipse. Using Eq. (3) and the remark on the ellipse
thereafter, we obtain the following expression for the
magnetic moment:
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M=— Syt 20 Dby ey
UB\EFT L +L
=max{T,(1r'rH)_1} . @7
Taking L, =L, we see that this result matches Eq. (25)

at 2¢ ~¢,. Comparing Egs. (26) and (27) we see that the
AB and the FM results are of the same order of magni-
tude. A very interesting situation develops, however, for
a highly anisotropic sample, L, <<L,. In this case, the
expression for the magnetic moment is simplified as fol-
lows:

=_i 2¢ Ly *
M= - 8FT) o L” n(T*r)
2
= —2sAug(epT) 4 “In(T*7) , (28)
0

that is, the moment does not scale with the total area of
the sample. Clearly, it is a quantum mesoscopic effect
which is due to the sensitivity of the magnetic response to
the finite-size eigenstate of the Cooper propagator: the
eigenstates adjust to the change of the sample area in
such a way that total response remains virtually
unaffected. This result applies to the response of a thin
metallic ring due to the field penetrating the metal: it
shows that the ratio of FM to AB response is given by the
squared ratio of the ring thickness to its circumfer-
ences.®! Equation (28) is valid at least until the energy

Moment (ring)

N

Flux

24+

Moment (ring)

0.6

0.5

0.4

Flux
0.0005

0.001 0.0015 0.002
FIG. 2. AB interaction-localization correction to the magnet-
ic moment of a thin ring in units of Ay (s /27%)(ep7); £=0.003,

0.03, and 0.3, respectively [see Eq. (26')].
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shift, 75;'=4m*DH*L?¢, %, becomes comparable to the
distance to the nearest Cooper-propagator eigenstate,
D/L |2| As anticipated, this condition coincides with
2¢=¢,.

Historically, 75 ' in the Cooper propagator was first in-
troduced by Altshuler and Aronov,* who studied the lo-
calization corrections to the conductivity of a 2D film in
the longitudinal magnetic field. A side view of such a
film would look like a quasi-1D strip. They assumed,
therefore, that. the longitudinal spectrum to be continu-
ous, qu, whose shift in the field is uniform and is due to
the transverse mode. They used the gauge A= {Hy,0,0}
and found that in a sample of transverse size L, ( from
—L,/2 to L, /2, so that the vector potential is zero in
the middle of the sample) the energy shift due to the
lowest eigenstate is given by 75'=(47%/3)DH?L%¢; >
This should be compared with 75! for the ellipse. Re-
markably, the gauge used in Ref. 12 is just the tangential
gauge we study here (see Sec. III). The crossover from
2D to 1D occurs when L crosses Lr; thereafter the mag-
netic moment will scale as®> V'T'. A rough estimate lead-
ing to Eq. (20) is obtained if instead of integration on the
longitudinal momentum g¢,, one counts only the zero-
mode contribution, g, =0.!

VII. CONCLUSIONS

Our results for orbital magnetic response can be sum-
marized in a rather convenient form at very low tempera-
tures, when T'=~A. Indeed, introducing the dimension-
less sample conductance, g ~(E_./A), we find that for
¢ < ¢, the average (paramagnetic) moment of the sample
is given by

($/¢.), $<¢.
($./9), ¢>¢. .

It peaks at ¢ ~@,, where ¢, ~pog /2. The rms fluctua-
tion of the sample magnetic moment, which is also the
typical sample-specific value of the moment, is given by

(M)':,U'B(kpl)g_l/zl (29)

[—In(¢. /69)]'%, $<g.

[—In(¢/6)]'2 ¢3¢, , OO

SM ~pg(kpl)d/d) l

which applies to 2D samples and 3D slabs. Beyond ¢,
(M )=y HY, while the lower limit for the fluctuation is
set by pg(kgl).>°

Combining Egs. (2) and (29), we can express the maxi-
mal and the “typical” (single Fourier harmonic) average
paramagnetic moments in terms of the rms fluctuation at

d=¢,as

(M) ~6Mg 12 and (M), ~8Mg '. G31)

typ

All these quantities are clearly of the same order of mag-
nitude when g ~1. This circumstance becomes possible
in a dirty sample or a narrow ring. It would also signal
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the breakdown of the diffusive approximation in a quan-
tum coherent sample so that the condition A<T<E,, or
L<L;<Lg!? is violated. In this regard, it should be
noted that the conductance of a 3D slab of thickness a is
(kpa /) larger than the conductance of its 2D counter-
part. Therefore, in 3D, the above constraint is less res-
trictive for @ >>/ than in 2D.

The interaction-localization correction is given by the
following expression:

In(T7), $<4¢,

AM ) ~ >
< > A’:u’B(kFl)(¢/¢0) ln( 1_117-)’ ¢>¢(‘ .

(32)

We would like to stress that whereas the average
paramagnetic moment peaks at ¢=~¢_, the interaction-
localization correction peaks at ¢ =~¢,. Therefore, it is, in
principle, possible to separate these effects experimental-
ly, provided that the temperature is sufficiently low. We
also point out that in addition to the interaction correc-
tion considered in this paper, there is yet another impor-
tant interaction mechanism which must be taken into ac-
count, namely, the interaction induced via spin-flip
scattering off Kondo impurities.>? It can be shown that
due to the anomalous frequency dependence of this in-
teraction, its contribution to the magnetic moment peaks
at ¢=¢, and could be comparable in magnitude to the
average moment, as well as to the interaction correction
considered above. Furthermore, in principle, it could be
of any sign although in the copper we expect it to be
paramagnetic.

In terms of the future effort in the field, we believe that
understanding of the current picture is imperative. For
instance, one would like to know the typical values of cir-
culating diamagnetic and Hall currents (in the presence
of electric field) and their spatial correlations. Also, one
would like to have the complete picture of the orbital
magnetic response over the entire range of fields: at
present, our understanding of the orbital magnetic
response beyond the linear-response regime is clearly
lacking. In particular, the evaluation of orbital response
in a strong magnetic field is especially challenging. De-
pending on the field strength, two regimes should be in-
vestigated. The first regime is identified as such that the
Landau orbit becomes shorter than the electron mean
free path, I>>Ly, leading to quasiballistic impurity
scattering.>® The second regime is identified as such that
the cyclotron radius becomes shorter than the mean free
path, I >> L, marking the onset of the dHVA oscillations
of the average magnetic moment. Among other issues,
the “‘clean-limit” response and its connection to the un-
derlying chaotic scattering and Dyson statistics awaits a
thorough investigation. Finally, the problem of the di-
amagnetic sign of the AB response, which has been ob-
served in recent experiments on narrow metallic rings,’
remains unresolved.

Note added. Recently, spin-orbit effects have attracted
much interest. We have shown [A. Yu Zyuzin and R. A.
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Serota (unpublished)] that in addition to the usual four-
fold reduction of the density-of-states fluctuations, cou-
pling of spin and orbital degrees of freedom leads to
orders-of-magnitude fluctuations of the local magnetiza-
tion and, accordingly, the electron g factor. Preliminary
estimates indicate that the fluctutation of the total sample
moment due to this effect is (kz/)!/? smaller than fluctua-
tion due to orbital effects considered in this paper.

Note added in proof. After the acceptance of this paper
for publication, the paper by J. M. van Ruitenbeck and
D. A. van Leeuwen was published in Phys. Rev. Lett. 67,
640 (1991) [see also J. M. van Ruitenbeck, Z. Phys. D 19,
247 (1991)], where the zero-field response of a 2D rectan-
gle was investigated in light of the compensation of the
Langevin and van Vleck responses. Their simulations
showed large fluctuations of the van Vleck component
with the number of electrons and/or the ratio of the sides
of the rectangle. Clearly, this is a result of Poisson level
statistics and the correlations between the energies and
the matrix elements of the angular momentum.
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