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Molecular-dynamics simulations of 500 particles have been performed to study the icosahedral order
and the defects in the supercooled liquid and glass states of metallic Mg;Ca;. Not only are Frank-
Kasper polyhedra and Bernal “hole” polyhedra detected, but also a variety of defective icosahedra.
Especially, the number of the type of defective icosahedron defined by eight 1551 bonds, two 1661
bonds, and two 1441 bonds is much greater than the number of any kind of Frank-Kasper and Bernal
polyhedra. This strongly supports the physical picture of liquids and glasses being a disordered, entan-
gled array of +72° and —72° disclination lines in an icosahedral medium.

During the cooling process there exists a competition
between a local preference for icosahedral structure and
the global requirement of filling space, and therefore the
system exhibits a growth of short-range icosahedral order
until it is limited near the glass transition by frustration
effects. The frustration comes from the difficulty in close
packing with perfect tetrahedra in flat three-dimensional
(3D) space. Although all bonds in the ideal tessellation of
S3 of a four-dimensional sphere are associated with five-
fold symmetrical bipyramid,' composed of perfect tetra-
hedra, in a 3D flat space liquids and glasses cannot be
composed of only fivefold symmetry bonds; there should
be —72° and +72° disclination lines, which are associat-
ed with sixfold and fourfold bipyramids. The canonical
Kasper polyhedra, being nodes for —72° lines, and the
Bernal canonical “hole” polyhedra formed from links of
+72° disclination lines are believed by Nelson and other
authors' 73 to be present in significant numbers in super-
cooled liquids and glasses. However, until now, the defec-
tive icosahedra of disclination lines have not been reported
as being found directly and quantitatively in liquids and
glasses.

The main purpose of this work is to identify the icosahe-
dra and the variety of defective icosahedra, which could
be associated with the disclination lines, in a real binary
metallic system. This can be done only through a comput-
er experiment, not in a laboratory experiment.

The computer liquids and glasses of Mg3Ca; are simu-
lated by molecular-dynamics (MD) techniques using the
damped force method. MD is carried out in a cubic box
subject to the widely used periodic boundary conditions
with 150 Mg particles and 350 Ca particles. The effective
pair potential® obtained from the generalized nonlocal
model pseudopotential theory® is used. This pair potential
is cut off at 20.0 a.u. The density is held at 0.003602 3
particles per volume a.u. throughout all simulations. The
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time unit is 0.6766% 10 ~'2 sec and the time step is chosen
at 10 7!° sec. In order to get a melting liquid state, the
simulations are started at 1100 K, which is 70 K higher
than the melting temperature. First, at this temperature,
the system is run for 30000 time steps to guarantee an
equilibrium liquid state. Next, the damped force method®
is adopted to decrease the temperature with the cooling
rate at 4x10'3 K/sec by forcing the bath temperature to
decrease linearly at every time step. The configurations
are recorded at particular temperatures during the
quenching process. For each of the recorded configu-
rations, another run of 4000 time steps at the given tem-
perature is performed in order to determine the thermo-
dynamic quantities. During each of these runs, 20
configurations are saved, one at each 200 time steps, and
then the steepest descent energy minimization procedure
with the conjugate gradient method, suggested by Stil-
linger and co-workers,” is imposed on each of these
configurations to extract their inherent configurations, in
which atoms are brought to a local minimum on the
potential-energy surface. This procedure has been used
extensively as a very powerful means of analyzing the
structure of liquids, amorphous solids, and even crys-
tals.®® It is presumed that the analysis of the inherent
structure of a material can provide a clearer picture of its
structure because the inherent structure does not contain
instantaneous high-energy fluctuations that are present in
the actual dynamical state and obscure our observation.
The structural analyses of liquids and glasses are per-
formed by using the pair analysis technique and index of
Honeycutt and Andersen '® in a separate program. All the
results of structural analysis are obtained by averaging
over the 20 inherent configurations. If the distance of two
atoms (a pair) is smaller than a given cutoff distance,
chosen to equal the position of the first minimum in the
appropriate pair distribution function (Mg-Mg, Ca-Mg,
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Ca-Ca), then, such atoms are referred to as neighbors or,
equivalently, are considered to form a bond. With the
Honeycutt-Andersen pair analysis technique, the fivefold
symmetry bonds plus other different kinds of bonds, which
describe precisely the microscopic local structure, can be
seen easily at the atomic level by computer. The 1551
bond represents the two neighboring atoms with five com-
mon neighbors that form a pentagon of near-neighbor
contacts. The 1551 bond is situated in a fivefold symme-
try environment. The number of 1551 bonds is a direct
measurement of the degree of icosahedral ordering. Fig-
ure 1 shows the relative number of different kinds of
bonds as a function of temperature on cooling. It is clear
that the number of 1551 bonds increases on cooling. Also,
we have calculated the local parameter'? Wy, defined for
an individual atom. Its behavior is the same as the curve
1551 of Fig. 1. It is reasonable to say that the nature of
order parameter W and the number of the 1551 bonds is
the same. Furthermore, 18 and 39 icosahedra, defined as
in Ref. 8, are found in the system at 7=1100 and 100 K,
respectively. 165 atoms are in the icosahedra at 7=1100
K, whereas 301 atoms, of the 500, are in icosahedra at
T =100 K. Each icosahedron interpenetrates 1.54 others
and shares a face with 0.54 other icosahedra.

One can now ask where the other atoms are? What
kinds of local structure do they have? To answer these
questions we note that the links of +72° and —72° dis-
clination lines are associated with fourfold and sixfold
symmetrical bipyramids, respectively. The fourfold sym-
metrical bipyramid can be represented by a 1441 pair,
which has four neighboring atoms (with four bonds be-
tween them) in common with the pair. The sixfold
symmetrical bipyramid may be designated by a 1661 pair,
which has six neighboring atoms (with six bonds between
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FIG. 1. Relative number of different types of bonds in the in-
herent configurations as a function of temperature on cooling.
The glass transition temperature 7 noted here is determined as
in Ref. 11.

them) in common with the pair. The 1441 and 1661
bonds (pairs) are viewed as the segments of the disclina-
tion lines. It is not surprising that the creation of 1551
bonds and the annihilation of 1661 and 1441 bonds are
observed on cooling as shown in Fig. 1.

All canonical Frank-Kasper (FK) polyhedra'® and a
number of defective icosahedra are detected and counted
in a computer glass for the first time, to our knowledge.
The Honeycutt-Andersen index gives us an opportunity to
precisely define FK, Bernal, and other defective icosahe-
dra in a very simple way. For example, if and only if the
central atom has fourteen neighboring atoms, twelve of
which are joined to the central atom by twelve 1551 bonds
and two of which are joined to the central atom by two
1661 bonds, then they define a FK polyhedron with coor-
dination number Z =14. In the same way, other poly-
hedron can be defined. A polyhedron consisting of some
1551, 1661, and/or 1441 bonds is called a defective
icosahedron. We note that all the following results are for
the glass state at 7=100 K. Eight FK polyhedra, com-
posed of twelve 1551 bonds and two 1661 bonds, 7.8 FK
polyhedra, made of twelve 1551 bonds and three 1661
bonds, and 0.65 FK polyhedra, composed of twelve 1551
bonds and four 1661 bonds, are detected. 3.5 Bernal'*
canonical “hole” polyhedra, composed of eight 1551
bonds and two 1441 bonds, are found. 9.9 defective
icosahedra, characterized by ten 1551 bonds and one 1441
bond interposed between two 1661 bonds, and 9.7 defec-
tive icosahedra, having eight 1551 bonds together with a
1661 bond interposed between two 1441 bonds, are ob-
served. Not a single polyhedron prohibited by the com-
bining law, such as a polyhedron consisting of twelve 1551
bonds and one 1661 bond or of eleven 1551 bonds and one
1441 bond, was found. Nineteen other different kinds of
defective icosahedra, which are nodes of the links of +72°
and —72° disclination lines and are not yet discussed by
other authors, are also found. In particular, 18.2 defective
icosahedra, packed by two 1441 bonds, eight 1551 bonds,
and two 1661 bonds, are found. The +72° and —72°
disclination lines are completely paired in this kind of de-
fective icosahedra. It is worth noting that the number of
this kind of defective icosahedra is the greatest among all
defective icosahedra, being next only to the number of
icosahedra. This kind of polyhedra can be viewed as an
important type of defective icosahedron, which are due to
dislocations. The population of FK polyhedra with coor-
dination number Z =14 and with Z =15 only ranks
eighth and ninth, respectively. The population of Bernal
canonical hole polyhedra with Z =10 ranks thirteenth.
That of FK polyhedra with Z =16 ranks twenty-fifth, next
to the last one in Table I. For convenience, we use a sig-
nature to represent those defective icosahedra by us. The
first index in the signature is the number of 1441 bonds,
the second index is the number of 1551 bonds, the third
index is the number of 1661 bonds. The three indices are
enough because 1331 and 1771 bonds are rarely found in
the defective icosahedra.

One point should be noted. Only 1551 bonds, but not
1541 bonds, are regarded as fivefold symmetry by us. Al-
though a 1541 bond (pair) has five neighbors (fivefold) in
common, these five neighbors have only four bonds, the
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TABLE 1. Number of the icosahedra and the variety of de-
fective icosahedra in the glass state at 7=100 K.

Signature Coordination No. No. of polyhedra
0,12,0) 12 39
(2,8,2) 12 18.2
2,8,1) 12 10.95
(2,8,4) 14 10.0
(1,10,2) 13 9.9
(3,6,4) 13 9.25
(1,10,4) 15 8.35
0,12,2) 14 8.00
0,12,3) 15 7.80
(2,8,5) 15 6.85
(1,10,3) 14 5.8
(1,10,5) 16 4.10
(2,8,0) 10 3.50
(2,8,3) 13 2.85
(3,6,5) 14 2.80
2,8,7) 17 2.00
(4,4,6) 14 1.85
(3,6,3) 12 1.70
(2,8,6) 16 1.35
(3,6,2) 11 0.80
(3,6,6) 14 0.80
3,6,1) 10 0.70
(3,6,7) 15 0.70
(4,4,3) 11 0.70
0,12,4) 16 0.65
(4,4,4) 12 0.55

distance between two of the five neighbors always being
beyond the cutoff distance of the first shell of the central
atom, which leads to an asymmetrical environment for the
1541 bond. The same applies to other four, five, and six-
fold bonds. However, the Voronoi statistics using a simple
number of the face cannot distinguish the difference be-
tween the 1551 and 1541 bonds.

The number of icosahedra and defective icosahedra is
shown in Table I. Representative pictures of the top three
defective icosahedra, as well as the FK and Bernal polyhe-
dra, together with their representation as links of disclina-
tion lines, taken from a single inherent configuration, are
shown in Fig. 2. We have the pictures for all defective
icosahedra, which are not presented here because of text
length limits and which are available on request. Al-
though hole defective icosahedron (3, 6, 0) and (3, 5, 0)
are allowed, they are difficult to find in the glass state, be-
cause their coordination number is far from the average
coordination number Z =13.41, which is slightly bigger
than the value Z =13.397 for an ideal glass.! 301 atoms
are in 39 icosahedra and 486 atoms are counted in the
icosahedra and the defective icosahedra. In other words,
we may say that 185 atoms are distributed in 120.15 de-
fective icosahedra for a 500 particle sample. However, all
icosahedra and defective icosahedra interpenetrate and
share faces with other icosahedron and defective icosahed-
ron,

Thirty-one central atoms of icosahedra are Mg, where-
as only 8 central atoms of icosahedra are Ca. This proves
that the small atoms prefer to locate at the central of

FIG. 2. Important defective icosahedra found in the inherent
configuration from MD simulation. The open and solid circles
represent Ca and Mg atoms, respectively. The left sides of the
figures are representations of defective icosahedra as links of
disclination lines, dashed lines are +72° disclination lines, solid
lines are —72° lines. (a) icosahedron; (b) (2,8,2) polyhedron;
() (2,8,1); (d) (2,8,4); (e)-(g) are FK polyhedra with Z
=14-16, or (0,12,2), (0,12,3), and (0,12,4); (h) Bernal po-
lyhedron with Z =10, or (2,8,0).

icosahedras. It is easy to understand this because it is well
known that the distance between surface neighbor atoms
is about 5% larger than the distance between surface
atoms and the central atom for a perfect icosahedron.
The small Mg atoms and big Ca atoms can fit this case
easily. Therefore a suitable proportion of the number of
small to big atoms is an important factor for the glass
forming ability.

FK (Ref. 13) has shown that, from a geometrical point
of view, the required distortion of tetrahedron around the
1551 bonds in a 3D space is the smallest among all
tetrahedra in different bipyramids. The distortion of the
tetrahedron in sixfold symmetrical bipyramid 1661 is
smaller than in fourfold and threefold symmetrical bipy-
ramid. Larger distortions are required for other types of
bonds. To investigate how the required distortion and en-
ergies of the different type of bonds affect their popula-
tion, we have calculated the populations and energies for
all types of bonds. The bond energy for two atoms i and j
connected by a bond of type / is defined by

N
V1=V(I','j)+ Z

Virm). (1)
k=1 (k=i,j

N
)V(r;k)+ >

m=1(m=i,j)
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This is then averaged over all bonds of type / in the in-
herent configurations of the system at a given tempera-
ture. The total energy of the system is not simply equal to
the sum over all of the bond energies defined above.

The summation of the number of 1551, 1661, and 1441
bonds is about 74% of the total number of all types of
bonds. Results show that the 1551 bond has the lowest
energy, —0.0645 a.u., and the percentage of the 1551
bonds is 50%, which is largest among all types of bonds.
Both favorable energy and the smallest tetrahedral distor-
tion required for the 1551 bond result in its having the
largest population. While the energy of the 1441 bond,
being —0.0638 a.u., is lower than the energy of the 1661
bond, which is —0.0628 a.u., the percentage of the 1441
bonds at 7.7%, is lower than that of the 1661 bonds at
13.9%. This illustrates that the interplay between favor-
able energy and unfavorable distortion required for 1441
bond and unfavorable energy and favorable distortion for

1661 bond determinates their respective percentages. The
energy of the 1331 bond is —0.0586 a.u., thus both ener-
gy and distortion unfavorability for 1331 bonds lead to its
population, only 0.11%, being much less than that of the
1551, 1441, and 1661 bonds. Similarly, the population of
other type of bonds can also be explained by this rule.
The above analysis indicates that the bond energies, which
are directly related to chemical short-range order, togeth-
er with the geometrical constraint play very important
roles in the local structure of glasses and liquids.

We firmly conclude from our simulation results that the
physical picture of the structure of metallic glasses and
liquids being a disordered, entangled array of disclination
lines in an icosahedra medium is realistic.
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