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Metal-insulator transition in Al„Ga, „As/GaAs heterostructures with large spacer width
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Analytical results are presented for the mobility of a two-dimensional electron gas in a heterostructure
with a thick spacer layer n. Due to multiple-scattering effects a metal-insulator transition occurs at a
critical electron density X, =N /(4m' a) (N; is the impurity density). The transport mean free path
l'" (calculated in Born approximation) at the metal-insulator transition is l,'"=2+. A localization cri-
terion in terms of the renormalized single-particle mean free path I'"' is presented: kz, l,'"'=(

2
)' (kF,

is the Fermi wave number at the critical density). I compare the theoretical results with recent experi-
0

mental results found in Al Gal As/GaAs heterostructures with large spacer width: 1200 & a & 2800 A.
Remote impurity doping and homogeneous background doping are considered. The only fitting parame-
ter used for the theoretical results is the background doping density N& =6X 10"cm . My theory is in
fair agreement with the experimental results.

I. INTRODUCTION

The scaling theory for noninteracting electron gases
predicted for two-dimensional systems a localized phase
for arbitrarily weak disorder. ' A complete theory for a
disordered interacting electron gas is not yet available,
for a review see Ref. 2. Obviously, according to this pre-
diction, a two-dimensional metal with finite conductivity
does not exist (for temperature zero).

However, in transport measurements of the two-
dimensional electron gas in Al Ga& As/GaAs hetero-
structures the mobility record has been improved every
year in the past few years. The best reported mobility
at this time is 1.1X10 cm /Vs. There seems to exist a
growing discrepancy between experiments and
theory. ' In this paper we will argue that this discrepancy
disappears if one accepts the concept of a metal-insulator
transition (MIT) in Al Ga, „As/GaAs heterostructures.
Whether this MIT is similar to a transition from a weakly
localized system to a strongly localized system remains
an open question.

Strong deviations of the mobility from the lowest-order
result have recently been found in Al, Ga, „As/GaAs
heterostructures with large spacers ct (a=500 A). The
anomalies occur for 2X10' &X&4X10' cm and an
electron-density threshold for a finite mobility was re-
ported. Evidence for a metal-insulator transition in two-
dimensional systems have been found in silicon metal-
oxide-semiconductor structures (for a review, see Ref. 7)
and In& Ga„As quantum wells. Therefore, the authors
of Ref. 9 argued to neglect the weak-localization correc-
tions and formulated a theory for the MIT in two dimen-
sions for disordered electron systems. Experiments on
the mobility of silicon metal-oxide-semiconductor struc-
tures have been explained with this theory.

Transport properties of Al Ga, As/GaAs hetero-
structures are presently studied in great detail. For a re-
cent review, see Ref. 10. The results of Ref. 6 have been
interpreted quantitatively" as transport near the MIT

within the multiple-scattering approach of Ref. 9.
Efros' argued for transport near the percolation thresh-
old.

In this paper we show that the multiple-scattering ap-
proach and the percolation theory give essentially the
same criterion for the metal-insulator transition point.
Analytical results for the mobility and the transition
point within the multiple-scattering theory are derived.
We use the analytical results to analyze recent experi-
ments on the mobility of Al„Ga, As/GaAs hetero-
structures with ultralarge spacers (1200(ct(2800 A)
(Ref. 13) at low electron densities: 4X10 (N & 1X10"
cm . The results of my theory compare favorably with
the experiments' and indicate that the theory describes
the transport properties of disordered two-dimensional
systems at low temperatures.

The paper is organized as follows. In Sec. II the model
and the theory is described. The analytical results are
given in Sec. III. In Sec. IV I compare the theory with
recent experimental results. The discussion is in Sec. V.
I conclude in Sec. VI.

II. MODEL AND THEORY
A. Model

The model for remote impurity doping is characterized
by a sheet of randomly distributed impurities (with im-
purity density N, ) separated from the ideally two-
dimensional electron gas (with electron density N) by a
spacer of width cz. The Fourier transform of the random
potential ( ~ U(q)

~
) is given by

( I U(q) I') =N,
eLq

el is the dielectric constant of the background. In gen-
eral, the screening function e(q) of the interacting elec-
tron gas is expressed in terms of the polarizability X (q)
of the free-electron gas and the electron-electron interac-
tion potential. The parameters (see later) of the theory
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are defined as q integrals over the screened random po-
tential. For large spacer width, 4kFa&)1, I use X
(q 2k„)=pF.' kz is the Fermi wave number and pF is
the density of states. For the ideally two-dimensional
electron gas the electron-electron interaction potential is
V(q) =2me /er q and the screening function is given by

e(q)=1+q, /q . (2a)

q, is the screening wave number, given by the effective
Bohr radius a * (a *=EL h /m *e ) and the valley degen-
eracy g, : q, a*=2g„. m* is the effective electron mass.
For 2aq, =4g„a/a &) 1 I simply use

e(q)=q, /q . (2b)

This approximation has been discussed in Ref. 14 and
was later applied in Ref. 12. With Eq. (2b) I get for the
screened random potential ( ~ U(q)

~
) /e(q) =N;e

This screened potential represents a long-range random
potential with reduced backscattering.

I assume an ideally two-dimensional electron gas in a
plane and neglected the extension of the electron gas per-
pendicular to the plane. This extension is characterized
by the parameter 1/b, see Eq. (3.30) of Ref. 7. b is of or-
der I/a*. For ab )&3 one can neglect the extension of
the electron gas perpendicular to the plane.

A= dqq X q
( U(q)')

4~N' e(q)'
(3)

The parameter A defines the metal-insulator transition
point. For A (1 the system is metallic and for A ) 1 the
system has the transport properties of an insulator. ' '
The transition occurs at A = 1.

A generalized hydrodynamic approximation was used
to derive the scaling law for disordered noninteracting

B. Theory

In the multiple-scattering theory' ' for the conduc-
tivity of a disordered noninteracting electron gas at zero
temperature the crossed diagrams are neglected. How-
ever, the ladder diagrams are taken into account. For a
disordered interacting electron gas the interaction effects
are treated in the random-phase approximation. ' The
theory describes a transition from a metallic phase (for
weak disorder) to an insulating phase (for strong disor-
der) due to multiple-scattering effects. The conductivity
for weak disorder is given within the Born approximation
(cro) and the conductivity near the transition point to an
insulator is given as a scaling law (o, ). In experiments
on two-dimensional systems the scaling law has not yet
been identified. It would be highly desirable to get
more experimental results on the behavior of the conduc-
tivity near the metal-insulator transition. It is one goal of
the present paper to supply information on the relevant
doping parameters for an optimal design of samples for a
study of strong disorder effects in two-dimensional elec-
tron systems.

The important parameter A of the multiple-scattering
theory for an interacting electron gas in two dimen-
sions ' ' isdefined as

electrons within the multiple-scattering theory. ' ' The
importance of the crossed diagrams decreases (compared
to the ladder diagrams) if the potential becomes long
ranged. ' It was pointed out in Ref. 19 that for long-
ranged random potentials a percolation picture is applic-
able to the metal-insulator transition. A similar approxi-
mation as in Refs. 18 and 19 gives for the disordered in-
teracting electron gas

o'(N)=o' o(N)(1 —A) (for A —1) . (4)

oo(N) is the conductivity in Born approximation. Equa-
tion (4) has the correct limit o (N) =cro(N) for weak dis-
order (3 (( I) and is also a good approximation to the
solution of the self-consistent equation.

III. ANALYTICAL RESULTS

In this section I present the analytical results for the
metal-insulator transition (Sec. III A) and the conductivi-
ty (Sec. III B) for remote doping and large spacer width.
I calculate the mean free path at the transition point and
discuss the Joffe-Regel criterion (Sec. III C). Effects of a
disorder-induced modification of the density of states are
derived (Sec. IIID). Results for various doping struc-
tures are discussed (Sec. III E).

A. The critical electron concentration

With Xo(q) =pz and Eqs. (1), (2b), and (3) I get

N;

16~NN+2
(5)

The experimental results on the spacer width dependence
of the threshold in Al„Ga, „As/GaAs heterostructures
are in good agreement with Eq. (6)." Efros' found

with P-0. 1 However, it is not clear how Efros estimated
P. I conclude that the multiple-scattering approach gives
for N, essentially the same result as the percolation ap-
proach.

B. The conductivity

For N )&N, multiple-scattering effects are negligible
and the conductivity can be calculated in Born approxi-
mation. With Eq. (2b) one gets' '

2
o.o(N) =2g, (2k+a) (for N ))N, ) .' h

With Eqs. (4), (5), and (8) I find for the conductivity
near the metal-insulator transition

1

o, (N) =2cro(N, )
C

(for N=N, ), (9a)

With Eq. (5) I derive the critical electron density N, for
the metal-insulator transition

N 1/2
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with

2
o.o(N, ) =g, 2k~, a . (9b)

100

(for N-N, ) .o., ( N) =I3cro( N, )

Efros' proposed, without derivation,

X —iV,
(10)

The critical exponent for percolation in two dimensions is
t = 1.2 (for a review, see Ref. 22) and P was unspecified in
Ref. 12. Efros cited Ref. 23 for the derivation of Eq. (10).
However, I could not find Eq. (10) with the prefactor
oo(N, ) in Ref. 23. In addition to the critical exponent
the results within the percolation approach IEq. (10)] and
within the multiple-scattering approach [Eq. (9)] are very
similar: The scale of the conductivity is given by
a (N, ).'

In the original formulation of the multiple-scattering
theory ' ' the critical exponent was given as t =

—,'. In
this formulation one derives a scaling law as given in Eq.
(10) with t =

—,', P=( —', )', and with the correct scale of
the conductivity: pro(N, ).

By comparing Eqs. (9) and (10) I mention the follow-
ing: The range of the scaling laws is small
N /N, —1 =e & 0. 1. With Eqs. (4), (5), and (8) one gets

a, (e«1)=2cro(N, )eI I+e+e /8+O(e )] .

~ 10—
D

4

4

I

N(:]

ip! I

2 10
N(10'oem ~)
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FIG. 1. Mobility vs electron density for remote impurity
doping and homogeneous background doping. The dotted,
dashed, and solid lines represent the Born approximation, the
multiple-scattering theory in the formulation of Ref. 9, and Eq.
(4), respectively. I used the following: width of remote doping
6 =350 A; depletion density XD = 1 X 10"cm

This scaling law has an accuracy of 10' for @=0.1. Ex-
perimentally the scaling law has not yet been observed.
For the experiment on the threshold transport, the con-
dition @&0.1 would imply to measure the mobility for
p & 10 cm /V s. It will be probably very difficult to in-
duce such small density variations that the critical ex-
ponent can be determined.

The multiple-scattering approach does not focus on the
exact calculation of the critical exponent t. It is rather a
powerful method for the calculation of the conductivity
in the full density range including the metal-insulator
transition point. This has been demonstrated for
silicon metal-oxide-semiconductor structures, for
Al Ga& As/GaAs heterostructures, " and for
In& „Ga As quantum wells. '

The range of validity of Eq. (4) is the critical regime
(e« 1). However, outside the critical regime the numeri-
cal differences between Eq. (4) and the numerical results
within the formulation of the multiple-scattering theory
as given in Refs. 9 and 17, and used in Refs. 9, 11, and 21
for the interpretation of some experimental results, are
very small. Equation (4) can also be used if several
scattering mechanisms i = 1,2, . . . , k are present:
3 = A

&
+ A2+ . - + Ak and 1/o o 1/o o&+ 1/o o2

+ 1/o ok.
In Fig. 1 I show the mobility p versus electron density

for remote impurity doping and homogeneous back-
ground doping (see later). The solid line represents Eq.
(4) Ip(N)=go(N)(1 —A)] and the dotted line represents
po(N). The dashed line represents the multiple-scattering
theory in the formulation of Ref. 9.

The calculation of the conductivity is for zero tempera-

ture. The experiments must be performed at finite tem-
peratures and a careful study of the temperature depen-
dence of the conductivity is necessary to extrapolate to
zero temperature (to eliminate the electron-phonon in-
teraction).

kF, &,
'"=2kF, ~ »1 . (12)

This result is in agreement with the estimate of Efros
k~, l-(N;a )'r . With N; =a k~, from Eq. (5) I find Eq.
(12).

l,'"=2a is the Joffe-Regel criterion (originally formu-
lated for three-dimensional systems; for two-
dimensional systems, see Ref. 16) for the lower limit of
the transport mean free path for long-range random po-
tentials. The transport mean free path (or the scattering
time r") at the metal-insulator transition is large for
large o.. However, this does not imply that the amount of
disorder in the systems is small. For long-range random
potentials backscattering is sharply reduced and the
scattering time is greatly enhanced. '

A better measure of the amount of disorder in the sys-
tem is the single-particle mean free path l" (single-
particle relaxation time w"). For large a the ratio is
larger than one ' and given by v'"/r"=(2k~a) for
2kFo. ))1. ' It follows that at X =X,

k~, l,"=I/(2kF, a) &&1 . (13a)

C. The mean free path

The transport mean free path I'" for X =X„calculat-
ed in Born approximation, is expressed as
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In this case multiple-scattering effects become important
and the single-particle relaxation time is renormalized:
7 . Consequently one has a renormalized single-particle
mean free path l'"': kFl'"'=2m. F~'"'. c,F is the Fermi en-
ergy. Multiple-scattering effects for the single-particle re-
laxation time have been calculated in Ref. 21. With Eq.
(47) of Ref. 21 I get at the metal-insulator transition point

and

~(sr) (
~ )1/2

FC C

kFI'"'=2akF(g N/N )' = 1/(2A )'

(13b)

(13c)

This is an additional criterion for the metal-insulator
transition based on the single-particle relaxation time. It
does not depend on the range of the random potential.
This result shows that for localization the amount of dis-
order as given in the single-particle relaxation time is im-
portant. For the transport mean free path the relation
kFl'")&1 is not conclusive to argue for weak disorder.
The correct relation for weak disorder is kFl'")&2kFa.
This argument should be kept in mind in analyzing ex-
periments.

D. Density of states

From Eq. (13c) I conclude, see Eq. (48) of Ref. 21, that
the density of states (p„) is renormalized (r) due to the
random potential. At the metal-insulator transition I find

p„,=0.73pF. In the multiple-scattering approach for the
conductivity "" ' effects of disorder on the polariza-
bility are neglected. For Eq. (5) I used X (q) =p~.

One could ask whether the effects of disorder on the
density of states would change the parameter 2 as given
in Eq. (5). With X (q) =p„and e(q) =q„ /q one can show
that Eq. (5) is rederived if one applies q„=2me p„/eL.
This result shows that disorder effects on the density of
states do not play a role in the calculation of parameter
A for long-range random potentials.

For short-range potentials one finds r'"/r'~=1 (Ref.
25) and I,"=l,'"'. ' The Joffe-Regel criterion is given as
kF, l,'"=kF, l,"=kF,I,'"~-O(1). I conclude: I,'" is very
different for long-range and short-range random poten-
tials. ' ' However, for the renormalized single-particle
mean free path I find for short-range and long-range ran-
dom potentials

(14)

heterostructures. ' For N~ =1X10' cm, as in ex-
periment, I get N, =1.2X10 cm . I conclude that for
a study of the metal-insulator due to homogeneous back-
ground doping a high-doping level is necessary to reach
the experimentally available density regime N ) 1 X 10'
cm . Equation (15) is important for an estimation of a
possible interplay between remote doping and homogene-
ous background doping. It is clear from my discussion
that the conductivity near the metal-insulator transition
is determined by remote doping if N~
((N;/(128mg„Nu )'

If I assume that the doping region has a width 5 [see
Eq. (1) of Ref. 11] I get with Eq. (2b)

1/2

N, = (16)4~' ~ 1+5/a

X(1+4g,a/a*)] (17)

and corrections to Eq. (6) can be derived. Ei(x) is the
exponential-integral function. The asymptotic result for
4g, a/a* »1 is written as

N 1/2

N, =
4 1/2 g Q'. 8g 2(g2

(18)

N, is reduced in comparison to Eq. (6) because Eq. (2b)
underestimates the screening properties of the electron
gas. Equation (18) demonstrates the power of the
multiple-scattering method: It is not limited by
4kFa»1 or 4g, a/a*»1.

Doping in GaAs (a (0) has been considered in Ref. 29
and the critical electron concentration was calculated. In
this case the finite extension of the electron gas perpen-
dicular to the Al„Ga, „As/GaAs interface has to be tak-
en into account. One finds 2 -N, f(a)/N and f (a) is a
nonmonotonic function of a.

Naively one would assume N=N; to ensure charge
neutrality. N, would be very small for large spacer
width. I believe that two possibilities exist to increase
N, : N; )&N, . The first possibility is to use a compensat-
ed doping layer with compensation Ko. Then one finds

N, is reduced for finite 5.
The results have been derived within the conditions

4k+a)&1 and 4g„a/a*&)1. If I give up the latter con-
dition [I use Eqs. (1) and (2a)] I get

2

[1+e ' Ei( —4g, a/a')
mNNa '

K. Doping considerations

For homogeneous background doping a similar calcu-
lation as done for remote doping gives the critical concen-
tration

N 2/3

(15)

1+Ko
1-K.

and N, ))N for Ko -1. With Eqs. (6) and (19) I get

1+Ko
N, =

16m' 1 &0

(19)

(20)

and N~ is the (three-dimensional) impurity density.
Scattering by homogeneous background doping has been
identified in recent experiments on Al Ga, As/GaAs

For a=500 A (a=5a* for Al Ga& As/GaAs hetero-
structures) one gets N, =8.0X10 cm (for KO=O),
N, =1.5X10' cm (for Ko=0.9), and N, =1.6X10"
cm (for Ko =0.99). The second possibility is a nearby
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gate on top of Al Ga& As. In this case most of the
electrons from the donors will go to the gate and only a
small fraction will be trapped in the potential well of the
heterostructure (N; »N). Such a structure was already
used in experiments, see also Table I of Ref. 11.

Interface-roughness scattering is not expected to play
an important role in heterostructures at low electron den-
sities (where the metal-insulator transition occurs). At
low electron densities the envelope wave function perpen-
dicular to the Al Gai As/GaAs interface is very ex-
tended and the interface-roughness scattering potential is
small. However, in thin quantum wells the interface-
roughness scattering might be much more important, as
discussed in Ref. 14.

IV. COMPARISON WITH EXPERIMENTS

In the following I apply my theory to mobility mea-
surements on Al„Ga, „As/GaAs heterostructures'
which are intentionally doped with two doping spikes.
These samples are unique because of the large spacers,
see Fig. 2. In previous samples with high mobility the
mobility has been measured only in the "high" density
range (N & 2 X 10' cm ). Mobility measurements down
to very low densities N = 1 X 10 cm (where multiple-
scattering eff'ects become important) are essential for the
study of the MIT in heterostructures with large spacers.

In the experiments of Ref. 13 the mobility versus elec-
tron density was measured for samples with very large
spacers at a very low temperature of 28 mK. The results
of Ref. 13 are shown in Fig. 3. For sample M73 two dop-
ing spikes at a=2800 A (N, =1.8X10" cm ) and
a=4200 A (N; =1.2X10' cm ) have been implanted
into the Al Ga& As, see Fig. 2 and Ref. 28. From the
data for sample M73 I conclude that a MIT takes place
at N, -4X10 cm . The variation of the mobility with
electron density for N )&1V, indicates that background
doping is the relevant scattering mechanism.

If I assume that all the donors in the doping spikes are
electrically active I get with Eq. (5) Az = 1.8 X 10' /
N cm (R for remote doping) and with Eq. (8)
pz =2.4X10 N ~ cm /Vs. The critical electron den-
sity for the MIT is 1V, =4.3 X 10 cm, which is in rough
agreement with the experimental result. The results of

107—
I I I I I I I I/ I ~ I I I I I I I[0

my calculation for remote impurities and homogeneous
background doping (for N& =6 X 10' cm ) are shown in
Fig. 3. I conclude that the MIT in sample M73 is due to
remote doping while the conductivity scale at the MIT is
determined by homogeneous background doping. An
even better agreement between theory and experiment
than shown in Fig. 3 could be obtained by reducing the
impurity concentration by 10%. The MIT for homo-
geneous background doping (if no remote doping is
present) is estimated to occur at N, =8.3 X 10 cm for
%~=6X10' cm

The two doping spikes (N,.„N;2) of sample M73 can be
replaced by a single doping spike with
N, =(N;,.+N;z)/2=6. 9X10"cm . I get the same value
of X, as for the two doping spikes if I choose o.=2760 A.
The calculated mobility for a =2760 A and
N, =6.9X10" cm is very similar to the dotted line in
Fig. 3. In Ref. 11 I have analyzed the experiments of
Ref. 6 with 3$,. =6.0X10' cm and 350&+&750 A.
The experimental results of Refs. 6 and 13 confirm the
spacer width dependence of N„see Eq. (6).

I would like to stress that only N~ was used as a fit pa-
rameter for the calculation of the solid line in Fig. 3. The
homogeneous background doping must be considered as
unintentional doping and is therefore not known from the
growth process. The good agreement of the theoretical
results with the experimental results of Ref. 13 supports
the arguments that (i) a metal-insulator transition takes
place in two-dimensional systems (possibly a transition
from weakly localized states to strongly localized states)
and (ii) that the critical electron density is determined by
remote doping, see Eq. (6). The experimental results of
Refs. 6 and 13 on the critical electron density depend on
the width of the spacer and cover the range
4X10 &X, &4X10' cm

For the depletion density I chose ND =1X10"cm

1400 I-"(

2800 A

(1.2x10"cm ')

(1.8x10"cm ~)

~F

rrrrrrrrrrrrrr.

1260 A

)25Q A

(1.7 xlp"cm ~)

(2 5x1PIIcm-~)

2 OEG

1800A

1960A

(N;)
(1.7xip' cm ~)

(5x10"cm ')

M 73 M 97 M131

FIG. 2. Schematic picture of the doping profile for remote
doping of the Al Gal „As/GaAs heterostructures M73, M97,
and M131 of Ref. 13. For the doping profile of sample M73 see
also Ref. 28.

~04
~0~

I I II I I IIII
101O

N(cm z)

FIG. 3. Mobility vs electron density for remote doping (p&
for a doping structure corresponding to M73) and for homo-
geneous background doping (p& for 1V& =6X10" cm and

1 1

p& for X& = 1 X 10' cm ') in Born approximation. The
2 2

dashed line represents the mobility po for both scattering mech-
anisms (p&, p& ) in Born approximation. The solid line

1

represents the mobility calculated within the multiple-scattering
approach. The open and solid circles represent the experimen-
tal results of Ref. 13.
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o M73
~ M97

6 + M13
O

E
O5=

~O~
~o~

p.o

)O10

N(cm ~)

FICx. 4. Mobility p and po (see Fig. 3) for remote doping (for
doping structures corresponding to M73, M97, and M131) and
homogeneous background doping (pz for N~ =6X 10' cm ').
The open circles, solid circles, and the open squares represent
the experimental results of Ref. 13.

However, ND does not enter the expressions for remote
doping. The homogeneous background doping depends
only weakly on ND and a slightly di6'erent background
doping density can account for this dependence.

The sample M97 (doping spikes: a=1230 A with

N,. =2.5X10 cm and ~=2490 A with N, =1.7X10
cm, see Fig. 2) apparently has a larger background
doping density (N~=1X10'" cm ) than sample M73,
see Fig. 3. For sample M97 I get Az =9.4 X 10' /N cm
and pz =2.5X10 ' N cm /Vs for the two doping
spikes and the critical electron density for the MIT is
predicted to occur at N, =9.4 X 10 cm

The argument used above for the homogeneous back-
ground doping density of sample M97 did not include the
remote impurities. Indeed, if the remote doping is also
taken into account I conclude that the background dop-
ing density in sample M97 is the same as in sample M73.
The theoretical results on the mobility of samples M93,
M97, and M131 are shown in Fig. 4 for N&=6X10'
cm . The agreement between theoretical results and ex-
perimental results on sample M 131 (doping spikes:
~=1960 A with N,. =5X10' cm and ~=3760 A with

N, =1.7X10' cm, see Fig. 2) is very good. The MIT
in sample M131 is predicted to occur at a electron densi-
ty N, = 1.8 X 10' cm ( A„=2. 8 X 10 /N cm,
p~ =8.7 X 10 "N ~ cm /V s). A study of the behavior
of the mobility of samples M97 and M131 at low electron
density would be highly desirable, see Fig. 4.

Comparing in Fig. 4 the dashed lines (po) with the dot-
ted lines (p~) lead us to the conclusion that for samples
M97 and M131 the remote doping contributes to the
scattering time even at the highest measured electron
density (N = 1 X 10"cm ). This is not the case for sam-
ple M73, see Fig. 3. In sample M131 the MIT and the
mobility scale at the MIT are determined by the remote
impurity doping. In sample M97 both scattering mecha-
nisms contribute to the mobility scale at the MIT.

I would like to mention that the sample of Ref. 5 with
ultrahigh mobility (p, = l. 1X 10 cm /Vs) had a single
doping spike with a=700 A (N; =1X10' cm ) and I

expect the MIT at N, =2X10' cm . Unfortunately,
for this sample only the mobility data for N ~ 1.5 X 10"
cm has been reported. For the sample with a =2000 A
(Ref. 5) I get N, =7X10 cm if I assume N, =1X10'
cm . The mobility was reported for N )2X10' cm
The theoretical estimates for N, are not in contradiction
with the published data of Ref. 5.

However, I have to admit that the mobility of the sam-
ple with a=700 A (N;=1X10' cm ) cannot be ex-
plained by the doping structure. For N=2X 10" cm I
get pz = 1.9 X 10 cm /V s while the experiment gives
p- l. 1 X10 cm /Vs. I conclude that the origin of the
unexpected high mobility of this sample is presently not
understood. A possible explanation is that the doping
spike is electrically not active and the donors in the dop-
ing spike are neutral. Moreover, the density dependence
of the mobility of the samples studied in Ref. 5 suggests
that the mobility is limited by homogeneous background
doping.

V. DISCUSSION

The comparison between theoretical and experimental
results on the mobility of Al„Ga, As/GaAs hetero-
structures indicates that the transport properties of two-
dimensional electron systems are well described by a
MIT. This result is in contradiction with the theoretical
claim of the absence of a metallic phase in two dimen-
sion at temperature zero. ' Within the scaling theory one
would probably argue that for very low temperatures the
apparently metallic systems would eventually become in-
sulating. It should be noted that the scaling theory' has
been derived for a noninteracting electron gas with
short-range disorder. However, the random potential for
remote doping is a long-range random potential. In Ref.
31 it has been shown that for a long-range random poten-
tial the scattering time is very strongly frequency depen-
dent due to plasmon dynamics.

I argue that in experiments, which are always per-
formed at a finite temperature, the transport properties of
the studied two-dimensional systems are apparently
determined by the scattering mechanisms (p~N~) and
the strength of the disorder ( A « 1 or A —1) and not so
much determined by the temperature of the sample.
After measuring the mobility of a sample at say 1 K a
mobility measurement at 0.1 K will nearly give the same
number (up to some percents ). However, if the electron
density near 2 =1 is changed by 10% the mobility
changes are dramatic, see Figs. 1, 3, and 4.

The percolation picture proposed by Efros' gives a
critical electron density similar to my result:
N, ~ N /a. However, it is not so clear how to calculate
the mobility for remote doping in the percolation picture
for N) 1.1N, . Scaling laws near the transition presum-
ably are only valid near N, (N &1.1N, ) and provide no
predictions for N ) 1.1N, . It would be very interesting to
study the MIT when only homogeneous background dop-
ing is important. These measurements could supply a
strong argument for the relevance of the multiple-
scattering theory because no predictions has been made
for this scattering mechanism within the percolation ap-
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proach.
After measuring the mobility of a sample at low tem-

peratures the experimenter would like to know whether
the measured mobility corresponds to the doping profile
(assuming that the donors are electrically active). Mobili-
ty calculations in lowest order cannot describe the experi-
mental results at low electron densities where A =1. The
mobility po and the parameter A depend on the range of
the random potential (short-range or long-range random
potential). The knowledge of the scattering mechanism
and the range of the random potential is necessary to
compare other experimental results (as, for example, the
cyclotron line width ) with theoretical predictions. My
results strongly suggest that the transport properties of
the two-dimensional electron gas in Al„Ga& As/GaAs
heterostructures can be described by the scattering mech-
anisms and the parameter A.

If the percolation picture is correct one would expect
that the logarithmic temperature dependence of the con-
ductivity, which is characteristic for weak-localization
effects, ' is absent. Only the logarithmic temperature
dependence of the conductivity due to interaction
effects eventually remains.

In the theory I have neglected the possible formation
of impurity bands. In the presence of impurity bands my
analysis as well as the scaling theory' is not applicable.
For large a and for high impurity concentration a band-
tail description is possible and my theory should be val-
1d.

VI. CONCLUSION

In conclusion I have shown that the rnultiple-
scattering approach for the conductivity, which has been
used for some time for the interpretation of experiments
on transport anomalies in two-dimensiona1 systems, "' '

gives (for remote doping) similar results as the percola-
tion approach recently proposed by Efros. ' The relation
between the scattering time and the single-particle relaxa-
tion time at the metal-insulator transition has been dis-
cussed. The analytical results should be helpful in
designing crucial experiments for the study of the metal-
insulator transition in two-dimensional systems.

My analytical results successfully describe mobility
measurements on samples' with low mobilities (at low
electron densities) and with high mobilities (at high elec-
tron densities). More experiments on similar
Al Ga& „As/GaAs heterostructures with smaller

0

spacers (a (300 A) would be very helpful for a better un-
derstanding of the transport anomalies in these struc-
tures.
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