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The conductivity and thermopower of a two-dimensional electron gas in the case when the Fermi level
is placed near the origin of one of the size-quantization subbands are considered. The intersection of the
Fermi level with the size-quantization level causes the topological change of the Fermi surface, which re-
sults in anomalies in the conductivity and thermopower. It is shown that a consistent quantitative
description of the anomaly requires that the distortion of the electronic states in the populating subband
by the random potential be taken into account. A general expression for the electron relaxation time in
the vicinity of the transition is derived with the use of diagrammatic techniques. Detailed calculations
are performed for two models of the random potential: Gaussian white noise and the screened Coulomb
potential.

I. INTRODUCTION where E; is the position of the quantized energy level in
the z direction, k is the wave vector in the xy plane, and
m is the electron mass.

The position of the Fermi level at zero temperature is
determined by the doping or by the gate voltage. For
certain parameters of the structure by tuning the gate
voltage the continuous transition from the case Ep <E;
to the case E; > E; can be traced (see, for example, the
e (K)=E.+ #k? (1)  experimental papers of Refs. 1 and 2). Figure 1 illustrates

! oo2m such a transition for i =2. It is seen that at the threshold

It is well known that in two-dimensional (2D) semicon-
ductor systems, such as quantum wells, metal-oxide-
semiconductor (MOS) structures, and 8-doping layers,
the electronic states represent the set of the size-
quantization subbands. The corresponding dispersion
law for the ith subband reads
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FIG. 1. (a) The examples of 2D semiconductor structures: quantum well, MOS structure, and §-doping layer with the quantized

spectrum of the transverse motion. (b) The dispersion law for the first two subbands and the transformation of the Fermi surface in
the vicinity of the transition.
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of transition (Ez=E,) the Fermi surface changes its to-
pology. It is a circle for E < E, becoming a pair of cir-
cles for Ep. > E,.

The peculiarities of the thermodynamic characteristics
(such as specific heat and magnetic susceptibility) of bulk
metal caused by the change of the Fermi surface topology
were first considered by Lifshitz.?> In a number of recent
works, Varlamov and Pantsulaya* ¢ consider the kinetic
properties of the bulk metal in the vicinity of topological
transition. It was shown that conductivity and thermo-
power as the function of the Fermi level exhibit anoma-
lous behavior.

The 2D case considered in this paper has an advantage
of more pronounced anomalies. The basis for this is a
staircase behavior of the density of states in the 2D case.
The newly created part of the Fermi surface correspond-
ing to the population of the next subband has a finite den-
sity of states just after creation. As a result the conduc-
tivity exhibits sharp, steplike decrease at the threshold of
transition. This fact was discussed in Refs. 7 and 8 in the
framework of the Boltzmann equation. The result ob-
tained predicts the discontinuity of the conductivity at
the threshold and, hence, the divergency of the thermo-
power. However it is clear that in real systems the
discontinuities should be rounded. Therefore the more
sophisticated consideration of the transition is needed.

An attempt to work out the improved description of
the conductivity anomaly was undertaken by Cantrell
and Butcher.® Their approach is similar to that used by
Varlamov and Pantsulaya in the 3D case. As we shall
demonstrate later, in the 2D case such an approach
proves not to be sufficient. The neglected terms appear to
be of the same order as those taken into account.

The main purpose of this paper is to demonstrate that
in the vicinity of the topological transition the problem
can be solved exactly. The quantitative description of the
behavior of the conductivity and thermopower is given.

The paper is arranged in the following way. In Sec. II
the general relation reducing the calculation of conduc-
tivity and thermopower to the calculation of the self-
energy of the electron in a random potential is derived.
The evaluation of the self-energy with the use of the dia-
gram method is carried out in Sec. III. In Sec. IV the re-
sults of the calculation of the conductivity and thermo-
power for two models of random potential is presented.
The experimental consequences of the theory are dis-
cussed in Sec. IV.

II. GENERAL RELATIONS

We restrict our consideration to the case when only the
two lowest subbands give the contribution to the conduc-
tivity. The dispersion curves for the electrons in these
subbands are shown if Fig. 1. The Fermi level is placed
close to E,. We consider the low-temperature limit when
the electron mobility is limited by the elastic scattering
by a random potential. The random potential usually
originates from charged donors located in the spacer lay-
er, impurities in the conducting channel, surface rough-
ness, alloy fluctuations, etc.

It is seen from Fig. 1 that the electron from the first
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subband can be elastically scattered into the second sub-
band and vice versa. The effect of these intersubband
scattering processes on the conductivity o was studied by
Mori and Ando® (see also Ref. 10). The result obtained
reads

0=01+0'2=e(n1,u,1+n2,u2) ’ (2)

where o, n; and o0,, n, are the partial conductivity and
electron concentration for subbands 1 and 2. The usual
relation

between the mobility u; and the relaxation time 7; is sup-
posed. Note that intersubband scattering influences both
7, and 7,. According to Ref. 8 these quantities are to be
found from the system of equations

Sym+8pn=1, S,pn+S,pn=1, (4)
where
_ 2uH? d%k
sy===f Sy e —Ep)
; kK’
2 {Sij 2 WL,’Q_WE(,’é’)—k—Z H ,
k' 1=1,2
(5)
WD = %}( G,k V(0) LK) Y 28(Ep—e,(K)) - (©)

Here V(r) is a random potential. The symbol ( )
denotes the configurational averaging. The stages |i,k)
are

1

lik)= Ql”?

¥, (z)exp(ik-p) , (7)

where W,(z) is the normalized wave function describing
the transverse movement. The corresponding size-
quantization energy is E;; Q is the normalization area.

The terms with i =j =1 in Eq. (5) describe the in-
trasubband scattering. They give the standard formula
for the inverse transport relaxation time. The other
terms describe the intersubband scattering.

Equations (4)—(6) are derived with the use of the Born
approximation in which the electron wave functions of
the initial and final states are supposed to be plane waves
in the longitudinal direction. In the frame of this approx-
imation the density of states undergoes a steplike increase
at the threshold of the topological transition Ez=FE,. As
a result the probability of scattering W2’ in Eq. (6) also
exhibits a sharp steplike increase at the threshold.
Indeed, the argument of the 8§ function in Eq. (6) never
goes to zero if Ep <E,. However, it is clear that the ran-
dom potential V' (r) perturbs strongly the electron states
within some energy interval around the bottom of the
second subband. This results in the smearing of the step
in the density of states and, consequently, in the smearing
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of the step in the relaxation time.

Let us denote with y the characteristic smearing ener-
gy of the bottom of the second subband. Obviously
enough, formula (7) is valid only outside this interval, i.e.,
for E,—E,>vy. Inside it, |Ep—E,| <y the Born ap-
proximation fails. It is important to note that the elec-
tron states with energies close to E in the first subband
are slightly affected by the random potential due to the
inequality y <<E, —E,, which is usually well satisfied.
The same inequality permits one to neglect the contribu-
tion to the conductivity from the electrons of the second
subband in the vicinity of the transition. Really, if
|Er—E,|~y then the concentration n, of the electrons
in the second subband is small, n,/n,~y/(E,—E,)
<<1, while the mobilities u; and u, are comparable. We
come to the conclusion that the states in the second sub-
band are important only as intermediate states in the pro-
cess of scattering of the electrons from the first subband.

Neglecting the term proportional to n, one finds from
Eq. (2),

2
n
m
where
T1 D= mtra+7-1;tler H (9)
1 _2m# [ d%k
Tt =22 f( ek~ Ep)
s
<
2 2
rade= 2T [ K S 0—EpS WEE . (D
(2m) <

Here 7, is intrasubband and 7, is intersubband relax-
ation times. Only the latter exhibits the strong variation
at the threshold of the topological transition. In order to
take into account the distortion of the states in the
second subband by the random potential, it is convenient
first to rewrite the sum in Eq. (11) in the following form:

> WQ;.&’=% Im[(1,k[{ V(r)GP(r,r")V(r'))|1,k)]

K

(12)

where the Green function of the electron in the second
subband,
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2,k")(2,k’|

GP(r,r)= 12K02.K] , 13

2, —g,(k’) (13)

is introduced.

It can be shown that the exact [in the parameter
y/(E,—E)<<1] expression for 7. which is valid in
the transitional region |Ep—E,|~v corresponds to the
replacement in Eq. (12) of the free-electron Green func-
tion (13) by the Green function in the random potential.
If we present formula (12) as

2 1
W<"2,>=—1m<V —_— ) , (14)
% k,k ﬁ 12 EF__HZ 21 Kk
where
A, ———A +E, (15)

is the Hamiltonian of the free longitudinal motion in the
ith subband and the matrix elements are

Vip)=[" dzw,(2)V(n)¥)(2) , (16)
then the generalization of (14) in the transitional region

implies the replacement of the operator (Ej —H ,)"1 by
the operator @22 defined as

o0 1
G, = dz ¥,(z) = (z), (17)
ij f_w z z EF_H“‘V(I') J
where
A B ﬁ2 92
A=--- A, e +U(z) (18)

is the full Hamiltonian of the electron in the 2D system.
U (z) is the potential confining the electron in the z direc-
tion.

Since we had restricted the consideration to the two
subband approximation only the operators @,»j (17) with
(i,j =1,2) are important. Then it is easy to verify the fol-
lowing relations between these operators:

é22: +@(0)‘/22@22‘*'622 VZIGIZ >
@12:@(1(;)1111@12+@(1(1)V12@22 ’ (20)

where G\'=(E;—M,)"". From Egs. (19) and (20) fol-
lows the representation

@22:

(19)

(Ep—H,—Vy—Vy(Epg—H,— V) 'V,]~

1)
Uin (14) one finds

Substituting (21) instead of (Ep—H,)~
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The term V|, in the denominator describes the intrasub-
band scattering of the electron in the first subband. The
consideration given above proves that it may be neglected
with the accuracy vy /(E, —E,).

Expression (22) can be rewritten in a more convenient
form. Note that the operator G 11 has the representation

Gn=[E;—H,— V=V (Ep—H,—Vy) Wy 17!
(23)

similar to (21). Let us perform the configurational
averaging in (23) and introduce the self-energy part 3 ,(k)
according to the definition

_ 1
(Guh= Ep—e(k)—=(k) @4

2,(k) describes both the intrasubband and the intersub-
band scattering processes of the electron in the first sub-
band. If we neglect formally the term V,; in Eq. (23),

il

Dimx)= [ d*p(V,;(p)V;,(p"))e* PP
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then the intersubband processes only will contribute to
the self-energy. Let us denote this part of =, as =M.
Then it is easy to justify the following relation:

S WP =— 5 Im 2Pk (25)
2

Equation (25) reduces the description at the topological
transition to the calculation of the self-energy part of the
Green function. This calculation is carried out in the
next section.

III. THE SELF-ENERGY PART CALCULATION

Let us suppose that the random potential V(r) is
Gaussian with the correlator

Qr—r")=(V(r)V(r")) . (26)

It is clear from Egs. (23) and (24) that the perturbation
theory series for the self-energy =™ includes the follow-
ing quantities:

=[a% [ dz [7 dz'W,(2)W;(2)¥,(2')¥,,(z)Q(r—r")e M PP . 27

The first several terms of the diagram expansion for
3™ are shown in Fig. 2. In this picture the free Green
functions [Er—¢,(k)]”! and [Ep—e,(k)]™! describing
the electron propagation in the first and the second sub-
bands are represented by the single and double lines, re-
spectively. To each dashed line corresponds the correla-
tor D,-ﬁ-’", where i,j and I,m are the indexes of the Green
functions which the dashed line separates in its beginning
and in its end, respectively. Note that according to the
definition of S’ its diagram expansion contains no dia-
grams with two single lines having the common vertex
since these diagrams describe the processes which include
the intrasubband scattering of the electron in the first
subband.

(b)
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FIG. 2. First several diagrams for the self-energy part of the
first subband Green function. The free Green functions of the
first and second subbands are presented by the single and double
lines, respectively. To each dashed line corresponds the correla-
tor (27).

It is useful to adopt the two-step analysis of the dia-
gram series. First let us totally neglect the intrasubband
scattering of the electron in the second subband. That
means that it is supposed V,, =0 in Eq. (23). Then the
series in Fig. 2 includes only the diagrams (a), (b), and (c)
and the other ones in which each vertex separates the sin-
gle line and the double one. )

Let us demonstrate that the main contribution to =™
comes from the diagrams of the type shown in Fig. 3(a).
Let us call this sequence of diagrams the main sequence.
Each diagram of the main sequence satisfies the following
rule: every single line in the diagram is covered with the
dashed line which starts in the beginning and finishes in
the end of the single line. It is also easy to see that any
diagram satisfying this rule belongs to the main sequence.

The distinguished role of the diagrams of the main se-
quence is provided by the strong difference in the magni-
tudes of the electron momentum in the first and in the
second subband. The typical value of the momentum in
the first subband P~[m(E,—E;)]'/? is much greater
than that in the second subband g~(my)!/?, so that
q/P~[y/(E,—E)]'"?<<1.

To demonstrate that the diagrams out of the main se-
quence are suppressed by the factor y /(E,—E;) let us
first compare two diagrams of the same order of the per-
turbation theory shown in Fig. 3(b). The first diagram
does not belong to the main sequence while the second
one does belong. The momenta along the double lines of
the first diagram are q and (K+P—gq), where K is the in-
coming momentum from the first subband. Since the typ-
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FIG. 3. (a) The main sequence of diagrams in the case

V,=0. (b) Two diagrams of the same order of the perturbation
theory. The first is suppressed by the parameter
v/(E,—E,;)<<1. (c) New types of diagrams appearing when
the potential V,, is taken into account. (d) The resulting dia-
gram series for the self-energy.

ical value of both momenta is (my)!/? it follows that
IK+P|~(my)'”?, while |K|~|P|~[m(E,—E)]"~
For this reason the substantial contribution to the in-
tegral over d?P gives only a small phase volume in which
P and K are almost antiparallel. Such a limitation results
in the fact that the first diagram is suppressed by the fac-
tor y/(E,—E,). In contrast to the first diagram the
second one has no limitation on the region of integration
over d2P as it is seen from Fig. 3(b). Similar considera-
tion can be applied for the analysis of the more compli-
cated diagrams. If the diagram does not belong to the
main sequence, then it has at least one double line with
the momentum q+P,;—P,, where |q|~(my)/? and
[Py| ~|P,| ~[m(E,—E,)]'/% Therefore there is a strong
restriction |P;—P,| << |P,|,|P,| on the region of integra-
tion over dzPl, d2P2, which makes the diagram of no im-
portance.

The summation of the diagrams of the main sequence
can be easily performed. Note that the expression for the
basic fragment marked by the box in the second diagram
in Fig. 3(a),

d2p D3 (P—q)
J Qm? o _p _#P o ’ 28)
F 1 2m

slowly varies with respect to g since g <<P. Therefore
one can neglect g in Eq. (28). Then the imaginary part of
Eq. (28) takes the form
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ﬁZPZ
2m

2
—ZF— [ (‘; ’)’ZD;%U% Ep—E, — (29)
o

The real part of Eq. (28) describes the shift of the level E,
by the random potential. It is determined by the values
of P for which the correlator D 1?(P) falls off substantial-
ly. In the further consideration we shall suppose that this
shift is already included in the definition of E,. As a re-
sult the main sequence reduces to the geometric progres-

sion. Its summation gives the following expression for
Eilnter( k):

: 2 D} (K—q)
simer()= [ 24 — (30)
Qm)” p g #i'q L il
F 2 2m 2

Taking into account that K >>g we find for the imaginary
part of Eq. (30),

mD3(K)

Im 2" () =—_5

r

E.—E
{1+;27_—arctan 2F—2~ H .

(31)

Equation (31) states that if the intrasubband scattering in
the second subband is neglected, the characteristic smear-
ing energy of the bottom of the second subband equals T,
ie,y~T.

Let us now take into account the potential V,, in Eq.
(23) which is responsible for the intrasubband scattering
in the second subband. Now the diagrams with vertices
in which two double lines meet are to be considered. We
start the analysis of the diagram series with the observa-
tion that the diagrams which include correlators D 12 and
D% are negligible. The presence of these correlators
leads to the appearance of large momentum along the
double line. For example, diagram (e) in Fig. 2 appears
to be negligible compared to diagram (d). Therefore from
all the diagrams to which V,, gives rise only those in-
cluding the correlator D23 are significant.

It is important to note that the dashed lines corre-
sponding to the correlator D3? have no common vertices
with the single lines. Thus the rule for the selection of
the substantial diagrams formulated earlier remains in
force, namely, every single line should be covered with
the dashed line having the common vertices with this
line. Figure 3(c) illustrates this statement. Three dia-
grams shown in this figure are of the same order of the
perturbation theory. The first diagram does not satisfy
the rule, while the second and third do satisfy it. It is
seen that the violation of the rule leads to the appearance
of the momenta q+P—K and q;+K—P along the dou-
ble lines and, hence, to the restriction of the region of in-
tegration over d2P.

After the latter note the role of the diagrams with the
single lines reduces to the modification of the energy E,
in the double lines. Indeed, into each double line one,
two, etc. fragments marked in Fig. 3(a) can be installed.
The summation of the corresponding geometric progres-
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sion, as it was demonstrated above, is equivalent to the
change E,—E,—iI' /2 in the double line, with I" defined
by Eq. (29).

Now we are faced with the problem of the summation
of all the diagrams consisting of the double lines only.
Examples of these diagrams are shown in Fig. 3(d). It is
seen that each diagram is covered with the common
dashed line. That follows from the fact that the incoming

and the outgoing momentum K is great:
|

. 13
zgmer(k):f(‘z’ L DY(K~a)(Gy [g.Ep—E+ -

K~[m(E,
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—E|)]V?>>(my)"% Such momentum can
pass only through the dashed line. In the opposite case
the appearance of the correlators D13, D% and, hence,
the great momenta along the double lines is unavoidable.

Note now, that if we remove the covering dashed line
from each diagram then the diagram series in Fig. 3(d)
will be simply the averaged Green function of the elec-
tron in the second subband. As a result we come to the
following formula for i’

Using the fact that |K| >>|q|, the imaginary part of Eq. (32) can be rewritten in the form

2
Im zilmer(k)=1>%;<1<)<1m I (—‘;%Gn
w

where €, are the eigenvalues of the Hamiltonian

— 2 A u D)+ Valp)gn ()=, 0, (p) -

Introducing the density of states in the second subband

g2(8)=<28(8——sn)> ,

we can present the final result as

inter — N2l ® 1
Im SiPer(k) DIZ(K)Im<f_wdsEF e
(K)Ffm deg,(e)
© 2
(EF—Ez—e)2+FT

Formula (36) is the basic result of this section. It is easy
to see that for V,, =0 and

2,(e)=gP(e)= (37

m
2mH?
O(e) being the unit-step function, Eq. (36) reduces to Eq.
(31)

IV. THE CONDUCTIVITY AND THERMOPOWER
IN THE VICINITY OF THE TRANSITION

The expression for the intersubband relaxation time
can now be easily found by substituting Egs. (36) and (25)
in Eq. (11) and using Eq. (29),

2 (e)
LA g $2° NG

. o 2
Tlnter m (EF_Ez_‘S) +L

This expression is the main result of the paper. It de-
scribes the peculiarity in the behavior of the conductivity
in the vicinity of the topological transition. Using the

i
—E,+—
9, Ep 2 5

(32)
>=D%;(K>Im<2 : = > (33)
" Ep E2+l—2——e
(34)
(35)
- 3ot )
(36)

f

conventional relation between the conductivity and ther-
mopower,

T dlno

— — m? T d
3e OEp

e ! OE.

1 ) , (39)
T‘

inter

and substituting Eq. (38) in Eq. (39), we get

. ﬁTF ATT 7, f«, 0g,(e)/0e

— . (40)

Y (Ep—E,—el+—

4
Here T is the temperature and 7, is the total relaxation
time (9). In Eq. (39) it is taken into account that only
Tinter €Xhibits the sharp variation in the vicinity of the
transition.

Further calculations are possible only if we specify the
properties of the random potential. We shall consider
two typical examples. The first is the potential, created
by the randomly distributed short-range impurities
(“white noise”). The second is the potential of the
Coulomb centers.
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A. White-noise potential
In this case the correlator (26) is known to be
Q(r—r')=C8(r—r') (41)
and therefore the quantities D,-I]?",
Di’j’”=ij°wdz W (2)¥ (2 ()Y, (2) , (42)

do not depend on K. The width I' according to the
definition (29) equals

=m
=
The 2D density of states in the white-noise potential was

studied in Refs. 11 and 12. It is convenient to present it
in the following form:

r="p2= -’;’_ZC_ f_wwdz V2(2)W2(z) . 43)

— m
27 H?

€

Eo

8,(¢) ; (44)

where E|, is the characteristic energy scale,

C ©
E0=—h"%D%§=i:—2—f_wdz Wi(z) , 45)

and f is the dimensionless function which has the follow-
ing asymptotic behavior:

Py x>>1
X

0.314|x|%%exp(—5.84|x]) ,

flx)=

x<0and [x|>1. (46)

It is clear from (43) and (45) that the quantities I" and E|,
are comparable.

In order to present the results of the numerical calcula-
tions of 7, it is convenient to rewrite Eq. (38) using Eq.
(44) in the form

4 _T 2Ep—E;)
Tintlerz ; T T V| 47)
where
_ T
v= 2K, (48)
and the function F_ is defined as
1 r= fvt)
F (Y,v)=— ——— . (49)
Vs iy =

The plots of F_ calculated for various v are presented in
Fig. 4(a). Its argument Y =2(Ep—E,)/T" characterizes
the proximity to the transition. In calculations the func-
tion f presented in Ref. 11 was used. It is seen from Fig.
4(a) that the interval of E in which 7, and, hence, the
conductivity exhibits the sharp variation is determined by
the higher energy I" or E, i.e., ¥y = max{I', Ey}.

The expression for the thermopower after substitution
of (44) in (40) takes the form

FS

0.8

-5 0 5 10

FIG. 4. The normalized inverse intersubband relaxation
time (a) and thermopower (b) as the functions of the Fermi-level
position [Y=2(Er—E,)/T] in the case of the “white-noise”
random potential. Curves 1,2,3 correspond to
v=I"/2E,=0.3,1,3, respectively.

a=aqayF, (Y,v), (50)
where
27Tt
A= 37 (51)
and
o f'(ve)
F . (Y,v)= dt———-F7+— . (52)
~(Y,v) V_]Lw T —2 41

Figure 4(b) shows the behavior of F, vs Y for various v.
It is seen that the peak of thermopower in the vicinity of
the transition has an asymmetrical form. This asym-
metry is the most important qualitative result of the
present paper. It is the consequence of the behavior of
the 2D density of states in the white-noise potential.
Indeed, for E,—O0, i.e., v— o, we obtain from Eq. (52)
the symmetrical Lorentzian peak in thermopower,

I'\2

F (Y, )= .
* MEp—E,)*+T?

(53)

9,13

Note that in the previous works™'” in which the con-
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ductivity in the vicinity of the transition was considered,
the smearing of the density of states in the second sub-
band was neglected. Therefore the approach of Refs. 9
and 13 leads to the symmetrical peak (53) in thermo-
power at low temperatures (see Ref. 14). That contra-
dicts our prediction, since, as it was shown above, E,~T .

It is significant to emphasize the difference between the
2D case considered and the 3D case. In 3D the unper-
turbed density of states g(e)=<e!’? results in the asym-
metry of thermopower.® The smearing E, of density of
states in 3D is negligible. The reason for this is that E
in 3D is proportional to the second power of the random
potential correlator (41), E, < C 2 (see Ref. 15), in contrast
to I'~C. Therefore the inequality Ej <<T" holds in 3D.
In 2D we have E;~T and the only source of the asym-
metry is the smearing of the density of states.

B. Coulomb potential

Let us suppose that the random potential ¥ (r) is creat-
ed by the charged donors providing the conduction chan-
nel with the electrons. The electron gas screens the
Coulomb potential of each donor. The typical space
scale of the resulting effective potential is of the order of
the screening radius. The latter is known to be about the
Bohr radius ap =#*/me? (here « is the dielectric con-
stant) in the 2D case.'® Under the condition
E,—E,>>#"/ma}, which is normally met, the de Bro-
glie wavelength of the electron in the first subband
#/[2m(E,—E)]'/? is much less than the screening ra-
dius. That means that the potential V(r) affecting the
electrons can be considered as quasiclassical and charac-
terized by the distribution function'®

1 V2
&( V)Zmexp | (54)
where
w={(2v2)12 (55)

is the mean square root potential. The validity of quasi-
classical treatment permits us also to suppose the bottom
of the second subband to be shifted smoothly by the po-
tential V(r) in each point r. Then the density of states is
given by the expression!®

ge)=[" avemgP -7, (56)

where g” is the unperturbed density of states (37). The

integral (56) is the known error function

R (]
g,(e)= Py P(e/W), (57)
P(x)= Wll/z J7 dtexp(—1?). (58)

Comparing (44) with (57) we find the expressions for 7.,
and «a in the form (47) and (50) with the replacement of
the functions F_and F, by

8809
= 1 pw D(vt)
FYm=— 7 a—20 (59)
vf—oo (Y —1)?+1
= © '(vt)
F (Y,v)=% dt————— , (60)
i I o
where
T
Y= . 61
v SW (61)
The behavior of the functions F and F s

Y =2(Ep—E,,,I for various ¥ is shown in Fig. 5. The
thermopower is now a symmetrical function of Y. This is
the consequence of the following property of the 2D den-
sity of states (57) in a smooth potential:

0.9
0.8

0.7

(a)

0.6

FIG. 5 The normalized inverse intersubband relaxation time
(a) and thermopower (b) as the functions of the Fermi-level posi-
tion [Y=2(Er—E,)/T'] is the case of the random potential
produced by the charged donors. Curves 1,2,3 correspond to
v=TI"/2W=0.3,1,3, respectively.
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The relation between I and W depends strongly on the
location of donors in space. We consider the typical case
when the donors are arranged in a plane removed by the
distance z, (the thickness of the spacer layer) from the

conducting channel. Using the results of Ref. 10 the
quantities D,-Ij'" (27) can be presented in this case as

g,(e)tg,(—e)= (62)

—2kz,

2me? Ne

Dir(k)= 3 Fi () F (K (63)

k+—
ap

where N is the 2D concentration of donors, the form fac-
tors F;; are

Fyk)= [ “dz W (2)¥;(2)e H (64)

(z =0 is the boundary of the conducting channel). Using
expressions (27) and (55) the smearing of the second sub-
band W can be written in the form

d%k
w?=2
f (27)?

Substituting (63) in (65) we obtain

D% (k) . (65)

—4tzy/ag

o te
W2=16m(Na})E} fo dt

2t
(t+1)2

ag

22 ’ (66)

where Ep =#*/2maj} is the Bohr energy.

The expression for I can be obtained by substituting
(63) in (29) and taking into account that the Fermi
momentum in the first subband,

_ [2m(E,—E]'?

- , (67)
K, 7
is large, K, >>1/ap. Then we have
87 Na3)E3
=g, Th(Koexp(~2Kozo) 68)

It is clear from (66) and (68) that the dependence of I
and W on the thickness of the spacer z, is substantially
different. If zo>1/K,, then I' exponentially decreases
with the increase of z, and we have I' << W. Therefore
the approach of Refs. 9 and 13 in which W was neglected
proves to be inadequate.

In the region z, < 1/K an a priori statement about the
ratio I' /W is impossible. The parameter Na} usually is
of order of unity and the form factors ¥,, and &;, which
do depend on the wave functions ¥,(z) and W,(z) play the
decisive role.

Note in conclusion of this section that the derivation of
(63) is based on the fact that the screening is fulfilled by
the electrons of the first subband only, but with the in-
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crease of E. the electrons of the second subband also
take part in screening. As a result the screening radius
diminishes. This effect causes the slight asymmetry of
the thermopower peak. It falls off more rapidly towards
high E in contrast to the case of the white-noise random
potential.

V. CONCLUSION

In the present paper the behavior of the conductivity
and thermopower of a 2D electron gas in the case when
the Fermi level crosses the next size-quantization level is
studied. The sensitivity of these quantities to the position
of the Fermi level around the bottom of a new subband is
caused by the processes of intersubband scattering of the
electrons from the populated subband. It is shown that
there are two reasons and, consequently, two parameters
that determine the rounding of the discontinuity in the
Fermi-level dependence of the conductivity predicted by
the Boltzmann equation in the vicinity of the transition.
First is the finite lifetime #/T" of the electronic states in
the populating subband, caused by the possibility of their
elastic scattering into the states of the lower subbands.
Second is the smearing E,, or W of the density of states in
the populating subband, caused by the random potential.
It is important that in the 2D case both parameters are,
in principle, of the same order ' ~E; or '~ W. On the
contrary, in 3D we have E,, W <<I', and only the life-
time broadening I'" of the populating states is significant.

Note that in the transitional region |Ep—E,|
~y=max{T,E,} the structure of the 2D wave func-
tions of the electronic states in a newly populating sub-
band is very complicated. Just in this region the localiza-
tion threshold for these states is situated. However in the
calculation of the conductivity and thermopower such a
complicated structure of the wave functions appears to be
of no importance. The reason for this is the strong
difference in the space scales of the wave functions in
newly populating and in lower subbands. The de Broglie
wavelength of the electron in the lower subband is much
less than #/(my)!/?—the typical size of the wave func-
tion in the new subband. As it was mentioned above, the
states in the new subband act exclusively as the inter-
mediate states in the scattering processes of the electrons
from the lower subbands. Then the electron with the
small wavelength, being scattered into such a “wide”
state, does not “feel” the complicated arrangement of its
wave function. Therefore, only the density of states in
the population subband appears to be significant.

The most important qualitative result of the present
research is the asymmetry of the peak in the dependence
of the thermopower on the Fermi-level position in case of
the white-noise potential. In case of the Coulomb poten-
tial the very strong dependence of the amplitude and the
width of the peak on the thickness of the spacer layer is
predicted.

We had restricted our consideration to low tempera-
tures. Note that the temperature itself may cause the
rounding of the anomalies.!” Therefore the condition for
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the validity of the theory developed is T <<y. The treat-
ment of the experimental data!® based on the temperature
smearing of the anomalies was carried out in Ref. 19. Be-
sides, with the increase of temperature the effect of the
phonon drag on the thermopower may become
significant.?°
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