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The propagation of longitudinal-acoustic waves through a quasiperiodic superlattice composed of lay-
ers belonging to the cubic symmetry group is explored in terms of the interfacial strain effects. The re-
sults show features that seem unique to the lattice-mismatched superlattices. We find that the strain-
induced modification of the propagation velocity in this type of superlattice is more pronounced and
may be positive or negative, depending only on the velocity difference in the respective media. We also
obtain universal formulas for the effective elastic coefficient and average and effective sound velocities, as
well as the relevant modulation amplitude, which depends on the quasiperiodic index p. These expres-
sions are applied to analyze the folded acoustic-phonon spectra of semiconductor Si-Ge Sil and
GaAs/Ga& „Al„As quasiperiodic Fibonacci superlattices. Our predictions for peak positions of the Ra-
man spectra are in reasonable agreement with the experimental data.

I. INTRODUCTION

The one-dimensional (1D) quasiperiodic superlattice
(QPSL) is neither a periodic lattice nor a fully disordered
one, many sharp doublet peaks with unequal intervals
can still be observed by Raman scattering. ' This
means that acoustic waves in such a QPSL are Bragg
reAected; and their frequency shift satisfies a linear
dispersion relation so that the quasiperiodicity originat-
ing in the Fibonacci sequence causes so-called zone-
folding effects on the acoustic phonon modes. Although
there is now a well-established understanding of 1D
quasiperiodic superlattices, the inAuence of the imperfec-
tions in the structure on various physical properties of
such systems, however is not known. For example, if the
interfacial mismatch strain is not negligible, how are the
acoustical and optical properties affected by it in the ob-
served phonon spectrums For 1D periodic superlattices
a lot of experiments and theories have already been done
which answered such questions successfully. Howev-
er, in a quasiperiodic superlattice there is a dense distri-
bution of scattering peaks throughout the total low-
frequency regime ( ~ 100 cm ' for LA modes or ~ 50
cm ' for TA modes). In addition, the positions of the
main Raman peaks not only depend on the stage number
of the Fibonacci sequence but also on the strain-induced
modification. In fact a few experiments have confirmed
these, especially in the strained-layer Si-Ge„Si&
quasiperiodic Fibonacci superlattice (QPFSL).

Wahlstrom and Chao' first calculated the Raman
spectra of GaAs/A1As QPFSL's either with an ideal in-

terface or with some imperfections. But the effects from
interfacial strain-induced modulation on phonon spectra
were not included in their model. According to the work
of Jusserand et al. " on periodic GaAs/A1As Fibonacci
superlattices, while the interfacial acoustic impedance
modulation nearly vanishes, the displacement field can be
expressed as a plane wave with an effective sound veloci-

ty. In this case the superlattice behaves somewhat like an
effective homogeneous medium, and the wave suffers no
reAection at any interface. However, in a lattice-
mismatched QPFSL, this is not the case in reality. For
this type of superlattice, the lattice-constant mismatch is
accommodated by interfacial strains rather than by the
formation of the misfit dislocations. The existence of
such internal strains should substantially modify the pho-
non spectra and lead to a large correction on propagation
velocity of the acoustic waves. Modulation of this kind
may cause the predicted Raman spectra deviate from ex-
perimenta1 data. Thus, in order to incorporate the
strain-induced modification in the phonon spectrum, a
more general theory for the acoustic-wave propagation
becomes necessary.

In this paper we present a theoretical analysis of the
low-frequency Raman spectra for Si-Ge Si, „and
GaAs/Ga& Al„As QPFSL's in terms of strain effects.
These two systems appear to be good candidates for
ascertaining the contributions of the strain-induced
modification. The results show features which seem
unique to the lattice-mismatched superlattices. In Sec. II
we will discuss the propagation problem of the acoustic
waves for [0011-oriented QPFSL. In the limit of long-
wavelength we derive an analytical expression for the
effective sound velocity, including the effects of the
strain-induced modification. Results from these calcula-
tions and comparisons and comparisons with available
experimental observations are presented in Sec. III. Sec-
tion IV is used for a brief summary and conclusions.

II. ACOUSTIC-WAVE PROPAGATION IN QPFSL'S

A. Effective elastic coefticient

The acoustic vibrations in a QPFSL are able to be de-
scribed by elastic waves propagating in a structured con-
tinuum. To the advantage of both experimental study
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and theoretical analysis, Si-Ge„Si& and
CiaAs/Cze& Al„As superlattices are usually grown along
the [001] axis. In rectangular Cartesian coordinates we
consider an infinite superlattice with its growth direction
along the z axis, x and y lying in the plane of the layers.
Each layer is assumed to have cubic symmetry, and is
characterized by its elastic constant and density. It fol-
lows that the acoustic displacement field, at a given fre-
quency, fulfills the wave equation

w p(z)u(z)= — C(z)
8 Bu(z)
az az

where u (z) can be obtained by solving the above equation
in each layer and then applying boundary conditions at
each interface. The conditions that assume the continui-
ty of the displacement and the stress at the interfaces re-
strict the phonon frequencies and wave vectors, in the
low-frequency case, to those values satisfying the simple
dispersion relation'

w = w„+— —= ~q+k„~ v,~, (2)

where q =
~ k; —It, ~

depends on the scattering
configuration and excited wavelength, k„=2'( n r
+ m)/d where n and m are arbitrary integers, and v,s the
effective sound velocity of the elastic waves along z. In
the absence of gaps Eqs. (2) represents simply the folding
of the normal linear relationship between frequency and
wave vector with slop U,~.

and the substructure factors of the two basic elements

k, k„
S„(k)=—g '

[ exp(iX„r )
d „ iX„

—exp( —iX„r )],

Since the scattering processes of such elastic waves are
primarily due to the photoelastic mechanism, when the
sound velocities differ far less than the photo elastic
coefficients, one can approximately replace the effective
sound velocity of a quasiperiodic superlattice by follow-
ing calculations. First let C &,o'&,e &, and C &, o.

&,e &
represent the components of the elastic, stress, and strain
tensors, respectively. Superscripts A and B refer to the
two basic elements, respectively, and C &, o.

&,e &
refer to

the effective properties of the quasiperiodic superlattices.
The detailed prescriptions for forming a Fibonacci lattice
from two structural units 3 and B can be found in the
Ref. 12. To formulate the wave propagation in quasi-
periodic structures we utilize the concepts outlined in
Ref. 4 and invoke a two-dimensional (2D) periodic lat-
tice, the whole set of reciprocal vertices labeled (n, m) in
reciprocal space is projected onto an 1D axis whose
direction is not crystallographic; we therefore yield a
quasiperiodic 1D sequence with the structure factor

~k, k„
S (k) =—g '

[ exp(iX„& ) —exp( —iX„r ') ],
n, m n, m

(3)

k, k„
Sz(k) = g ~™

exp( —ikd~ )

n, m n, mtX

X [ exp(iX„& )
—exp( —iX„& )] .

Here X„2m' (md& n—d& )/d in dependent on the in-
dices (n, m) and the contents of the basic elements. Cor-
responding to Fourier-transform form of an arbitrary
function in a periodic lattice

4 (k) =S,(k)P(k),

where S~ =L '+„5(k,k„) is the structural factor, we
can give an analogous transform of N in a quasiperiodic
lattice

C&(k) =S„(k)N„(k)+S~(k)@2|(k) .

With this definition we need only to consider longitudinal
vibration of the elastic waves along z. From the symme-
try of the problem, the continuum model expression for
the compressional strain field in reciprocal 1D space is
therefore described by the strain component

e»(k) =S„(k)e3"3(k)+S~(k)e»(k)

=F»5(k)+(@33—e») g 5(k, k„)S(k),
n, m

where E33 (E33T dg +E33 +d)/ dis the spatial average of
the effective strain in the structure. On the other hand,
the Fourier transform of the mass density can be carried
out in the same procedures. Since the density difference

~ p ~
—

p~ is much smaller than average density of the two
constituent layers, we may keep the zeroth-order term

p=(rd„p„+d~p~)/d,
as the effective density of quasiperiodic superlattice.

For a superlattice composed of cubic layers such as
GaAs/A1As, the point-group symmetry is reduced to D2d
from Td, exhibited by the host materials. As a result, the
elastic constant C33 in the superlattice is different from

C&& due to anisotropy. Therefore, for respective basic
element layers, the Hooke's law gives the relation of
stress-strain to be linearly related to elastic constants by

(733 C]]633+ C~&2 (e~»+ ez2) for j = A and B

The stress component in superlattice, due to tetragonal
symmetry, should be

%33—C33 633+ C]3 ( 611+E22 )

We note that we are dealing with a quasiperiodic ideal
multilayer in which the acoustic wave propagate. In the
present case, the strain field is still a modulated plane
wave but does not satisfy Bloch theorem. Now, we only
consider the propagation of the strain field normal to the
surface. This restriction excludes the possibility of cou-
pling between the different polarization waves. Let us
look for a solution of this kind strain field in the plane-
wave approximation. Then the strain component of a z-
propagating compressional wave is
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E33 —633(z) =e(z )exp[ i ( wt —kz ) ] (10)

C
1dA„+ 5(k)

11 11

d
CA g 5(k, k„)S(k),

n, m

(12)

where S(k,k„) is the structure factor and d is set as
d =~d A +dB, the average lattice parameter.

B. Average sound velocity

The second terms in Eq. (12) are generally smaller than
the first one, and can often be considered as a perturba-
tion. We may keep the first term only when
C» —C,", «C1"1C»/C», or a,s zeroth-order approxi-

mation. Such simplifications help to emphasize the phys-
ical meanings involved. First, let us discuss the solution
of this approximation. Substitution Eq. (7) into (12) we
may find

e~&3(z)=EJ(z)exp[i(wt —kz)] for j = Hand B . (11)

Matching the expression for the stress in the various re-
gions through the use of the boundary conditions of
cT 33 cT 33 cT 33 Substituting of Eqs. (8)—( 1 1 ) into Eq. (6),
we have the following effective elastic coeKcient involv-
ing corresponding quantities in the respective media for
the longitudinal acoustic waves:

comparing with that or periodic superlattices only when
neglecting the structural and strain-induced modulation.
In general, we may take u1 to replace u, tr in Eq. (2) as a
good approximation. Here, we should be borne in mind
that in the process of deriving v,z the high-order terms of
the Fourier transform have been ignored. However, for a
lattice-mismatched superlattice, the strain-induced
changes for v,~ can be considered as follows.

(C. Effective sound velocity

According to our previous work, ' in discussing the
phonon spectrum excited by surface acoustic modes, one
must take into account the presence of the acoustic im-
pedance, for which its effects not only modify phonon
line intensities but lead to the asymmetry of some observ-
able doublets. " In the case of an infinite quasiperiodic
superlattice, the Fourier transform of the acoustic modu-
lation exhibits a dense distribution. The correction of the
sound velocity may be derived from a simple perturba-
tion calculation based on the Fourier transforms of the
Eq. (6). Consequently, the sound velocity of the longitu-
dinal elastic waves is approximately given by

(VB VA )V

nm

3V (VB VA )+ g QS(k„)S(k; ) —.. .
n, m ij

QC33/p =d

where

(«A )'

+ d

B
BC11/PB

6 g 5(k, k„)S(k),
n, m

(13)

(15)

(16)

where v A and vB are, respectively, the sound velocities of
the bulk elastic waves in the basic elements 3 and B. If
assuming that the contents of the basic element 3 are
completely different from those of B, then we have

4r sin(k„d„/2) sin (X„ /2r)
/S(k„. )/'=

n, m n, m

A B —1/2
dAdB pA v) pBU(

(14)

The expression of Eq. (14) in appearance is rather similar
to Eq. (16) of Ref. 13, when d, =rdA and d2 =dB. It im-
plies that the dispersion relation of the acoustic phonons
in quasiperiodic superlattices is no remarkable changes

PA +C 11 /PA /PBV Cll /PB

is the ratio of the acoustic impedances. For cubic sym-
metry, there are three independent elastic constants, la-
beled C», C12, and C44, and the velocity of the bulk lon-
gitudinal waves along a crystal axis is v&=QC»/p.
Thus, we can define V1

=Q C33 /p, v1"=Q C 1"1 /p A, and
v1 ="y C11/pB, respectively; an equivalent expression of
Eq. (13), i.e. , an average sound velocity in QPFSL's, is

2 2
TdA

U1 d
A

+
UI U(

In general the effects of higher-order terms are quite
small and can be ignored; if we keep only the linear
terms, the contribution of the strain-induced modification
to the effective sound velocity at order p is found to be

(u„—vB )v

2UA UB
2 2

d
sin

A

7dA/
sin

7dA7

d

(17)

here we have selected dA =~dB for a 2D square lattice
and transformed the quasiperiodic indices (n, m) into in-
dex p, because the second term in Eq. (15) becomes small
as either k„or X„gets large and achieves its max-
imum values when n and m are neighboring Fibonacci
numbers, defined iteratively by F =F 1+F 2 for
p ~ 2, with Fo =0 and F, = 1. Therefore, the strain-
induced modulation on the sound velocity of the
QPFSL's is mostly from several largest Fourier com-
ponents. Nevertheless, the sum of high-order terms in
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Eq. (15) is not negligible, and may accurately determine
the positions of the folded acoustic modes in a low-
frequency Raman spectrum. This conclusion can be
checked with available experimental data of the Si-
Ge„Si, „and GaAs/Ga, „Al„As Fibonacci-modulated
superlattices.

III. DISCUSSION OF RESULTS

A. Si-Ge Si, QPFSL's

8.0500

8.0100

i IK
~~ 7.9900

p
4.7905

Si—Ge,Siq QPFSL's

I I I I l I I 1 I l I I I I i I I I I ) I I I I 1 I I I I i I I I I )
I I I I

For Si-Ge, Si, „strained-layer QPFSL's, Dharma-
wardana et aI. estimated the effective sound velocity of
the longitudinal-acoustic waves as 8.0 km/s based on the
bulk sound velocities of Si and Ge and the measured x
(0.48) value of the Ge„Si, alloy. Comparison of their
calculated and observed Raman peak frequencies shows
that although all measured doublet Raman peaks can be
approximately predicted, the calculated peak positions
are slightly lower than the corresponding measured ones.
According to our work in Sec. II, the numerical calcula-
tions have been completed. Here, we let V&=8.0 km/s,
the average sound velocity in the Si-Ge Sii „Fibonacci
superlattices; and the other parameters used are as fol-
lows:

dz =54 A, p(Si)=2330 kg/m, Uz =8.4 km/s,

dz =42 A, p(Ge)=5323 kg/m, Uz =7.3km/s .

The strain-induced modulation on the effective sound ve-
locity can be expressed as a function of quasiperiodic in-
dices (n, m) or index p; such a modulation is shown in
Fig. 1(a). An important feature can be seen clearly in this
figure that the maximum modulation essentially occurs at
~p ~

~ 10, whereas for large ~p ~

the strain does not contrib-
ute to the modification of sound velocity in the QPFSL's.
On the other hand, in the limit of e33

—@33=0, Eq. (15)
reduces to Eq. (14), corresponding to the case of vanish-
ingly small strain-induced modulation. Note that the
sound-velocity difference v&

—
vI in this superlattice is

greater than zero so that v,z v&. Calculations from Eq.
(15) for Si-Ge, Si„QPFSL's indicate that the perturba-
tion correction of the effective sound velocity amounts to
0.317 km/s, which means that the actual sound velocity
in this superlattice is nearly 8.32 km/s. Using Eq. (2) we
further calculate the Raman peak positions according to
the results of Dharma-wardana et al. Table I displays

4.7895—
c5

4.78850
GaAs/Gs, Al, As QPFSL's

put

4.7875
-20

I I i I I I I l I I I I l I I I 1
I I I I I l I I I I [ I I I I

t
I I I I-15 —10 -5 0 5 10 15 2G

Quasiperiodic index p

FIG. 1. A plot of modulation amplitude A~ vs quasiperiodic
index p for (a) Si-Ge„Si& „quasiperiodic Fibonacci superlattice
and (b) GaAs/Gap 75Alp 2gAs quasiperiodic Fibonacci superlat-
tice.

B. GaAs/Ga, „Al„As QPFSL's

Although the effects of the strain-induced modification
on phonon spectra of the Si-Ge, Si, QPFSL'S have
been verified, whether our present model is valid for the
other system remains unclear. Therefore, in Fig. 1(b) we
also give the relationship of modulation amplitude versus
quasiperiodic index p for GaAs/Gal „Al„As (x =0.25)
QPFSL's, where the lattice mismatch is much smaller
than that of Si-Ge„Si& systems. As we saw in the
preceding subsection, the modification from the largest

corresponding experimental and calculated Raman data
both from Ref. 4 and our present work. In accordance
with Ref. 4 we have used the Brillouin shift of
w~ =(5.3+0.3) cm '. Comparison of the two kinds of
approaches demonstrates that the effective sound velocity
of the quasiperiodic superlattices is dependent on strain-
induced modulation existing in the systems, and our re-
sults coincide with experimental observations.

TABLE I. The main spectral lines in the quasiperiodic Si-Ge Si& „(x=0.48) Fibonacci superlattice. Corresponding the larget
Fourier compnents, the phonon frequency has been expressed as w„=w~ = ~2vr+U, IId '+ws~, p being an integer. Note that the
Raman spectra usually contain an error about a half of a wave number.

W 1

Phonon frequency (cm ')'
W Wp Wp Wi W2

Theoryb
Expt. b

This work

2.6

2.9

13.2
13.5
13.5

7.5

8.0

18.1
18.5
18.6

15.4
15.7
16.3

26.0
26.9
26.9

28.2
29.2
29.6

38.8
39.9
40.2

48.9
51.0
51.1

59.5
60.9
61.7

' Brillouin shift w& =5.3+0.3 cm
b See Ref. 4.
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0
c5

a

8.0100—

8.0500
N

8.0300—A
Sa-a~i, .

(a)

The mass density of p(GaQ75A10 p5AS) is obtained by
linear interpolation between GaAs and A1As. As to the
sound velocity of it, we have determined
v(GaQ 75A1Q 25As) =4.94 km/s by an arithmetical average
of the corresponding bulk values. With all these
specifications, we can yield the values of u ~ and U~ by

vq = [d I v(GaAS)+dqu(GaQ 75AsQ 25As)]/dg

7.9900
4;7905

4.7900

4.7895—
"e

4.7890—0
M

I I I I 1 I I I I 1 I I I I 1 I I I I 1 I I I I 1 I I I I 1 I I I I 1 I I I I

(b)

GaAs/Ga, ,Al~ qpFSL'a

4.7885 ~ I I I ) I I I I i I I I I i I I I I i I I I

-20 —15 -10 -5 0
Quasiperiodic

I I I I I I
I

I I I I I I I I I

5 10 15 20
index p

FICx. 2. Effects of the strain-induced modulation on sound
velocity (a) for Si-Cxe Si

&
and (b) GaAs/Crap 75Alp p5As

QPFSL s. For simplicity, we have transformed quasiperiodic
indices ( n, m ) into index p through the relation of (m +n ~)=H,
where m and n span all the integers.

Fourier components is universal, as expected. The modu-
lation features of the sound velocity for these two super-
lattices are identical in their qualitative appearance (see
Fig. 1), however, the modulation amplitudes are radically
different, because of nearly vanishing 1attice mismatch in
GaAs/Ga, Al As. This amplitude in Si-Ge Si, „ is
much greater than that of GaAs/Ga& „Al As.

The numerical procedures to obtain the dependence of
modulation amplitude on quasiperiodic indices (n, m) for
GaAs/Ga, „Al „As QPFSL's are given as follows.
First, based on Refs. 2 and 5, the parameters used for
present calculation are

di =50.8 A, d& =22.6 A, d2=22. 6 A,
U(GaAS)=4. 72 km/s, U(AlAs)=5. 12 km/s,
p(GaAs)=5315 kg/m, p(A1As)=3745kg/m

and

=4.79 km/s, (18)

Ug = [d I v(GaAs)+d2U(GaQ 75ASQ 25AS)]/dg

=4.83 km/s . (19)

Finally, the effective sound velocity is determined easily
by evaluating Eqs. (14) and (15), and the numerical com-
putation gives U,&=4.66 km/s, nearly 3% less than its
rms spatial average (V=4.79 km/s). We should point
out that the contribution of the strain-induced modula-
tion to the effective sound velocity, in this superlattice, is
negative due to U„—U~ &0. If one does not take into ac-
count the effect of the strain modification as underlined
above, the resulting theoretical values are slightly higher
than the measured ones we would expect. Based on such
an analysis, in Table II we have listed the theoretical and
experimental data of GaAs/Gao 75Alo p5As superlattices,
both from Ref. 5 and our present work. Each double
peak is labeled by two superscripts, plus and minus signs.
Here we only select the Raman data from 4579- and
6471-A excitations, and the corresponding Brillouin
shifts are 3.25 and 1.85 cm ', respectively.

From Tables I and II one can see that the two data
determined from experiments and our theoretical work,
comparatively speaking, are more closer than the predic-
tions from Refs. 4 and 5. However, the small differences
between these results remain and can be attributed to the
experimental error, because the frequency shift w in Ra-
man spectrum commonly has an absolute instrument
width of +0.5 cm

In order to understand the effect of the strain-induced
modulation on effective sound velocity, we have calculat-

TABLE II. Comparison between the main peak positions in the Raman spectra of quasiperiodic RaAs/Ga, Al„As (x =0.25) Fi-
bonacci superlattice and the predictions of the calcuation.

Theory'
Expt. '
This work

2.8
2.9
2.6

+
W

9.3
9.8
9.1

Mp

6.5

6.2

Raman frequency shift (cm ')

Wp LU1 l81

457.9-nm excitation (w&=3.25 cm ')

13.0 12.5 19.0
12.3 12.3 18.7
12.7 12.1 18.6

22.2
21.7
21.6

28.7
28.2
28.1

38.0
37.6
36.9

W3

44.5

43.6
43.4

647.1-nm excitation (w&=1.85 cm ')

Theory'
Expt. '
This work

' See Ref. 5.

4.2

4.0

7.9
7.5
7.7

7.9
7.5
7.6

11.6

11.3

14.0
13.8
13.5

17.7
17.2
17.2

23.9
23.5
23.0

27.6
27.3
26.7

39.5
39.0
38.3

43.2
42.5
42.0
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ed v,s for some fixed indices (n, m) according to Eqs. (14)
and (15). The numerical results are shown in Fig. 2(a) for
Si-Ge„Si, QPFSL's. For the sake of comparison, we
have also shown the GaAs/Ga, „Al As QPFSL's case
in Fig. 2(b). Here we have transformed indices (n, m)
into index p for simplicity. Obviously the modulation
from the Fourier components p (—3 can be ignored, and
the contributions of the strain-induced modulation main-
ly arise from the Fourier components corresponding to
p 0. Moreover, such contributions are positive for Si-
Ge Si, „and negative for GaAs/Ga, Al As
QPFSL'S.

IV. SUMMARY AND CONCLUSION

In summary, we have investigated the explicit contri-
butions of strain-induced modulation to the effective
sound velocity based on an ideal interfacial model, ignor-
ing interfacial disorder induced by lattice mismatch be-
tween the constituent layers. This model involves only
the wave velocities U ~ and v~ in the respective media, the
thicknesses of two basic elements as well as the detailed
structure of the QPFSL's, but can give a good prediction
for peak positions of the folded acoustic-phonon modes.
It suKces for our principal purpose of understanding the
essential features of the internal strains due to lattice

mismatch. Meanwhile, this simple approximation may
be valid for the case of periodic strained-layer superlat-
tices.

Strictly speaking, the phonon spectra in an actual su-
perlattice are subjected to additional modifications by the
introduction of various imperfections such as indepen-
dent disorder and correlated disorder. ' They will give
rise to a slight increase of the linewidth and the decrease
of the scattering intensity for phonon spectra. In addi-
tion, the disorder will lead to the asymmetry of some
doublet peaks. In our present work, the obtained expres-
sion of the average sound velocity is universal and valid
for arbitrary QPFSL's; in particular, it includes the
influence of the acoustic impedances. If this inhuence
can be neglected, Eq. (14) will be equal to adding the
transit time in each constituent layer. " On the other
hand, the excellent agreement between our predictions
and experimental observations suggests that this model is
reasonable, and is a possible explanation for the devia-
tions of the corresponding results in Refs. 4 and 5.
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