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Interaction of ultrashort light pulses with semiconductors:
Effective Bloch equations with relaxation and memory effects
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Within the framework of the Keldysh formalism, a simple prescription for the derivation of quantum
kinetic equations is given, which makes use of a real-time, multiband generalization of the Kadanoff-
Baym ansatz. Such equations are given explicitly for the case of a two-band semiconductor interacting
with classic optical pulses of very short duration, while the carriers can also interact with phonons
and/or with one another via the screened or unscreened Coulomb potential. They take on the form of
optical Bloch equations for interband polarization and intraband carrier distributions, with relaxation
terms containing memory effects. In the initial coherent regime the inhuence of scattering events involv-

ing nondiagonal components of the two-band density matrix is shown to be of the same order as that of
the more traditional diagonal scattering. Memory effects in collision integrals, which account for the
time-energy uncertainty principle in scattering events, also change drastically the energy dependence of
the scattering rates in this regime. Therefore, these two effects must be taken into account to achieve a
correct description of femtosecond thermalization of optically excited semiconductor plasmas.

I. INTRODUCTION

With the advent of femtosecond lasers, the ultrafast
spectroscopy of semiconductors has experienced an ex-
plosive growth in recent years. The availability of light
pulses with duration shorter than or comparable to the
longitudinal and transverse relaxation times of the medi-
um has made it possible to observe in semiconductors
coherent optical effects, such as the optical Stark effect
(OSE), and, moreover, to obtain unique information on
carrier relaxation processes.

Although the coherent optical phenomena as such
have been extensively studied for atomic systems, where
due to longer relaxation times the coherent limit (pulse
duration much shorter than relaxation times) is easily
achieved experimentally, experimental observations of
the OSE in semiconductors' have attracted much atten-
tion as prospective ultrafast nonlinear-optical devices.
Later experiments, however, made it clear that the ex-
citonic OSE has some important peculiarities compared
with the OSE in pure two-level systems, and a number of
theoretical approaches ' have been presented to ex-
plain these features.

Although the issue of how best to describe the exciton-
ic OSE seems somewhat controversial (Refs. g —11, Refs.
12—16, and Ref. 17 give three different physical pictures),
a common feature of all these approaches is that they
treat the OSE in the steady-state regime. This is ap-
parently justified by the fact that, in principle, the OSE is
a strong-field, and not necessarily a short-pulse effect, but
in practice the extremely rapid relaxation in semiconduc-
tors compels the experimentalists to use such short pulses
that the time-energy uncertainty principle starts to come
into effect (which is definitely not the case with atomic
spectroscopy).

Experimentally this shows up in the appearance of the

oscillatory structures in probe transmission spectra,
which are superimposed on the Stark shift. ' ' A con-
venient basis for a theoretical description of such tran-
sient effects is the set of effective Bloch equations,
which, in contrast to Refs. 7—17, do not rely on the con-
cept of light-renormalized quasiparticles ' and therefore
work in nonstationary situations as well. Although these
equations have been shown to give good qualitative un-

derstanding of pump-and-probe experiments, they
use a very simplistic description of the relaxation process-
es, and to achieve quantitative agreement with the experi-
ment one has to introduce different relaxation constants
for the pump and the probe, which cannot be under-
stood in terms of the Markovian relaxation paradigm.
This explains recent efforts to treat the non-Markovian
relaxation of polarization, which, however, are far
from being comprehensive. One can say, therefore, that
at present the "coherent" aspects of femtosecond optical
processes in semiconductors have become reasonably
clear (although there are still questions to be
answered), ' while there is a need for more systematic
approaches to the description of relaxation processes.

The study of the relaxation processes has until now
been focused on the so-called "photoexcited hot carriers"
and has an interesting 20-years-long history. When an
interband light pulse creates electrons and holes in the
bands, they are initially very far from equilibrium. The
evolution of their energy distribution towards equilibrium
is known to consist of several stages; femtosecond opti-
cal techniques can provide invaluable information on the
first and fastest of them, that of thermalization of car-
riers, during which the initial nonequilibrium distribu-
tions transform into Maxwell-Boltzmann ones. Recent
experiments ' show that the thermalization of photoex-
cited carriers is very fast indeed and takes just l00 —10 fs.
The theoretical description of this process is based on the
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Boltzmann equation, which is solved either straightfor-
wardly, or using elaborate Monte Carlo tech-
niques. ' ' Although these calculations claim very good
agreement with experiments, they ignore the peculiarities
of femtosecond excitation conditions and therefore leave
out at least two important effects.

For one thing, the distribution functions (DF) of the
electrons and the holes, which enter the Boltzmann equa-
tion, are just the diagonal components of the density ma-
trix (DM) of these particles. The DM also has nondiago-
nal (over the band indices) components, which describe
the phase coherence between the electron and the hole
created by the same photon; a statistical average of these
nondiagonal elements gives the optical polarization. '

These components can and should be neglected in the
description of relaxation processes, if the relevant time
scales are much longer than the polarization decay time.
The experimental dephasing times, however, prove
to be of the same order (10 ps to 10 fs) as the thermaliza-
tion times, so that in realistic situations there is no reason
why the nondiagonal components of the DM should be
smaller than the diagonal ones. This should lead to an
additional scattering of carriers on the optical polariza-
tion.

Thus, the correct theoretical description of the carrier
dynamics immediately after photoexcitation should in-
clude not only the equations for the diagonal density-
matrix components (i.e., Boltzmann equations with addi-
tional terms describing such scattering on the polariza-
tion), but also the equations for the polarization dynam-
ics. In essence, such a set of equations is nothing but the
optical Bloch equations, which have to be complement-
ed with corresponding relaxation terms. The carrier dy-
namics cannot be solved independently of the dephasing
processes, which, in spite of the substantial number of ex-
periments, at present are not very well understood
theoretically. Although recently quite a few ap-
proaches to the nonequilibrium optical properties
and the kinetics of light-renormalized quasiparticles
have been developed, none of them treats this intermin-
gling of carrier kinetics with the dephasing explicitly.

There is also another, and rather more serious, prob-
lem that needs to be taken care of in this situation. The
time-energy uncertainty principle states that an electron
created by a light pulse with duration ~ cannot have its
energy defined better than with an accuracy of order h /r;
for ~ in the subpicosecond range this uncertainty can
amount to some tens of meV. When such electrons
scatter, their energy cannot be conserved with the accu-
racy exceeding this quantum limit, and therefore the use
of the semiclassic Boltzmann equations with energy-
conserving 5 functions is not quite appropriate here.
Thus, one has to replace these equations with their quan-
tum generalizations, which contain integrals over the
system's past instead of 5 functions in the scattering
terms. At present such quantum kinetic equations are
abundant in the literature, but they are mostly for-
mulated for the case of strong dc electric fields, and ap-
parently cannot be used as they are to treat the specifics
of ultrafast optical excitation.

This brief review of the state of the art shows the ra-

tionale for the present work. In this paper we present a
first-principles derivation of the set of equations for the
carrier DF's and for the interband polarization (the
effective Bloch equations), which includes the infiuence of
the polarization on the particle scattering, as well as the
non-Markovian nature of the relaxation processes.

The procedure we use to do that can be seen as yet
another way to obtain the equations for the one-time den-
sity matrix using the two-time nonequilibrium Green s
functions. It is described in Sec. II, where we also discuss
the underlying approximations. This procedure is used in
Sec. III to obtain the explicit form of the Bloch equa-
tions for different interaction mechanisms; in this section
the emphasis is mainly on the origins of the polarization
scattering and therefore the equations of this section are
Markovian, which allows comparison with the results of
other authors. In Sec. IV these equations are extended to
the non-Markovian case, and the impact of the memory
effects on the carrier dynamics is discussed qualitatively.
Section V contains concluding remarks.

II. DENSITY-MATRIX EQUATIONS
WITH NON-MARKOVIAN RELAXATION

The aim of this section is to present a procedure for the
derivation of quantum kinetic equations with the use of
Keldysh Green's functions. To make the paper more
self-contained, we had to also include some standard
steps, which can be found elsewhere ' but are necessary
at least to fix the notations.

The physical situation we are going to deal with in the
present paper is that of a two-band semiconductor with
conduction and valence (c and v) bands; Heisenberg
creation operators for an electron in the band u with a
definite wave vector k shall be denoted a I,. The elec-
trons can interact with an exciting laser field, with each
other, with phonons, etc.; the interaction Hamiltonians
will be made explicit below.

In the spatially homogeneous case, to which we restrict
ourselves throughout the paper, this situation can be
comprehensively described by means of the density ma-
trix

( a.~( t )a,~( t ) )
NP~(t ) = (a,„(t)a„„(t) ) (a,„(t)a,„(t ) )

n, &(t) pj, (t)

pq (t ) n, q(t )

(where ( . . . ) denotes the statistical average), whose di-
agonal components give the distribution functions of car-
riers within the bands, while the nondiagonal ones de-
scribe the quantum-mechanical coherence between the
bands; g~z is known to be proportional to the optical
polarization [see Eq. (42)].

In this section we will obtain the equations of motion
for N ~ from the corresponding equations for the non-
equilibrium Green's functions (GF) G~~&(tt'), which are
immediate two-time generalizations of (1):
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6++ 6+—
iGgp (tt') =i-

.n
( «~g(t )ats, (t') ) —(a p, (t')a~/(t ) )

(a „(t)ats, (t')) (Va ~(t)a~(t'))

(2)

From these components one can also construct the re-
tarded and advanced Green's functions:

6 —=G++ —6+ =0 for t & t',
G =6++—G +=0 fDI t) t' .

To finish this account of Green's-functions formal prop-
erties, let us note the time-reversal symmetry:

(there are almost as many conventions about the super-
scripts Ip, q )

=
I +, —

J as there are authors; here we will
follow the notations of Ref. 47). The quantity (2) is a
(2X2X2X2) matrix, whose components depend on the
two times t, t', the symbols V' and V denote time order-
ing and anti-time-ordering, respectively:

i 6+&+ ( «') = ( 'Ta „(t )a ts, ( t ') )

(a ~(t)ats, (t')), t & t'
l I—(a~(t')a „(t)), t &t', (3)

iG z (tt')=('Ta „(t)ats, (t'))

Gg& (tt ') = —[Gg ( t 't ) ]*,

aa k =i[A, a „] .
at

(9)

In the absence of interactions the Hamiltonian 8 of the
semiconductor has the form

where [p, q J
=

I +, —], and + = —,== +; in particu-
lar, it means that G (tt')=6 "(t't) . The properties
(5)—(8) are valid in the presence of any interactions and
will be used extensively later on.

The Heisenberg operators a obey the equations of
motion

—(a~t(t')a „(t)), t&t'

(a, (t )ats, (t') ), (4)
H=&o= g s ga ka

ak
(10)

Comparing (2) with (3) and (4), one sees that all the pq
components of G~~ are made of just two correlation func-
tions:

so that, according to (9), without interaction the opera-
tors a, a ~ just oscillate with time:

at&(t ) =atj, (0)e

G +, t)t'
6+—

L

t&t' )

G+, t &t'
G +,

G+++6 =6+ +G

so that the pq components are linearly dependent:

(5)

Nq~' '(t)=NP~(0)exp[(its, —E q)t] (12)

[its diagonal components do not change with time, while
the off-diagonal ones oscillate with the interband frequen-
cy (E,k —E,z)]. The same can be done, of course, for 6 as
well:

EE kta z(t)=a z(0)e

which allows us to find the time dependence of N ~ [(1)]
for the noninteracting system

5 pB(t t') —N f~(0) NP—~(0)—
~ —N'(0) fi B( —

) —N'(0)aP k P t —t —
k pq

(13)

From (12) and (13) it is clear that N and 6 are closely
connected; in general, any pq component of G at coin-
cident times can be used to obtain N:

down a set of formally exact equations for G, which in-
clude interaction to all orders, namely, the Dyson equa-
tions 4'"

5 z N~(t) N~(t)— —
»m 6".P(«')=

fi N.t3(t) (14)
G(tt')=G' '(tt')+ f dld2G' '(tl)X(12)G(2t')

(15)

[which follows directly from definitions (1) and (2)].
Although 6 is a much more complex object compared

to N, sometimes it proves convenient to use the Green's
functions in order to obtain quantum kinetic equations
for N. One of the reasons for this is that one can write

(here and later on 1,2 stand for t &, t2, etc. ; G and the self-
energies X are understood as matrices 6=G~~p and are
multiplied by the corresponding rules). The self-energy
X/13(tt'), which enters Eq. (15), has the following formal
properties:



8724 A. V. KUZNETSOV

X++(tt') = —. y —+
(16)

—i &,5(t —t') —i sG'0'
at

X+++X--= —(X+-+X-+),
X~—:X+++X+, Xgz(tt') = [X$$(tt')]*, (18)

+ f d 1 d2[ i &—,5(t1) —i''o']XG
= —i &,5(t t—') i—fG i—f d2 &,X(t2)G(2t'),

which practically coincide with the corresponding GF
properties (5)—(8). Properties (5)—(8) and (16)—(18) en-
able one to write down the "conjugate" Dyson equation:

G(tt')=G' '(tt')

+ f d 1 d2 G(t 1 )X(12)6' '(2t') . (15')

aG(0)
i &,5(t —t') i E,G—' '—

,at
(19a)

aG(o) =+i& 5(t t')+isG' —',
apl z

where we have introduced the energy matrix

c,g 0

(19b)

and the Pauli matrix

I 0
0 —1 (21)

which of course has nothing to do with the spin here.
Now, diff'erentiating (15) and (15') with respect to t and
t', we get

The idea behind the use of the Dyson's equations (15)
as the starting point is that well-defined diagrammatic
rules for calculating X exist. These equations are in-
tegral equations, which does not matter much in steady-
state (e.g., equilibrium) conditions when they can be
straightforwardly solved by a Fourier transform.
However, for nonstationary problems it is advantageous
to make them differential equations.

Taking the time derivatives of (13), one can see that the
"free" GF G' ' obeys the following equations of motion:

t+t''—
2

and the relative time

(23)

With respect to these variables, Eq. (22) reads

aG
aT

=i (Gs EG)—
i f —d l[&,X(t 1)6(lt') G(t 1)X(—lt')&, ],

(24)

(25a)
aG
a7

i& 5—(r) ——(Gs+EG) — fd—l(& XG+GX& ).
2 2 Z Z

(25b)
One can loosely say that now (25a) contains information
on the kinetics of the system, while (25b) describes its
spectral properties. The existence of relations (5)—(8) be-
tween the pq components of the GF makes this set of
equations redundant; in particular, four equations (25b)
are equivalent to a single equation for the retarded CzF:
aGR

l
a~

=5(~)+—,'(6 E+EG )+—,
' f dl(X 6 +6 X ).

(25c)
Similarly, any of the four pq components of (25a) can now
be used to obtain the equation for the DM in the limit of
coincident times [(14)];e.g. , for the (+ + ) component we
have

(22a)
aG

, =+i&,5(t t'—)+iGE+i fdl 6(tl)X(lt')&, .

(22b)
Equations (22) are merely the difFerential form of the

Dyson equations and are therefore also formally exact.
To obtain kinetic equations out of (22), one has to intro-
duce new time variables: the "absolute" time

BN(T) . 8
aTr +0

=i(NE EN) lim —f —d 1[(&,XG)++ —(GX&, )++]
t —+T

=i[N, E]+ lim f d 1[6++(tl)X++(lt')+G+ (tl)X +(lt')
t' —+t+0

—X++(tl)6++(lt') —X+ (tl)6 +(lt')] . (26)

Equation (26) represents the general form of the kinetic
equation for the system in question (the "generalized
Boltzmann equation" ) and is still formally exact. Its
first term is responsible for the free oscillations of the po-

larization (12), while the second describes the efFects of
interaction. It is, however, quite useless in this form,
since it is not closed —its right-hand side contains G and
X, which have to be expressed through the DM.
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Xgz(tt') = b,gz(t )5(t t')5—„+X gz(tt'), (27)

where X is the regular part of the self-energy. Substitu-
tion of (27) into (26) yields for the contribution of the
singular term

BN
lim [G++( tt ')b, ++(t ')

Bt „.„ t' &+0
7

a++(t )—G++(tt')] . (28)

Moreover, Eq. (26) has two major shortcomings: first,
it involves taking the limit, which is simply inconvenient,
and second, the evolution of the system at a time T is
determined by the integral over the system's future as
well as over its past, which is physically unacceptable.

In fact, however, the future of course does not contrib-
ute to the integral in (26), since due to the properties (5)
of G and (16) of X the integrand strictly vanishes when
the integration time variable t, becomes greater than
t =max(t, t')+0, so that we can replace the upper in-
tegration limit in (26) by t. This leaves us with a set of
time variables in this equation: T, t, t', and t, of which
only T is directly relevant to the problem. The reason
that we cannot just set them all equal to T as a result of
the transition to the limit in (26) is that the self-energy X
may have a 5-shaped singularity at coincident times (such
singularity is produced by any mean-field contributions to
X, e.g. , by an external classical field); hence, the prescrip-
tion for taking the limit in (26) consists in processing this
singularity first, and setting all these times equal to T
only after that.

Thus, let us extract from X the "instantaneous" part

Taking the limit in accordance with (14) and considering
that 5

&
commutes with b, we get for the singular term

contribution

= iN( T )6++(T ) i b, +—+( T )N( T)
Slllg

at
(29)

(note that N and 6 are matrices with respect to band in-
dices). Introducing the renormalized energy matrix

++ap= ~ap+ ~ap

C.,k+a++
g++

VCk

g++
CVk

C,k+6++
k ~p

(3O)

we can combine the contribution of the instantaneous in-
teractions with the first term of (26):

aN.t'(T)
=i[N&, E„]—:i g (Nz E~t3 E~N$—) .

BT oh

(31)

The remaining interactions are represented by the reg-
ular part of the self-energy X; it is this part that causes
relaxation, i.e., it gives rise to what should be called the
collision term. The absence of singularity makes the limit
in (26) trivial, so that we can easily rewrite this part as
the generalized collision integral:

ax p = f dl g [G++(Tl)X+p+(1T)+G+ (Tl)X ti+(1T)—2++(Tl )G+ti+(IT) —2+ (Tl)G p+(1T)] i .
St

(32)

Now the transformed equation for the DM reads

ax
s~

NP~(t)—
exp[iEts, (t' —t )],

k aP
(34a)

ax ax (33)
aT aT ..

where the first term ("coherent part") [(31)]describes the evolution of the carriers distributions (a=P) and of the po-
larization (aAP) under the action of instantaneous interactions (the contribution of the present), while the second, in-
tegral term gives rise to relaxation that, as suggested by its explicitly non-Markovian form [(32)], depends on the past
history of the system (the contribution of the past).

However, in order to use the kinetic equation in the form (33), we need to specify the procedure for evaluation of the
relaxation term, that is, to establish some relations between the density matrix and the GF, which enter the right-hand
side of (32).

At this stage some assumptions have to be made. The central approximation of the present work consists in relating
these two quantities by the following Ansatze:

N, t'(t )+5.,B(t
' —t)—

iGgti (tt')=
N P( )+5

iGg& (tt')=
N~t'(t')+5 OB(t t')— —

NP~(t')+5 p— Ni,p(t')—
exp[i s~j,(t' —t )],

k ap
(34b)
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which expresses G in terms of N(t) and N(t'), respective-
ly. The physical content of (34) becomes clear from the
following facts: (i) G(tt') of (34) satisfies the equations of
motion (19) for the free GF; (ii) to ensure that (34a) and
(34b) define the same function, the DM on the right-hand
side must obey the equation

ax =i [N, E], (35)

i.e., the "free" part of the kinetic equation (26); (iii) the
retarded GF that corresponds to (34),

(36)

satisfies Eq. (25c) without interaction; (iv) Ansatze (34) are
consistent with all the symmetries (5)—(8) and the proper-
ty (14). To put it simply, (34) means that loca/ly G is sup-
posed to look exactly like it used to in the absence of in-
teraction.

Ansatze like (34) are inherent to GF treatments of ki-
netic phenomena. However, Lipavsky, Spicka, and Vel-
icky have pointed out that care should be taken in
choosing the time arguments of N in (34)—these should
be either t or t', and not the absolute time (t+t')l2, as
has been originally suggested by Kadanoff and Baym.
This choice does not matter much in a truly semiclassic
limit of a slowly varying DM, but it becomes crucial if
one wants to go beyond the semiclassic regime.

These particular Ansatze (34) can be seen as a multi-
band extension of the "generalized Kadanoff-Baym An-
satz" of Ref. S6 combined with the quasiparticle approxi-
mation (36) for G . It becomes exact in the limit of van-
ishing internal interactions and can handle arbitrarily fast
variations of external fields. Although one might be led
to think that it neglects the influence of the interaction
on the energy spectrum, in fact, as we will see below, this
approximation corresponds to the usual procedure for
the calculation of many-body renormalizations.

However, these A nsatze leave out some important
effects. These are (i) the collisional broadening,
which to include we should have first solved Eq. (25c) for
the retarded GF and then inserted in (34) the resulting
G (r) instead of e'" (in this way the generalized
Kadanoff-Baym Ansatz would be completely
recovered); we will not do that in the present paper in or-
der to avoid confusing this effect with what we want to
obtain here; (ii) light-induced renormalizations in strong
optical fields, ' that is, the presence of nondiagonal
terms in the renormalized energy inatrix Z (30); it means
that (34) can only be valid in relatively weak fields (which
may, however, be strong enough to produce other non-
linear effects).

According to Ref. 56, when evaluating the relaxation
terms [(32)] one has to choose that of the two expressions
(34) which contains the DM as a function of integration
variable t„ i.e., one must replace G(T1) with (34b) and
G(lT) with (34a)—this prescription ensures that in the
resulting non-Markovian kinetic equation the retardation
factors are correct. This will be done explicitly in Sec.
IV.

In order to get back to the semiclassic regime, in prin-

ciple one has to assume that DM components in the gen-
eral non-Markovian expression are slowly varying and
take them out of the integral —this would result in a col-
lision term containing only N(T). Ansatze (34), however,
offer a shortcut to these Markovian results: inserting
(34a) instead of G(T1) and (34b) for G(1T) in (32), we
will immediately arrive at relaxation terms containing
only N( T), which coincide with the results of the above-
mentioned general procedure. This prescription will be
explored in the following section.

III. EFFECTIVE BLOCH EQUATIONS
WITH COHERENT EFFECTS IN RELAXATION

In this section we are going to evaluate the collision
terms of the quantum kinetic equations (32) for a number
of interaction models. To do that, we need to specify the
interaction Hamiltonians first.

A. Interaction Hamiltonians

We will consider the following types of interaction: (i)
with an external optical field; (ii) the Coulomb interaction
between carriers; (iii) the electron-phonon interaction.
Consequently, the full Hamiltonian of the problem reads

8=8,+8.„+8,.„,+a,„, (37)

where 8o [(10)]describes noninteracting carriers.
The interaction with a classic uniform electric field

E(t ) in the dipole approximation has the form

8, , = —g p &(k)a &a~ E(t) .
aP

(38)

In what follows we will neglect intraband optical transi-
tions, i.e., we will assume that the transition matrix ele-
ments p & have the form

Pcv
p ti(k)=

Pcv ap
(39)

we see that the quantity

P= y p,„(k)(a,i,a„i, ) = y p,„(k) pk (42)

is nothing but the macroscopic optical polarization, so
that the knowledge of the nondiagonal elements of the
DM, pk =—%&', is all we need to describe the optical prop-
erties of the. system. ' The form (38) ignores quantum
fluctuations of the field and leaves out effects such as ra-
diative recombination, which are supposed to have much

and the k dependence of the interband matrix elements

p„=p,*, will also be neglected, which is justified for
direct-gap semiconductors. "

Comparing the expression resulting from (38) and (39),

8,~,
= —g [p„a,i,a„z E*(t)+p,*,at&a, & E(t )], (.40)

k

with the macroscopic form of the interaction energy,

(41)
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longer time scales. For us it is important that the
"incan-field" interaction of (38) is instantaneous.

The Hamiltonian of the Coulomb interaction in the
standard (long-wavelength) approximation reads

.,„)=—,
' g V(q)a q+qa~. qa~. a q, (43)

kk'q
aP

where V(q) is the Fourier transform of the unscreened
Coulomb potential: q

—V(q)NPP q(t )+ V(q)5 p

0 V(q)NPP (t )

(the singularity here is due to the fact that the unscreened
Coulomb interaction is supposed to be instantaneous).
Inserting (48) and (14) into (47), we can express hc, „& in
terms of the DM:

[6 p (t)]cou&

24me

eq
(44)

(49)
From (46) and (49) we get for the renormalized energy
matrix (30)

Ph=grobtb ++M (b +bt )at),a „
q kqa

(45)

where a single phonon mode with the dispersion co is
taken into consideration; M is its coupling to the car-
riers of the band a and depends on the type of phonons.

Here, e is the dielectric constant; see Ref. 64 for the dis-
cussion of the proper choice of this quantity.

Finally, the phonons give the following contribution to
the Hamiltonian:

Z p=E q5 p PpE—(t)—g V(q)NPP q(t)
q

(50)

= —ip~ —)M„E' —g V(q)p„' '+c.c.
q

(the term V5 p is omitted because it commutes with N p).
Now we are ready to evaluate each component of the
coherent part (31) of the kinetic equation (33). We have

"ck

B. The coherent part of the Bloch equations

To evaluate the coherent part (31) of the Bloch equa-
tions we have to single out the singular part (27) of the
full self-energy. There are only two sources of such
singularities in our case, namely the interaction with the
external optical field (38),

= —2Im pP p„E+g V(q)p&

Bn„k
=i(Z pj

pent„)

= Bn,k

aT

BPk =t [p.(E- —&„)+&,.(n..—n..)]

(Sla)

(51b)

[X".~ (tt') ].„=[kg~(t ) ].„5(t—t'),

1 0
[&gp(t)],p,

= —p p(k)E(t) ()
pq

(46) i s,z
——E,j,—g V(q)(n, z z

—n„z ) p&

+i p„E+g V(q)p„(n, „—n, ~),
q

(51c)

(this is the exact self-energy), and the Hartree-Fock part
of the Coulomb self-energy, which is given by the dia-
gram in Fig. 1. Analytically this diagram reads BT BT (51d)

—i[gyp (tt')] = y LG p(tt')l'V (q)5(t t') Equations (51) are the effective Bloch equations, which
were derived by other methods in Refs. 9 and 20. They

where

= —i(b, p )c,„i5(t t'), —(47)

—V(q) 0
0 V(q)

(48)

(bj

FIG. 1. Hartree-Fock self-energy, Eq. (47). Wavy line, bare
Coulomb potential [(48)]; double solid line, full electronic
Careen's function [(2)].

FIG. 2. Diagrammatic representation of (a) direct and (b) ex-
change Coulomb scattering in the Born approximation.



A. V. KUZNETSOV 44

contain many physical efFects, such as the Stark shift of
the exciton, "' coherent transients, ' ' as we11 as
other more traditional coherent-optical phenomena, '
but they do not and cannot contain relaxation, which has
to be added "by hand" in order to achieve a satisfactory
description of realistic situations. Our procedure en-
ables us not only to obtain these "coherent" equations,
but also to supplement them with corresponding micro-
scopic expressions for relaxation terms.

C. Unscreened Coulomb relaxation

The simplest process that contributes to the relaxation
part (32) of the kinetic equation (33) is that of pair col-
lisions between charged particles. They are described by
two self-energy diagrams shown in Fig 2, which represent
direct and exchange particle-particle scattering in the
Born approximation. %'e will evaluate here only the
direct contribution, which reads

f ' d1d2[iV"'(q)5(t 2)iv"'(q)5(ti)iGy, (tt )iG '~' (12)iG,".'
k' GO

alt )P)q)

or, according to the expression (48) for V~~,

(21)] (52)

V'(q) [iGgz (tt') ][iGgz (tt') ][i6&'
k' k' —q

(52a)

(53)

[N:N(T) througho—ut this section]. This way one can express X in terms of N(T) for any particular self-energy dia-
gram. Furthermore, (34a) gives for 6 +(Tl ) in (53),

X~~z (tt') = i g- (t't)] .
k'q

Our task here is to evaluate the relaxation part (32) with the self-energy (52). In order to illustrate the procedure that
we use, let us consider only the first term in the expression (32) for (dN/dT )z,

I, f d 1 + 6 r (Tl )Xyp (1T)

The first step consists in eliminating GF from expression (52) for the self-energy by using .4nsatze (34): we insert (34a)
instead of G(T1) and (34b) instead of G(1T). Remembering that T ) 1, we get

X~&+(1T)=i g V (q)N) „Nl,' '(5& —Nl, ' 'q)exp[i(1 —T)(E „q—s „—a~1, q)] (54)

a)P)

G~z+(Tl)=;(5 N r)e ~" (T) 1) .

Combining (54) with (55), we obtain for (53)

V (q)(5 ~
—Nz~)N( Nz' '(5& —Nl, ' 'q) f d1 exp[i(1 —T)hs ],

1~1~
where

~~ya, =~yk ~yk —q+ ~a,k' —q ~a,k'

In the same way one can process the remaining terms in (32), which finally yield

(55)

(56)

ax,~

(3T st
V (q) [(5 —Nl, ~)N[~qNq' '(5

p
—Nk' 'q)

k'q

(5yg N( —q)(5~ p Nl, )Nj, q] f exp(irbE„)dr

+ [N f~ q(5rp NP )(5 p Nk'—' )Nq' '—

The integrals in (58) are equal to

( ~
—Nk~q)N(~Nk' 'q(5~ Nq' ')]f e xp—(i rb, E )dz (58)

dr e'"=~5(s)—i lim —=~5 (E),
oo &~0 E +5 (59a)

+ oo dre'"=vr5(E)+i lim
2

——n5+(e),
0 0C +5

5+(E)=5' (s)=5 ( —s) .

(59b)

(59c)
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To gain insight into the physical contents of Eq. (58), let us first extract the usual Boltzmann terms out of it. This is
achieved by retaining only diagonal (over band indices) terms in the equation for n«, which follows from (58) at
a =P=c. Handling the integrals in (58) according to (59) when performing the summation over band indices, we obtain

an, & =2m g V (q)[(1—n«)n, z [n, i,.(I —n«z)5(be„)+n„i, .(1 —n„i, q)5(be„)]
Boltzmann g'q

—n, z(1 —n, j, z)[(1—n«)n«q5(be„)+(1 —n„i,.)n„k q5(be„)]J . (60a)

This expression has a characteristic gain-loss structure and is quite clear in meaning: the particles scatter on one
another conserving their total energy. The structure of the remaining terins in Eq. (58), however, is far less obvious.
Performing the band indices summation in (58), we obtain, on the one hand, the following term:

(60b)=n. g V (q)(n, „—n, k )pi, pf, q[5 (b. E„)+ 5+(b, E,„)]+c c.
~p1 kq

This term can be said to describe the effect of scattering events whereby an electron scatters out of the state k due to in-
teraction with the polarization wave g(pi, pi, q+c.c. ) with the wave vector q. Finally, the term

an, & gV .(q)p~z [(n, i,. q
—n, i, )5 (bc.„,)+(n„i, —

n„& )5+(bE,„)]+cc.
p2 k'q

(60c)

corresponds to the reverse process, namely the appear-
ance (or disappearance) of electrons in the state k during
scattering of another electron or hole (k'~k' —q) on the
polarization wave p~l*, . The overall scattering rate is
therefore

an l

aT s

an, &

Boltzmann

an, &+
aT

an, k+
aT 2

(61)

Terms (60b) and (60c) deserve some comment. First,
they can be expected to be of importance in the initial
coherent regime of the optical excitation, i.e., at times
shorter than the dephasing time. Indeed, in this regime
and in the low-field limit there is an approximate rela-
tion '" between pl, and n l,.

~pi, ~
=n«=(1 —n„i, ) . (62)

Equation (62) shows clearly that in this regime all terms
in (61) are of the same order there are —no a priori
reasons why the last two terms, which represent "polar-
ization scattering, " should be neglected in comparison
with the Boltzmann term. Let us note that this scattering

I

mechanism can, in somewhat different language, be in-
corporated into kinetic equations for light-renormalized
quasiparticles in the form of "coherent factors. " ' This,
however, implies the existence of a relation like (62) be-
tween n and p, i.e., the absence of relaxation. Equation
(61), on the other hand, is valid also beyond the coherent
regime, when some relaxation has already occurred, and
does not require a steady-state optical field so that it is
more general than previous results. '

The second important observation is that processes like
(60b) and (60c) do not conserue the energy because of
imaginary parts in 6+ and 6, which do not have 6-
function structure and do not cancel out as they did in
(60a). In fact, there is nothing strange about it, since
when p&0 the scattering electrons are not in definite-
energy eigenstates anymore —their wave functions are
quantum-mechanical superpositions of conduction- and
valence-band states. This makes polarization scattering
nontrivial, and below we will discuss the underlying phys-
ics in more detail.

To be complete, let us also consider the dephasing; the
corresponding equation is obtained from (58) by setting
a=c and P=U. There are the "Boltzmann-like" terms as
well:

apk =~g V (q)( —pj, In, i, [n, j, (I — n«)5 (b+)E+ n(1 —n, i, )5+(hE„)]
Boltzmann g'q

+(1—n, & q)[n, k q(1 n, i, )5+(b E«)+n—,z ~(1 —n, j,. ~)5+(AE„)]

+nuk [ q(n1«—n«q)5 ( AE„, )+N„z, ( 1 —n, k q)5 ( b E„, ) ]

+(1—n, j, )[n, i, (1—n, z. )5 (A,E„)+n,z q(1 —n„i,.)5 (bE„,)]]

+ps q[n«[n, g q(1 —n«)5 (he«)+n«q(1 —n, z)5 (Ae„)]
+(I —n«) [n, i, ( I n, i, )5 (4—c„)+n„i,.(1—

n, ,„)5 (be,„)]
+n„k[n, i, q(1 —n, g )5+(be„)+n,„(I —n, „.)5+(b 8„)]
+(1—n„z)[n,z(1 —n, j, q)5+(be„)+n„i, (1—n„j,, )5+(bs,„)]]).

(63a)

(63b)
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These terms, whose real parts have been obtained also in Ref. 20, describe the decay [(63a)] and the diffusion of polar-
ization [(63b)] in k space as a result of "Boltzmann" scattering of particles on one another. The remaining terms ac-
count for the effect of scattering on polarization waves:

=~+ V'(q)(p [p,p'[5 (&s„)+5 (&s„)]+p„p„' [5 (bc,„)+5 (bs„, )]]BT p k'

—p~ q[pj, pi', q[5 («„)+5+(be„„)]+p, qp„'[5 (bs,„)+5+(bs„,)]]) (63c)

so that the total dephasing rate is given by

~pk

tota]

BPk + BPk

Boltzmann p

(64)

It is easy to see that in the low-field limit the factors be-
side the 5 functions are of the order of n -E in (63a) and
(63b), and of the order of ~p~ -E in (63c); in higher
fields both terms are of the same order as well. This
shows that the polarization scattering is very important
to the correct description of dephasing processes. To
demonstrate this for other interaction mechanisms, and
to gain further understanding of the physical origins of
this process, we now proceed to the case of the screened
Coulomb interaction.

D. Screened Coulomb relaxation

One of the reasons that the results of the preceding
subsection are of little practical value is that in Coulomb
systems it is crucial to ensure that screening is properly
accounted for. A brief account of screening theory
within the framework of Keldysh's GF formalism is
given in the Appendix.

Our aim here is to investigate how screening affects
particle kinetics and dephasing, using the concept of the
Bloch equations. We will restrict ourselves to the so-
called screened Hartree-Fock (SHF) approximation
for the self-energy, which is represented diagrammatical-
ly in Fig. 3.

Let us note from the start that the diagram of Fig. 3
formally contains the pair Coulomb scattering diagram of
Fig. 2, as well as the unscreened Hartree-Fock self-energy
of Fig. 1. The latter has a singularity at coincident times
[Eq. (47)], which has been accounted for when deriving
the coherent part of the Bloch equations (51). Hence, to
evaluate the relaxation term we should use

& p„(tt')= l yG —
$ '(tt')b VP(tt'),

q

where

(65)

(66)

For illustrative purposes we will again consider only
the first term (53) of the relaxation part (32). Proceeding
exactly as above with the self-energy (65), we obtain

G++ X+p+ =I,= i g (—5— Ni, y )N p J— [ Vs++(1T)+ V]exp[i(1 —T)(sy„—sy„q)z, ]

(other terms are treated in the same way). Noting that, due to properties (A4) of the screened potential, we have

Vs++(Tl)+ V= —Vs +(Tl), Vs +(1T)+V= —Vs+ (1T), (68)

(69b)

and introducing shorthand notation

Vs+ e P i —
cyk

—
yk q

d:—Vs+~

J Vs+ ( T 1 )exp[i( T 1)(syi, —syk q)
—]d 1—:Vsz (Ey )

(and similarly for V ), after some algebra we will get for the relaxation term in the screened Hartree-Fock approxima-
tion

=t g [ (5~y NP, q)NjPVs„+(s—y)+NP—q(5yp N$ )Vs+„(sy)—

+(5~y NP )Nt', qvzz (—sy) —
NP( (5yti

—NE q)VSA (Ey)] .

Let us concentrate on the carrier kinetics first. The summation over y yields for a =P=c
Bn k =i y [n, i, q(1 —n, i, )[Vgg ( )+EV (s)]s—n, i,(1—n, i, q)[Vg~+(s, )+ Vg„+(s, )]BT,s

+ptpj —q[Vstt (&U)+ Vsa (&U)]+pe —qpt[vsw (&u)+ Vs& (EU)1] .

From (68), (69), and (A4) it follows that

(70)

(71)
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VSR + VSA = Vs (co Eyk Eyk —q} &

Vsil+ —
Vsil —= —V+ Vs(~=Eyk —

Eyk ,—»

so that (71) can be transformed further:

~s~+ —~s+~ = ~s' —~

(72a)

(72b)

Bn k

BT
n k} Xnuk —qlVs (E k E k —q} nuke I(1 nuk —q}lVs (E k E k —q)]

q

+EPk QPk q[ VS (Euk Euk q) V] ll k Xi k —q[ VS (Euk Evk q}—
q q

Combining (73) with the coherent part (5 la), we finally get

(73)

Bn,k

BT
= —21m batik p„E(t)+ g Vs(E,,k

—E„k q}pk
q

+(1—n, k) y n, i, qivs+ (E,k —E,k q) n, k y—(1—n, k q)ivs +

q q

(74)

This is our basic equation for particle kinetics in the SHF approximation. The second line in (74) describes scattering
of electrons in and out of the state k. The first term of the first line is merely the generation of electrons by an external
optical field E(t). The polarization scattering is explicitly given by the second term, which is proportional to pkpk
[note that the presence of a nonzero interband polarization also distorts pq components of Vs (see the Appendix), so
that even the traditional Boltzmann terms are affected by it].

Equation (74) gives us an opportunity to see where the polarization scattering comes from: alongside the external
electric field E(t },there also is a localpeld g Vspk q [it is often said that the large parentheses in the first term of (74)

contain the "renormalized Rabi frequency"]. " This local field interferes with pk and thereby creates carriers in

some portions of k space, destroying them elsewhere at the same time. In order to check that this is indeed scattering,
and not some extra generation source, let us consider the evolution of the total number of carriers due to this process:

k

t an, „'
aT

=1 QPkPk q VS (Euk Euk q) l QpkPk qVS (Evk uk —q)
kq kq

since

XPkPk —q[ VS (Euk Euk —q} S (Euk —q Euk}]=
kq

(75)

V (~)= V"( —~) (76)

As has been noted, in the initial coherent regime, i.e., as long as Eq. (62) holds, this scattering is as important as the
traditional Boltzmann one, and therefore should not be omitted in calculations of carrier dynamics, as was the case in
Refs. 38—41. However, to take this process into account, one has to monitor the polarization dynamics as well.

The equation for polarization is obtained from Eq. (70) by setting a=c and P=v. After the summation over y, this
gives

ipk p [(—1 —n, k q)V s(il)E+n, qkVstl (E )+n k qVsA (E—}+(1 n k —q)+sA
St q

+i g pk [n„kVsll+(E„)+(I—n„k) Vslt (E„)+n,kVS„+(E, )+(1—n, k) Vs+„(E,)] .
q

The factor next to pk can be transformed to the form

g [(1—n, k q) Vsll+(E, )+n, k qV~~ (E, )]—=X„(co=E,k),
q

(77)

(78a)

g [n.k, VSg (E, }+(1—nuk —q) VS~+(Eu }]=&uu(~=Evk)
q

(78b)

i.e., it is the sum of electron and hole correlation energies. Performing simple transformations with the term contain-

ing pk q, and combining (77) with the coherent part (51c), we finally get
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BT
E„+ —g V,n,k, +& „(E„) s,k+ —g V n, k q+X,„(E„k)

q
L

+i@,„E(t)(n„k—n, k)+in, kg Vs(s, k
—E,k q)pk q

—t'&,kg Vs"(E,k E k —q)pk —q
q q

+t ypk q[V,+, (E„—s„q)+V,', (E„—E„, ,'].
q

(79)

The curly brackets in (79) contain the renormalized
transition energy: the renormalization of, say, electron
energy consists of the exchange self-energy,—gqv n, k q, and of correlation energy X (Ref. 47).
The latter has a real part, which gives the energy shift
proper, and an imaginary part that gives rise to the polar-
ization decay. The correlation energies enter Eq. (70) in
combination X„—X„,which ensures the "right" sign of
dephasing. From (79) one can see that, although at first
sight Ansarze (34) neglect renormalizations of the spec-
trum, the energy of the optical transitions (which is the
only source of information on the spectrum in this case)
becomes properly renormalized.

The set of the Bloch equations (74) and (79) in the SHF
approximation is formulated in terms of frequency-
dependent pq components of the screened potential Vz
which have to be calculated beforehand. In principle,
one can use the results of the Appendix to this eA'ect, i.e.,
one can use expressions (A6) for VP with II~~ given by
(A10) and (Al 1). Although this would make the problem
completely self-contained, the resulting expressions

VR( —0)
(80)VP(~) =

0 Vs (n~=0)

where the statically screened potential V& can be defined
in a number of ways. ' ' Comparing (80) with (48), we
see that this is equivalent to the replacement of V by V&

in the initial Hamiltonian (43) (as was actually done in
Ref. 20). Noting that within the SSA

X „(s,k) =g [ V —V~ (q)]n, k
q

X „(E,„)= g[ Vq
—Vs (q)]n, k

q

(since Vs = Vs in this case), we obtain from (79)

(81a)

(81b)

would be too complicated to make any practical sense.
That is why one has to resort to some approximation
schemes for the screened potential.

The simplest and by far the most widely used approxi-
mation for Vz is the static-screening approximation
(SSA), ' which neglects the frequency dependence of
VP.

Bpk
Static Pk Eck X ~S (q)nck —

q
. screening q

s,k
—g Vs (q)n, k

q

+i p,„E+g Vs (q)pk (n, k
—n, k)

q

(82)

i.e., the result of Ref. 20. The comparison of (82) with
(79) makes clear the consequences of leaving the dynamic
screening eff'ects out: (i) it leads to the omission of the
Coulomb-hole part of the correlation energy [Eq. (82)
contains only "screened exchange" contributions,
which have no imaginary part and therefore do not pro-
duce polarization decay]; (ii) one can combine terms with
V and V" from Eq. (79) in the form (82) only ignoring
the difFerence in their frequency arguments; (iii) the last
term in (79) has completely dropped out in the SSA.

The static-screening approximation gives the following
result for the carrier kinetics:

kinetics consists in replacing the bare Coulomb potential
Vq with the statically screened one directly in the
Boltzmann equation (60a) for particle-particle scatter-
ing. Let us consider how it can be understood within
the GF formalism.

First of all, it is clear that simple replacement of V„by
V& in the Coulomb scattering self-energy diagram of Fig.
2, which would have given the desired result, does not
make much sense since it would contradict the definition

BBck = —2Iin p„* p„E+g V&(q)pk
, screening q

(83)

i.e., it leaves out all scattering mechanisms except the po-
larization scattering.

Another prescription for neglecting the dynamic eC'ects
in screening that gives less disastrous results for carrier

FIG. 3. Screened Hartree-Fock self-energy [(65)); the double
wavy line represents the screened Coulomb potential.
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of the screened potential (see the Appendix).
However, one can recover the kinetic equations used in

Refs. 38—40 from (74) by making the following approxi-
mation for Vs+ and Vs

+ in Eq. (74):

V Il~q(co)

[1—VIIR(~) ][I—VII "(~)]
= —v rv~(~) (84a)

[see Eqs. (A6b) and (A6c)], where

Vs = Vs ( a) =0)= V

1 —VII' (84b)

1 = +i m5+(co)
co+i 5

(86)

[and doing the same with the loss term of Eq. (74)], we
will obtain Eq. (61) with V(q) replaced by the screened
potential (84); this replacement has to be done of course
in the coherent part (51) as well. This allows us to in-
clude the polarization scattering in the approach of Refs.
38-40.

However, in spite of a good agreement of the numeri-
cal results of Refs. 38—40 with experiment, this approach
does not seem to be very consistent: the possibility of
neglecting dynamic eA'ects in some of the pq components
of Vs while keeping them in the others [which is what
(84) amounts to] apparently needs some more profound
justi6cation than just numerical convenience. Moreover,
approximation (84) applied to the polarization equation
(79) does not achieve anything at all: it leaves out polar-
ization decay completely, which is clearly unphysical.

These considerations, as well as some recent discus-
sions on the role of dynamic screening in relaxation pro-
cesses, ' urge caution with the use of static-screening-
type approximations, and demonstrate the need for more
elaborate approaches to ensure proper understanding of
relaxation in Coulomb systems.

E. The equilibrium limit

The results of the preceding subsection are valid re-
gardless of whether the system is in equilibrium or not.
However, in the quasiequilibrium case they should reduce
to well-known results of the quasiequilibrium theory of
highly excited semiconductors. In this subsection we
will carry out this reduction explicitly.

Quasiequilibrium means, first, that pk ~0; in addition,
the carriers have Fermi distributions within the bands:

(i.e., we neglect the frequency dependence of Vs but re-
tain it in Vs+ and Vs +). Now, e.g. , the "gain" term in
(74) takes on the form

(1—n, k) g n, k i Vs+ (s,k
—E,k )

q

i g n—,k q(1 —n, k) Vs II+ (s,k
—s,k q) .

q

(85)

Inserting the expression for II+ (Al 1) in (85) and taking
into account that

11-+(r)=II+-(r+iP),
Vs +(r) = Vs+ (r+iP),

(88a)

(88b)

which in the frequency space reads

Vs+ (co)=e ~ Vs +(co) .

From the properties of Vs [(A4)] it follows that

VR VA 2
~ Im VR V

—+ V+—

(88c)

so that we can express Vz+ and Vz
+ through the imagi-

nary part of the retarded screened potential:

Vs +(co)= —ig( —co)[21m Vs (co)],

Vs+ (co)=ig(co)[2Imvs(co)],

where

1g(~)=
e~ —1

(90a)

(90b)

(91)

is the Bose distribution function.
Let us now consider what happens in quasiequilibrium

to the self-energies that enter Eq. (79) for the optical po-
larization. According to expression (78a), the retarded
self-energy is equal to

X,",(s,k)= g [(1—n, k )VsR ( s)+ ,nk VsR (s )]
q

= X [ VsR'(&, k
—&,k-, )

+n k — [Vq Vs(s k E k —q))}

Both Vzz+ and V —
V& are equal to zero as functions of

~ at & & 0, so that their Fourier transforms are analytical
in the upper-half-plane and therefore admit a spectral
representation:

Im Vs (co')
Vs(co)= V—

—oo K 6) 6) +l5 (93)

(and a similar one for VsR ), so that (92) can be cast into
the form

n, k qIm Vs (co') —Im VsR+(co')

7T C~g E~i q CO +l6
q

(94)

Taking into account (90a) and the fact that

2i ImVsR (co)= Vs +(co), (95)

n«= [1+exp[P(E«—p~)]}

where p is the inverse temperature; physically it means
that the system has stayed in a weak steady-state field for
long enough.

In such cases we have to regard pI, in the correspond-
ing equation as the linear response to a weak perturbation
p„E, neglecting all terms of the order of ~p~, e.g., polar-
ization contributions to Vz. I.et us note from the start
that in quasiequilibrium the pq components of Vz and II
are related by the Kubo-Martin-Schwinger condition:
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[g ( —co')+ n, z ]Im Vs (co')

q
—ao m' e~g a~I q co +l5 (96)

which coincides with the Montroll-Ward result for the
correlation energy within the RPA [Eq. (27) of Ref. 47].

Hence, the first term in (79) now contains the
quasiequilibrium values of the renormalized quasiparticle
energies, c. k. If we make the static-screening approxima-
tion (80) at this stage, we will obtain instead of (79)

BPk
'(sck Eut)pk

+i p,„E+y Vs(q)pg q (n, g
—n, g) .

q

(97)

We have to determine from this equation the linear
response of pk to a harmonic perturbation, i.e., we must
set

E E ~ gcot
p p ~ lcd'

which allows us to rewrite (97) as

pg(E I s g co)

(98)

p„EO+ g Vs(q)p& q (n, z
—n, z), (99)

q

which is Eq. (58) of Ref. 47. Defining the susceptibility

in the quasiequilibrium limit the correlation energy takes
on the form

[&'.(E.) )]Eq

The second term, which accounts for the polarization
scattering, vanishes according to (75), while the first one
yields

de = —2 Im
dT 'gpf, p,. 'E = —21m'*(ai)IEI'

k

=21m'(ci)) ~E~

F. Interaction with phonons and other collective excitations

In this subsection we are going to derive the Bloch
equations for the case when the carriers interact with a
collective mode. To start with, let us consider a phonon
mode with dispersion co . The Hamiltonian of such a sys-
tem is the sum of (10) and (45):

A=pe, ~a"„a k+ +to b b
ka q

+ g M q(bq+b q)a &a~I, .
qka

(105)

(104)

which is just the optical generation rate.
Hence, this subsection shows that in the quasiequilibri-

um limit we recover the results of the quasiequilibrium
theory; Eq. (74) for carrier kinetics reduces in this
limit to the rate equation for carrier density (without
the recombination terms, however), while Eq. (79) for the
polarization takes on the form of the BSE and allows us
to determine linear susceptibility and hence all linear op-
tical properties of a highly excited semiconductor.

Pk
yj,(ai) —=

0
(100)

The phonons are described by their own Green's func-
tions:

Xj,(~)= (n„q —n, q) 'S,.+ g Vs(q)X~-, (~)
Yck Cvk CO q

(101)

from (98) we obtain the following result for this quantity: ( &b, (t)b, (t') ) (b, (t')b, (t) )
iD" «' —=

(b (t)b (t')) (&b (t)b (t'))

(106)

This is the Bethe-Salpeter equation (BSE) in the static-
screening approximation [Eq. (60) of Ref. 47]. The mac-
roscopic optical polarization is expressed through yk as

P(~) = g v,.p~(~) = &s,.xk(~) Eo=x(~)EO
k k

In a noninteracting system the GF (106) is related to the
phonon density A'q in the following way:

'N, (t)+e(t —t') w, (t)
tD" «' =

W,(t)+1 W, +e(t t)„—
(102)

X exp[iso (t' —t ) ] . (107)

where g(co) is the total susceptibility.
Now let us consider what becomes of Eq. (74) for car-

rier kinetics in quasiequilibrium. Its second line (gain-
loss terms) vanishes in quasiequilibrium, as it should be,
and as one can easily check by inserting the quasiequili-
brium relations (87) and (88) into (74). As for the first
line in (74), we are interested only in its effect on the total
number of carriers, since the distribution functions stay
Fermi-like anyway; let us sum it up over the whole k
space:

dn ~nk = —2 Im g p fp„E—2 Im 2 Vs p fpj, —
q

.
k k kq

Vg(tt')=M [d, .D(tt') it, ] (108)

(for simplicity we have assumed M,„=M„„=M ), with

IJ g(«) =Dq(tt')+DR, (t't ), (109)

According to the above, we will use (107) as a phonon
counterpart of Ansatze (34) further on. Note that with
phonons it does not matter which time (t or t') is used as
the argument of JVq in (107), since it does not have any
oscillating components.

The electron-phonon interaction [the last term in (105)]
gives rise to an effective Frohlich interaction between car-
riers:

(103) which enters the diagrams for the electron Green's func-



INTERACTION OF ULTRASHORT LIGHT PULSES WITH. . . 8735

tions in the same way as the Coulomb interaction. Its
physical origin is an exchange of phonons with the wave
vector +q between carriers.

To obtain the Bloch equations we need to specify the
self-energy, let us take the lowest-order diagram, which
describes single-phonon processes and is obtained by re-
placing the screened potential in the screened Hartree-
Fock self-energy of Fig. 3 with the Frohlich interaction

(108):

—iX qp (tt')= —g G p (tt')Vg(tt') .al k
q

(110)

Using Ansatze (34) for G and (107) for V,ff, we can easily
evaluate the relaxation term of the Bloch equations with
the self-energy (110):

BNkP
q[5 (ark —

Erk q
—coq)[(5~r —Nk )N$ qJVq

—Nk (5rP —Nj q)(l+JVq)]
St qy

+5 (E k e k +co— )[(5 r Nkr )NP q(1+JV q) Nkr(5rp NP q)JV q]

+5+(ark ark
—

q toq)—[Nkr (5 p NP—)JV {5 —Nkr —)NjP{1+JV )]

+5+(ark —
ark q+~ q}[Nk~r q(5rp

—Nf }(1+JVq)—(5 r
—Nkr q)NE JVq]] .

Performing the summation over y, we obtain for n, &

an, z = QMz 2 5(e,k —,k
— )[JV,„(1—,k) —(1+JV )n,„(l—,k )]

Ph q

+2m 5( E,k
—E,k q+ coq) [( 1+%'q)n, k q( 1 —n, k) —JVqn, k( 1 —n, k q) ]

+(PkPk +PkPk )[775(Ek—e„k —cil ) —%.5(E„k—E,k +co )]

2cOq
+i{PkPk-, —m k-, }

( E„k E„k q) Ci)q

(here we have taken into account that co =co ). The first two terms in (112) correspond to the usual Boltzmann
scattering, while the last two describe scattering on the phonon-assisted polarization wave. These latter two terms can
be transformed further:

a"ek
aT

2COq

Q Mq tpkpk q p 2
c.c.

(E,k —e,k q+ t 5) —
coq

= —2 Im g pkpk q Veff(ci) =E,k
—

eUk q),
q

(113)

i.e., to the same form as with the Coulomb screened potential (74); it means, in particular, that (113) also has the
particle-conserving property (75).

The equation for the polarization that follows from (111)can be cast into the form

= —iPk[X„(s,k) —X„(E,k) ]
ph

+t kr V ff{E k E k —q}pk —q in kr V ff(E k E k —q}pk —q
q q

+ QMgk m. [A' [5+(e„k—E,„—co )+5 (E,k —E,k
—co )]

q

+(1+JV )[5+(e„k—e„k q+~q)+5 (E,„—E,k q+~q)]], (114)

which also closely resembles the corresponding result (79)
for the case of the screened Coulomb interaction. In the
two preceding equations, V,z denotes the retarded
Frohlich interaction:

2co
V (cg) = —V++ —V+ =M =M D (co)eff eff eff q( +.5)2 p q q

COq

(115)
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(i.e., it is the retarded phonon propagator multiplied by
the coupling constant); the energy renormalizations are
given by

1+JV —n, ~X~ (E,q) = g Mq
ek ck —q

which differs from the respective result (32) for the car-
riers only by the absence of the band indices in X and D.

To evaluate (117) we again have to specify the self-
energy, this time the phonon one, X . The phonon self-
energy that corresponds to single-particle processes de-
scribed by the carriers self-energy (110) reads

+
A' +n, i,

+co +E5

1+JV —n, k
X„,(E,„)= M q 6 —6 —m —l6

q uk uk —q q

(116a) —iXg(tt') =(M', Y' g Gg& (tt')Gg (t't),
kaP

where

(118)

(116b)+
A' +n, k q

~uk ~uk —q+~q
In the quasiequilibrium limit, expressions (116) reduce

to the results of Refs. 64 and 68 and give the polaron
shift in lowest order; the poles in (116) correspond to
phonon sidebands.

The above expressions contain the phonon DF, JV,
which also has to be determined from an appropriate ki-
netic equation. This equation can be derived by the same
argument that has brought us from the Dyson's equations
(15) to the kinetic equation (32); the result reads

1
(M )~—=& M' o =M'

q
— z q z q (119)

[cf. Eq. (109)].
The diagrammatic representation of (118), which de-

scribes changes in the phonon subsystem produced by the
scattering of carriers from k to k —q, is just the RPA po-
larization bubble shown in Fig. 5 in the Appendix. Com-
paring (118) with (A7), we see that the phonon self-energy
practically coincides with the polarization operator in the
RPA:

BA' 7.
d 1[Dq + (Tl )X+ (1T)T —oo

X (tt')=II (tt')(M )t'q, (120)

+Dq (Tl )X +(1T)
—

Xq +(Tl)D++(1T)
—

Xq (Tl)D +(1T)] „ (117)

so that we can use the results of the Appendix for II to
evaluate (118).

Expressing D with the help of (107), and X through
(A8), we obtain for the collisional term (117)

=M g ir6+(E„q—E i,
—~q)[(1+JVq)Ni, (5ti —NI, q) JVq(5 t3 NP—)Nj, ]—+c.c.

kaP

The diagonal (with a =@) terms in (121) give rise to Boltzmann scattering:
r

(121)

Bolt.zmann
=Mq g 2vr5(c, ,i,

—s«q —coq)[(1+Aq)n, i,(1—n«q) —A;z q(1 —n«)n« —ql+(c~U)
k

(122a)

while the off-diagonal ones describe the influence of polarization scattering on the phonons:

X Mgf Is"-,[D,' ~=E.~ —E.~-, +D," E.~ —E.~-, ]I
k

(122b)

where

DR( )
1

CO 6) +l5
q

(123)

[according to (107)]; a comparison of (122b) with (113)
shows that every time an electron or a hole scatters from
k to k —q on the polarization wave, one phonon is des-
troyed. Equations (112), (114), and (122) form a closed
set, which can be used as a basis for the analysis of the
role the phonons play in relaxation phenomena.

The similarity between the equations for the electron-

V~ (qco) —= V(q)
&R(

(124)

and consists of single-particle excitations and of collective

phonon interaction and those for the screened Coulomb
interaction is not incidental: screening, like phonons, is
also a collective effect. To explore this analogy further,
let us recall some facts of the plasma theory here.

The spectrum of the elementary excitations of the plas-
ma is given by zeros of the retarded dielectric function,
e (qadi), which is defined by
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plasmon modes [within the RPA, e is given by the Lin-
dhard formula (A12)]. For many practical purposes this
spectrum can be replaced with a single plasmon mode
[the single-plasmon-hole approximation (SPPA)], ' so
that the retarded screened potential takes on the form

COp)
V (qco)= V(q)+ V(q) (125)

(co+i 5) co—

where

= V+ WqB q(co), (126)

2coq
B q(co)=

(co+i 5) coq—
is the retarded plasrnon propagator, and

2

Wq = V(q)
26)q

(127)

(128)

is the electron-plasmon coupling constant. Comparing
(126) with (115), we see that the retarded screened poten-
tial is expressed through the plasmon propagator in ex-
actly the same way as the retarded Frohlich interaction
(115) is related to the phonon propagator (109). If we re-
turn to the time variables and introduce plasmon Green's
functions B~~,

M'(t)+ e(t t ')—
EBq ( tt ) Jp)i( )

JP'(t)
JP'+ e(t' t)—

X exp[iraq(t' t)]—(129)

[cf. (107), JP& is the plasmon distribution function],
through which the propagator (127) is expressed as

(130)

[cf. (109)], we can extend the SPPA (126) to cover all the

pq components of the screened potential:

VP(tt') = V i(q)+ W [&,.B(tt').&, ] (131)

[cf. (108)].
Taking the retarded component, —( Vs+++ Vs+ ), of

The SPPA replaces the rather formidable task of solving
the basic equation (A2), which determines Vs, within the
RPA (see the Appendix), by the much simpler problem of
finding suitable plasmon dispersion co . If the latter is
chosen properly, the SPPA yields reliable results for self-
energies and other quantities of interest in quasiequilibri-
um systems.

In nonequilibrium situations, however, we need ap-
proximations not only for Vs, but also for all pq com-
ponents of Vs. Let us show that the central concept of
the SPPA —the existence of a single collective mode-
can be carried over to the nonequilibrium case in a trivial
way.

To start with, let us note that the standard SPPA
[(125)]can be rewritten as

co&~ 2co&
V (qco)= V(q)+ V(q)

2~q (co+i o) coq—

(131),we recover the SPPA [(126)]and the Pauli matrices

&, [(21)] ensure that all symmetries (A4) of the screened
potential are kept intact. Equation (131) is the required
nonequilibrium generalization of the SPPA in the sense
that it reduces to the standard SPPA in quasiequilibrium,
and self-consistently simulates nonequilibrium screening

by means of (nonequilibrium) plasmon distributions
M'(t).

Approximation (131) allows us to reformulate the
Bloch equations for the screened Coulomb interaction
[(74) and (79)] in terms of plasmons. The complete analo-

gy between definitions (129) and (130) and their phonon
counterparts (107) and (109) ensures that within the "gen-
eralized SPPA" (131) the carrier kinetics and dephasing
are governed by the "phonon" equations (112) and (114),
respectively, with the phonon distribution function and
coupling, A' and M, being replaced by plasmon ones,
M' and W . With the same minor changes, Eq. (122) de-

scribes the kinetics of plasmons and, hence, via (131), the
evolution of the screened potential; it serves as a substi-
tute for the basic equation (A2) for the screened poten-
tial, which had to be solved together with (74) and (79) in

the full RPA calculation scheme.
The approximation scheme for Vs based on (131) does

the opposite to the SSA in the form (84): whereas the
SSA neglects all dynamic effects but retains particle-
particle collisions, Eq. (131), on the contrary, focuses on
the dynamic effects at the expense of direct carrier-carrier
scattering. It is interesting from a fundamental point of
view, because it invokes such nontrivial concepts as non-
equilibrium plasmons and electron-plasmon energy ex-
change.

From the vast numerical experience accumulated for
the case when the dominant relaxation mechanism is the
interaction of carriers with LO phonons, we may be
reasonably sure that if the plasmons are supposed to play
the role of phonons, the basic physics will remain the
same: at first, carriers created by the exciting pulse will

relax their kinetic energy by emitting plasmons; this will

lead to a buildup of the nonequilibrium population of
plasmons ("hot-plasmon eff'ect"), which will later give
back their energy to carriers, slowing down their energy
relaxation.

This physical picture is, however, likely to cause objec-
tions of the kind expressed by Collet, who argues that
the total plasma energy cannot change as a result of
internal interactions, and therefore that the electron-
plasmon interaction cannot lead to energy relaxation.
Let us note, however, that the energy of plasmons usually
is not included in the plasma energy, which is normally
understood as the sum of kinetic energies of noninteract-
ing electrons. The energy of plasmons is part of the
Coulomb interaction energy, and there is no reason why
there should be no energy exchange between single-
particle and collective excitations of the plasma, i.e., be-
tween its kinetic and potential energy. There are some in-

dications that the energy loss to plasmons can be about
an order of magnitude greater than that due to other in-
teractions, so that it certainly would be interesting to ex-
plore the role of collective modes further, and the pro-
posed procedure seems to be a convenient starting point
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for doing that.
Let us Anally note that the plasmon-phonon modes

can be included in our treatment in exactly the same way.

IV. BLOCH EQUATIONS WITH MEMORY EFFECTS

The relaxation terms in the Bloch equations that have
been obtained in Sec. III contain only values of the DM
at the same time instant T, and are therefore Markovian:
the system's past does not affect its evolution. Physically
it is equivalent to the semiclassic approximation, which
holds true as long as the particles have well-defined ener-

gy, and changes of their distributions over this energy are
slow on the time scale of fi/hc, where Ac is the charac-
teristic energy exchange in a scattering event.

This approximation, however, can be expected to fail
whenever the duration of the excitation pulse (which at
present can be as short as 10 fs) becomes comparable to
the inverse LO-phonon frequency (of the order of 10—100
fs). In such femtosecond excitation conditions one has to
account for the fact that each optically created carrier is

spread over a large portion of energy space due to large
spectral width of the exciting pulse. In order to describe
scattering of such carriers with ill-defined energy, non-
Markovian description of relaxation is called for, and our
formalism can be used to obtain the correspondirig gen-
eralizations of the relaxation terms considered above.

A. Interaction with phonons

In order to incorporate memory effects in our descrip-
tion of electron-phonon scattering, we need to replace the
relaxation term (111),which contains only N ~(T), with
an expression containing an integral over the system's
past. Because the basic equation (32) does have such an
integral, this goal proves to be relatively easily achieved:
when using Ansiitze (34) and (107) to evaluate (32), we
should now select that of the two expressions (34) that
contains N ~(t, ). When the interaction is described by
the self-energy (110), this prescription yields instead of
(111)

ax„~ = QMq I d 1 {exp[i(1—T)(ez s~ q
,

—coq)][(5—r Nkr )Np—qJVq N&r(5&&—NP )(1—+A'q)]

+exp[i(1 T)(s«s~ q+coq)][(5 r NPr )NP q(1+JVq) NP'r(5&& NP q )JVq]

+exP[i(1 —T)(s j,
—

Ets, +arq)][N&r q(5&&
—NP)JVq —(5 r

—N&r q)NP(1+JVq)]

+exP[i(1 T)(s & q ets, coq)][Nfl q(5&& NP)(1+JVq) (5 r NPr q)NPJVq]] (132)

where all N and JV are understood as functions of the integration variable, t&. It can be easily shown by inserting the
steady-state temporal dependence of N [(12)] into (132) that in a steady state, (132) reduces to the result (111) and is
therefore its non-Markovian generalization. Introducing the notations

+==~zk ~(zk —q ~ ~q& z =ak Cak —q Nq & V= —1

we can extract the equation for n, z from (132):

—i~+ l 7%= gM f dlI —n, z(1 —n, & q)[(1+JVq)e ' +JVqe ' +(1+JVq)e ' +JV e '
]aT oo

q

+(1—n, &)n, & [(1+JVq)e ' +JV e ' +(1+JV )e ' +JV e '
]

le% l ~ +i'm +im+p~„* q(e ' —e ' )+p„'p„q(e ' —e ' )I,
which can be further transformed to the form

(133)

(134)

r= gM d 1 [ —n, z(1 —n, ~ )[JV 2cos(rs,+)+(1+JV )2cos(rs, )]

+ (1—n, j, )n, z q[(1+JVq)2 cos(re,+ )+A'q2 cos(rs, ) ]
l+Eg6g) +ipse g 6 g )+i(p~P qe

'" '" q —pfp& qe
'" '" q )2 sin(1Yoq)]

(135)

In the Markovian case, when n and JV in (135) do not depend on r, the integration in (135) picks out of the q sum
only those components for which the integrands do not oscillate at all, which assures energy conservation. When the
occupation numbers do depend on time, in general all terms in the sum over q space begin to contribute to the scatter-
ing rate. For example, if the carriers are created by an optical pulse with the duration ~, then the integration in (135)
will conserve the energy only with the accuracy A/~z, so that the carriers can scatter to a broader region of k space out
of a given state, with correspondingly smaller amplitude.

In order to clarify the impact of the memory effects, let us consider the weak-excitation limit: n (( I, JVq(t) =const.
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In this case the rate of scattering out of a given k state can be cast into the form

~q qcos T8 +2 1 +
q

cos
BT

q
T

dt'n, „(t'}cr',~(T—t'}, (136)

where the kernel

cr',z'(r)= QMq[JVq(e ' +e ' )+(1+JV )(e ' +e ' )]
q

describes the response of the semiconductor. At ~~0 it diverges, since

cr', "„'(r=0)=2(1+2JV ) g M ~ V,fr(r =0)= ac

q

(137)

(138)

(cf. Ref. 28), and tends to zero when r +~. S—ince (136) has the form of a convolution, it is advantageous to make the
Fourier transform

Bn j f dco n,"j,(co)cr',g'(co)e
out

where the retarded Fourirer transform of the density is defined as

n "(co)= f n (t')e' ' dt'

and the Fourier transform cr(co) can be evaluated explicitly. For dispersionless polar-optical phonons with

M C
2

(139)

(140)

(141)

where

2m g MqJVq5(e, q e,g q+coq—+co} C~~&gto
q

we have, e.g., for the first term of (137)
+ oo

(cr;„"'(co)),= dre'"' g MqJVqexp[ir(e, „—s,q q+coq)]
q

COq+ CO

(142)

1+&1—x
gLo(x) =ln (143)

Cm,
(144}

Carrying out such a summation over q in the remaining terms of (137), we arrive at

cr', z'(co) =C,z (1+JVq) g
CO CO

-&ck
+JV g (145)

The response function cr(co) is shown schematically in
Fig. 4. For pulsed excitation the real part of the retarded
Fourier transform n "(co) of the density has the form of a
peak centered around co=0 with width of the order of
file~ (see Fig. 4). Hence, for very long pulses the scatter-
ing rate (139) is simply n (t)o.(co=0) (Markovian result),
but when (r~coq)

' becomes comparable to unity, all
Fourier components of o. begin to contribute to the
scattering rate (139), and since cr(co) is not always a fiat

function, the resulting scattering rate can significantly
differ from its Markovian value ( the results of a model
evaluation of scattering rates will be presented else-
where ).

These considerations show that to achieve the correct
description of photoexcited carriers relaxation it is not
enough to just broaden the initial distribution n(E) by the
amount of A/~ and then solve a Markovian Boltzmann
equation, ' because such broadening occurs in every
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scattering event, and that makes carriers spread over k
space more rapidly, and thus speeds up thermalization.

The last line of (135), which represents polarization
scattering, also reduces to the respective Markovian re-
sult (122b) only provided pj, ~ exp[i (E,z —E,I, )t ] [see Eq.
(12)], i.e., in a steady state. In the low-excitation limit
this term can be dealt with along similar lines. Here we
will only note that if, as is the case under femtosecond ex-

I

citation, the combination ~pkpz q~ is nonzero only at
very short times before the present moment T, i.e., at
r(r~ co, when sin(re@ ) is still small, the contribution
of the polarization terms will be significantly lower than
its Markovian value (120b), and tends to zero at w ~0.

From (132) we can also extract the equation for the po-
larization:

Bpg
d —pq(1) g M [ [(1+JV —n„j, )exp[ —ir(e, g

—E,g q
—coq)]

q
+(JV +n„„)exp[—ir(s, „—E„~ +co )]

+(1+JV —n, ), )exp[i7(s„„—E,q
—co )]+(JV +n, ), )exp[is(s„~ —E,q

—co )]]

(146a)

+ g Mgz (1)I [(1+JV n, z—)exp[ —ir(E, &
—s,q q+coq)]+(JVq+n, j, )exp[

+(1+~ —n &)exp[i&( s ~
—E,„+co )]+(JV +n, ~)exp[i'( s„„—E,„q—mq)] ]

p& g'g& T—g'+ pk t or, T—t
q

(146b)

Bp I

aT I

g +oo rde p„(co)io g(co), (147)

where the term (146a) describes transition energy renor-
malization and dephasing proper, while the term (146b)
accounts for the diffusion of the polarization over k
space.

In a steady state, when p& osci11ates with time accord-
ing to (12), the integration in (146) turns the exponents
into the corresponding energy denominators that enter
the Markovan expressions (114)—(116). In the general
case, however, Eqs. (146) show that each Fourier com-
ponent ofpl, has its own shift and broadening:

which, in particular, may be considered as a justi6cation
for the use of different damping constants for the pump
and the probe provided they have different frequencies.
Equations (146) can be seen as a generalization of the re-
sult of Ref. 28 for the case when not only ~p ~

but also JV
and n change rapidly with time.

Under femtosecond excitation, when the pulse excites
polarization in a broad region of k space, the second,
diffusion term of (146) [(146b)], which is usually omit-
ted, ' starts to play an important role, too. In contrast
to the few-level systems where the polarization cannot
diffuse effectively through energy gaps between the levels,
in semiconductors the excited k states form a continuum,
and this diffusion term turns out to be as important as
the direct dephasing term (146a).

B. Other interactions

b

&to 0 &to Cd

FIG. 4. Fourier-transformed response function (145) and the
retarded density n "(co) [(140)] (schematically)

The procedure of obtaining non-Markovian expres-
sions for relaxation terms, which has been discussed in
the preceding subsections, is quite general and can be ap-
plied in a straightforward way to all sets of Bloch equa-
tions derived above (we do not present the resulting non-
Markovian equations here because they are all very much
alike).

It must be noted, however, that a fundamental
difficulty arises when this procedure is applied to the case
of the screened Coulomb interaction. There is no prob-
lem in writing down the non-Markovian generalizations
of Eqs. (74) and (79), but there is the vexing problem of
how to determine the time-dependent screened potential
Vs(tt') in these equations. The procedure described in
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the Appendix relies substantially on the assumption of
stationarity, which is not likely to hold true when
memory effects become important. In order to be con-
sistent, in the non-Markovian case we should solve the
basic integral equation (A2) for the screened potential
directly in the time domain, which is an almost unaccom-
plishable feat (although some encouraging attempts in
this direction have been reported). '

In short, we are faced here with the fundamental prob-
lem of screening in nonequilibrium and nonstationary sit-
uations, ' which is definitely still far from being
resolved. Our approach is too simplistic to overcome this
difhculty, which apparently needs a conceptual break-
through.

In the meantime we suggest using the idea of the
electron-plasmon interaction as a substitute for the full
nonstationary solution for Vz. However, unlike the case
of phonons, the plasmon spectrum is likely to experience
dramatic changes during femtosecond excitation due to
the rapid growth of the number of carriers, which makes
the Ansatz (129) for plasmons not very convincing. When
such changes are not very pronounced (as may be the
case with modulation-doped quantum wells, where
there is a high density of carriers prior to excitation), this
procedure may work reasonably well, but in the general
case it is not even clear whether the very concept of
plasmon oscillations still makes sense on a femtosecond
time scale (the results of Ref. 71 suggest that it probably
does).

V. CONCLUSIONS

In the present paper we have used the Keldysh GF for-
malism in order to derive quantum generalizations of the
semiclassic equations that are currently used to describe
coherent and relaxation phenomena in semiconductors.
Our procedure is based on the Kadanoff-Baym-like An-
satz in the time domain, which makes the derivation of
non-Markovian kinetic equations easy and transparent.
This procedure can be improved in a straightforward way
to include collisional broadening, which has not been
done here mainly to avoid confusing this effect with the
one we wanted to emphasize in this paper.

We were focusing on two quantum effects that emerge
under conditions of femtosecond optical excitation. The
first of them is due to the presence of a nonzero interband
polarization, which provides carriers with an additional
scattering channel. This polarization scattering is non-
trivial in a number of ways and, at least in some inter-
mediate range of excitation durations, is as important as
the traditional Boltzmann scattering.

The second effect is due to the energy uncertainty of
carriers created by a very short light pulse, which makes
them less constrained in choosing final states in scattering
events. Note that this effect is different from the col-
lisional broadening, ' because it persists even in the
limit of vanishing interaction, although both effects are
essentially due to the same time-energy uncertainty prin-
ciple. The role of such memory effects in the optical po-
larization is acknowledged at present; here we
wished to stress that they are of importance for the car-

rier kinetics as well.
A model numerical example shows that both effects

are not only of academic interest; they also significantly
enhance the carriers' ability to spread over k space,
which leads to much shorter thermalization times. It
would be interesting to attempt a more-realistic calcula-
tion of carrier dynamics with these effects included, al-
though this will apparently involve tremendous numeri-
cal difhculties.

Finally, let us note that another interesting field where
these results can be applied is that of the dynamics of
many-body renormalizations, where some conceptual
difficulties are now apparent. We intend to address this
problem in our future work.
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APPENDIX: SCREENING WITHIN
THE KELDYSH FORMALISM

The concept of the screened interaction takes into ac-
count an important class of many-body processes in
Coulomb systems. Formally, it is introduced by sum-
ming up all diagrams that begin and end by a bare-
interaction line, which gives for the screened potential Vz
an equation that is similar to Dyson's equation (15):

q&

(A2)

FIG. 5. (a) Diagrammatic representation of the basic equa-

tion (A2) for the screened potential (double wavy line), and (b)

the random-phase approximation (RPA) for the polarization
operator (A7).

Vp(q, t„t2 ) = V~q(q)5( t, t2 )

+ g J d 3 d4 V~q(q)5(13)
p q&

XII ' '(34)V&' (q, 42) (Al)

(see Fig. 5 for its diagrammatic representation). Using
the explicit form of unscreened interaction V [(48)], and
suppressing the q dependence further on, we can rewrite
(Al) as
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Here, II is the polarization operator (the sum of all irre-
ducible polarization diagrams}.

The quantities VP and II possess symmetry proper-
ties similar to those of G [(5)—(8)] and X[(16)—(18)]:

II+++II =II+ +II +,
II+

II++(tt') = +'
II +, t)~',

11'(tt )=11+-—II++=0 at t &t,
Vs+++ Vs = —VS+ —Vs +,

—V6(tt') Vs+,—t & t'
V~++(tt') = . —V5(tt') Vs +, —
VR V++ V+ —

V A V++ V
—+

S S S ~ S S S

(A3a)

(A3b)

(A3c)

(A4a)

(A4b)

One of the consequences of (A3} and (A4) is that the in-
tegrand in (A2) becomes zero at t, )max( t, t ' }, so that
(A2) does not break causality.

In a steady state, II and Vs depend only on the
difference of their time arguments, so that one can
Fourier transform (A2):

Equation (A5) is in fact a set of four algebraic equations
for pq components of Vs, which can be solved in a
straightforward way:

V[1—VII (co) ]
(1—VII )(1—Vri")

V II+ (ai)
(1—VII )(1—VII")

V II +((0)
(1—VII )(1—VII")

V[1+VII++(co)]
(1—vll )(1—vrl") '

V,
+ (co)=—

Vs (co)=—

Vs (ai) = ~, V~"(co)=—V V
(1—11 ) (1—VII")

(A6a)

(A6b)

(A6c)

(A6d)

(A6e)

i rr"~(tt')=——giG~~& (tt')t'Gg (t't) .
aPk

(A7)

Equation (A6) links the pq components of the screened
potential to the Fourier transform of the polarization
operator II. The most widely used approximation for II
is the well-known random-phase approximation (RPA),
which replaces II with the polarization bubble shown in
Fig. 5:

vp(~)=v-+ g v»II '(~)v ' (~) . (A5)
Using A nsatze (34), we can readily express (A7)

through the density matrix

II (Tl )=II+ (Tl)=i g Ni,~(o
t3 Nf ~)exp[i—(1—T)(its, —e~ z)] (T) 1)

aP~
(A8)

(other pq components of II can be dealt with in exactly
the same way). Expressions like (A8) allow us to deter-
mine Laplace transforms:

II~/(ai) = f d~ Irt"i(r= T —1)e'
(A9)

Wg(~)= f' drrV~(~=T 1)e'-, —

which read, according to (A8),

These quantities allow us to express the Fourier trans-
forms of II that enter (A6):

II+-(~)=11„+-+rr+„-, rr-+(~)=rl;++11-, +,
(A 1 1)

11++(~)=11„-++11+,—, 11--(~)=11+-+11„-+,

p l*p„q—n„,(1—n, „)
~+ ' & ~ca+ ~ck+q

where II@=(II~/)'. Let us finally note that, in contrast
to (A10), the retarded polarization operator

+ p l*,pl, —n,„(1—n„„)
6)+E5—

E,„~+g„j
(A10a)

II (ai)= g + l 5 BaQ+ BaQ q

(A12)

pi'pi, q n, q(1 ——n, k )

CO+l5 g g+P

+ pape —q n g(1 n, l( —&)

67+ l 5 E. g +P
(A lob)

does not contain optical polarization terms p&pk . the
presence of nonzero optical polarization affects all the pq
components of Vs and II, but the corresponding retarded
functions are still given by Lindhard formula (A12).
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