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Real-space description of semiconducting band gaps in substitutional systems
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The goal of "band-gap engineering' in substitutional lattices is to identify atomic configurations that
would give rise to a desired value of the band gap. Yet, current theoretical approaches to the problems,
based largely on compilations of band structures for various latice configurations, have not yielded sim-
ple rules relating structural motifs to band gaps. We show that the band gap of substitutional
A1As/GaAs lattices can be usefully expanded in terms of a hierarchy of contributions from real-space
"atomic figures" (pairs, triplets, quadruplets) detemined from first-principles band-structure calculations.
Pair figures (up to fourth neighbors) and three-body figures are dominant. In analogy with similar clus-
ter expansions of the total energy, this permits a systematic search among all lattice configurations for
those having "special" band gaps. This approach enables the design of substitutional systems with cer-
tain band-gap properties by assembling atomic figures. As an illustration, we predict that the [012j-
oriented (AlAs) l/(GaAs)4/(A1As) &/(GaAs)2 superlattice has the largest band gap among all
Alo 25Gao 75As lattices with a maximum of ten cations per unit cell.

I. POSING THE PROBLEM

Substitutional A /B systems are the collection of crys-
tal configurations that can be obtained by occupying the
sites of a. fixed (e.g. , fcc) lattice by the atoms A and B.
They contain ordered compounds, superlattices and sub-
stitutionally disordered alloys. Considerable research on
substitutional semiconductor systems has focused on
"band-gap engineering, " i.e., on attempts to identify
atomic configurations that lead to prescribed band gaps.
Theoretical analysis of such problems has traditionally
been based on band-structure techniques, whereby the
dispersion of energy bands is mapped out in reciprocal
space for a given real-space crystal configuration. In
such approaches it has proved dificult to establish intui-
tive rules that relate band gaps to given motifs of atomic
structure. Questions such as "what is the structure that,
for a given composition, gives the largest direct band gap
for A1As/CraAs on a fcc lattice" have to be addressed, in
principle, by calculating the band structures of a large
number of configurations and selecting the one with the
largest gap. What is clearly lacking here is a more direct
connection between the band gap and the atomic
configuration. There is, however, an established metho-
dology relating the atomic configuration of a substitu-
tional system to its total energy, i.e., cluster expansions in
lattice models. '

Lattice (e.g. , Ising) models of phase stability exploit
the fact that the many-electron ground-state energy sur-
face of a substitutional system

E{S,I=(+~8 e)/&e~e)
can be usefully parametrized in terms of a limited set of
interatomic interaction energies J, i.e.,

EIS;J=Jo+J, gS, + g JJS,S + g J~kS;SJSk+
ijk

(2)

Here, 5,. is the pseudospin variable denoting in a binary
A-B system whether site i is occupied by atom A
(S;=—1) or B (S;=+1),and tS, I is a particular occu-
pation of the N sites by A and B atoms (a "configuration"
o). Establishment of a converged representation of E(cr )

in terms of a reasonably small number of interaction en-
ergies provides then a way for exploring the total energies
of many more configurations ( ~2 for a binary system)
than is practical through solutions of (1) for all o's.
Furthermore, the renormalization of the explicit elec-
tronic degrees of freedom underlying the electronic Ham-
iltonian H into a digitized ("A on"/"B on") energy sur-
face (2) permits the assessment of the importance of vari-
ous atomic figures (e.g., ij pairs, ij k triplets) to the stabili-
ty of various configurations. ' These concepts were re-
cently applied in the context oferst principles e-lectronic-
structure methods. Applications to fcc lattices of
binary transition metal or semiconductor systems
showed that in most cases 5 —10 interaction energies
suffice to describe E(o ) with useful precision, and that
such a set of interaction energies can be used to search
systematically the configurational space to identify o's
with, e.g., extremal values of the energy E(o ).

In this paper we explore the possibility of using such a
cluster expansion description for the one-electron orbital
energies

rather than the total energy [Eq. (I)]. More specifically,
we will be interested in exploring whether the one-
electron energy band gaps (i.e., differences between occu-
pied and unoccupied orbital energies) can be usefully de-
scribed in terms of contributions from a hierarchy of
real space 'jigures" -of atoms:

E IS;I =po+p, gS;+ gp; S;S.+gp;.i, S;S Sk+ .
ijk
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As was proved by Sanchez, Ducastelle, and Gratias, any
lattice property can be rigorously expanded by the form
(2) or (4), provided that the expansion in figures is carried
to completeness (2 terms). The practical usefulness of
such expansions rests on the possibility of identifying a
readily calculable and reasonably small set of ("building
blocks" ) energies [p ] that span E (o ) of arbitrary substi-
tutional lattice configurations with useful precision (e.g. ,
a few percent of Es). If successful, this will provide in-
sights into the way that band gaps reAect contributions
from real-space atomic figures (rather than the conven-
tional k-space picture) and enable the design of lattices
with prescribed band gaps. This approach has a number
of clear limitations. Since we use a fi'xed lattice descrip-
tion, we will insist that all lattice sites are occupied (so
"broken bonds" are excluded) and that the Bravais sym-
metry is fixed so the coordination number is fixed too (al-
though the calculations can be repeated for differently
coordinated lattices). Consequently, we will not address
here band-gap changes associated with (i) the formation
of "dangling bonds" (as in certain amorphization or
glass-forming processes), (ii) the creation of "antisite de-
fects" [as in the randomization of Ga and As in zinc-
blende GaAs (Ref. 10)], or (iii) from alotropic variations
related to different coordination numbers" (e.g. , zinc-
blende versus rocksalt forms of GaAs, ' the NaC1 versus
CsC1 forms of Tl halides, ' or zinc-blende versus the
high-temperature forms of III-V semiconductors' ).
Even barring from our discussion such cases where the
topology of the underlying lattice is altered in a funda-
mental way, it is still difficult to assess whether band gaps
of substitutional systems depend primarily on short- or
long-range order. On one hand, band-structure theory
implies that gaps reAect by necessity the long-range order
underlying the space group symmetry. Yet, inspection of
the observed band gaps of fixed coordination number po-
lytypes that have identical local environments up to the
second neighbors [e.g. , zinc-blende versus wurtzite, see
Table I (Refs. 15—24)] reveals but small changes, suggest-
ing perhaps that the short-range order has a dominant
effect on the band gap of a given symmetry (e.g., I,).
The crucial role of /ocal topology in determining trends
in band gaps has also been emphasized in the context of
continued random network models of Si and Ge, where
the existence of fivefold and sevenfold rings was correlat-
ed with increases in the band gaps. ' Experimentally
documented examples of variations in band gaps associat-
ed with substitutional modifications include the
chalcopyrite —to —zinc-blende transition in ZnSnp2, where
E = 1.22 eV in the disordered zinc-blende phase and 1.46
eV in the ordered chalcopyrite structure (1.64 eV ac-
cording to Ref. 29). Analogous changes are observed in
short-period isovalent semiconductor superlattices: the
[001] (A1As), /(GaAs), superlattice has a low-temperature
direct gap of 2.15 (Ref. 30) or 2. 18 (Refs. 31 and 32) eV
whereas when randomized (creating the Ala ~Gao ~As al-
loy), the direct gap rises to -2.20 eV. The 0.765-eV
photoluminescence gap of the [001] superlattice
(InAs), /(GaAs)i is increased by 35 meV upon substitu-
tionally randomizing the system, whereas the 1.85-eV
room-temperature band gap of the [111] superlattice

TABLE I. Measured direct band gaps (in eV) of the zinc-
blende and wurtzite modifications of some II-VI semiconduc-
tors. These structures have identical local environments out to
the second neighbor. The fact that their band gaps are similar
(Refs. 15 and 16) appears then to suggest that, in some sense, the
band gap is a "local" property.

ZnS

ZnSe

CdS

CdSe

Zinc blende
r„ r„

3 74'

2 70'
2.82'
2.50'

Wurtzite
( ~9 ~7 ~~7
3.74' ( E ii c )

3.78 (ELc )

2.795 (Elc )

2.874'
2.501~ (A)
2.516 (B)
1.751" (2)
1.771 (8)

'T=295 K, reflectance, Ref. 17.
T=298 K, reflectance, Ref. 18.

'T= 300 K, wavelength modulated reflectance, Ref. 17.
T= 300 K, photoconductivity, Ref. 19.

'T =4.2 K, exciton emission, Ref. 20.
T=298 K, reflectance, Ref. 21.

~T= 300 K, exciton absorption, Ref. 22.
"T=293 K, exciton reflectance, Ref. 23.

(GaP), /(InP), is increased by 85 (Ref. 35) or 140 meV
(Ref. 36) as the system disorders. These changes are now
well understood ' in terms of momentum-space con-
structs. Depending on the superlattice orientation,
different zinc-blende k points are folded into the superlat-
tice Brillouin-zone center I . For example, the zinc-
blende I +X states fold into I for [001]monolayer super-
lattices, whereas the zinc-blende states I +I. fold into I
for the [111]-oriented superlattice. These folded states in-
teract through the superlattice perturbation potential, re-
sulting in a level repulsion. This effect overwhelms the
opposite effect of quantum confinement thus leading to a
reduction of the band gap of the superlattice relative to
the random alloy. The reduction is largest for [111]su-
perlattices since the unperturbed I and L energies are
rather close. It is smaller in [001] superlattices, where
the unperturbed I and X energies are farther apart. Our
central challenge here is to depict such momentum-space
events through real-space interactions between atoms.

II. THE DATA BASE

To explore the possibility of describing substitution-
induced changes in band gaps through lattice models we
first create an internally consistent data base of band
structures for different substitutional crystal structures.
We have selected the A1As/GaAs system for a number of
reasons. (i) The end-point constituents are very nearly
lattice matched, so changes in relative composition leave
the unit-cell volume unchanged. Hence all calculations
can conveniently be performed at a constant molar
volume. (ii) The direct band gaps of GaAs and A1As
differ considerably (by —1.6 eV), so the overall changes
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of band gap with composition are sizable. (iii) The status
of our experimental ' ' and theoretical ' under-
standing of the band gaps of disordered ' ' and or-
dered3o 3 ' A1As/GaAs systems is reasonably com-
plete.

The crystal structures chosen reAect a range of compo-
sitions and ordering vectors. Denoting AlAs as "A" and
GaAs as "B" we use the compositions 3, A3B, 22B,
AB, A2Bz, AB2, AB3, and B. The layer orientations ex-
plored include [001], [110], [111], [201], and [113). We
have also included structures that are not superlattices,
e.g., the A1Ga3Asz (denoted I.1) and A13GaAs4 (L3) lu-
zonite structures. Table II describes the various struc-
tures and assigns to them arbitrary names [Refs. 3(a) and
32 give pictures of many of these structures]. We have
calculated the electronic band structure of these
A1As/GaAs systems using the first-principles nonlocal
pseudopotential method in the local-density forrnal-
ism. The scalar-relativistic pseudopotentials were gen-
erated by the method of Ref. 44. We use a plane-wave
basis set with kinetic energy cutoff of 15 Ry and the
exchange-correlation functional given by Perdew and
Zunger. Special care was exercised in sampling the
Brillouin zone for different structures in a precisely
equivalent manner: we used for each structure a k
point set equivalent to 29 zinc-blende k points in the ir-
reducible Brillouin zone. The theoretically calculated
equilibrium lattice constants a, of A1As and GaAs are
very similar so we use for all structures the constant

atomic volume a, M/8, where M is the number of atoms
per cell and a, = 10.619 a.u. is the average calculated cu-
bic lattice constant. Despite the well-known underes-
timation of band gaps by the local-density approximation
(LDA) our results are internally consistent to within a
precision of better than 10 meV over the entire data base
of structures. Because of the LDA error, we will judge
the success of the cluster equation approach by the extent
to which it reproduces the internally consistent LDA re-
sults, not experiment. It is possible, however, to approxi-
mately correct the LDA results by applying a rigid shift.
As was noted previously, ' ' the LDA calculated
results for the direct gap at I are underestimated by a
nearly constant value: the scalar relativistically calculat-
ed (experimental) values are 2.18 eV for A1As (3.13 eV),
0.69 eV for GaAs (1.52 eV), 1.23 eV for the CA structure
of GaA1As2 [2.15 eV (Refs. 30—32)], 1.38 eV for the Z2
structure Ga2A12As„[ -2. 19 eV (Refs. 30—32)]. (See
Table II for the definition of the structures CA, Z2, etc.)
An estimate of the corrected (including spin-orbit effect)
band gap at x= —,

' can hence be obtained by adding
-0.81 eV to the LDA results without spin orbit (this in-
cludes —0. 11 eV for spin orbit and +0.92 eV for the
direct LDA correction). This was discussed in some de-
tail in Ref. 40.

Since we are addressing here optical transitions, we
focus on the direct gap at I (the valence-band maximum
always occurs in this system at the I point). To select
the conduction band of zinc-blende I I, symmetry we

TABLE II. Definition of the crystal structures used here for A =A1As and B=GaAs. The struc-
tures in this table are described as A~B~ superlattices with layer repeats (p, q) and orientation Cx.
Structures that are not superlattices are pure A and pure B, and the AB3 and A 3B (L 1 and L 3, respec-
tively), both in the luzonite structure. Note that the A, B, superlattice in the [001] direction (CA) is
structurally identical to the monolayer superlattices in the [110]aud [201] directions and that similar
structural identities exist elsewhere (e.g. , AB2 aud A2B superlattices in the [110],[201],aud [113]direc-
tions). The numbers in the table are the pseudopotential-calculated direct band gaps (in eV) at I at a
unit-cell volume corresponding to the cubic lattice constant of 10.619 a.u. We have averaged over the
small crystal-field splitting at the top of the valence band and considered the lowest-energy conduction
band at I with a nonvanishing projection on a I „representation. The calculated band gaps for the
structures not given in the table are 2.18 eV ( A), 0.69 eV (B), 1.00 eV (L1), and 1.36 eV (L3).

Orientation
Formula

AB CP
1.03

[001]

CA
1.23

[110]

CA
1.23

[201]

CA
1.23

[113]

CP
1.03

AB2 al
0.97

Pl
1.07

y1
1.15

y1
1.15

y1
1.15

cx2

1.28
P2
1.39

y2
1.63

y2
1.63

y2
1.63

AB3 V1
0.88

Z1
0.99

F1
1,01

F1
1.04

S"1

0.92

A2B2 V2
1.19

Z2
1.27

F2
1.40

CH
1.46

8'2
1.38

A3B V3
1.37

Z3
1.60

F3
1.67

F3
1.69

8'3
1.52
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have calculated the projection of a number of
conduction- an s a eb d t t s in each configuration onto a I &,

We use the lowest-energy conductionepresentatio . e e
band at aI th t has a finite I &, projection. No e

s this does not correspond to the absolulutemany cases t is oes no
o the conduc-um of the conduction band at I, or to

i
' ro'ection. This produces,

however, a consistent set of minimum-energy I &,
- i e

nset of absorption orstates appropriate to the onset o a s
t . We have also averaged over thereflectance expenmen s. e

crystal-field splitting of the valence-band maximum ca-
culated as 42, 23, 0.6, and 16.6 meV for CA, CP, CH, and
Z2, respectively; see a eT ble II for the definitions of these
structures).

one-electron bandThe LDA calculated I,5, ~I &, one-e ec r
a s are given in Table II and its caption for the 27 struc-

tures. The various sym o s in
f f composition and superlatticeband gaps as a function o corn

I I
'

I

orientation. T ese ex i ih h bit (i) a substantial configurational
~ ~ ~

de endence re ec ed 6 ted in a spread in the values; ii somep d e, 1 1 1] structures have the smallessystematic trends, e.g.,
a s while [201j structures have the largest gaps; mono-
y (CP CA) leads to smaller gaps than bi-layer alternation

ion ( V2, Z2), etc. ; (iii) the band gaps are
si nificantly asymmetric with respect to t e mi corn
tion x= —,'; and (iv a or ere11 rdered structures except CH have

h n the linear concentration-weightesmaller gaps t an e
Fi . 1(b) .E (A)+(1—x)E (B) [dashed line m ig.value x

ch trends inIn what follows we wish to categorize suc
terms of real-space lattice expansions.

III. CLUSTER EXPANSIONS
~ ~r A/B lattice with X sites can exist in 2

different configurations o. corresponding o
ations of the N sites by the atoms A and 8. We

wish to expand a lattice property o. in a
ll J defined as a cluster of atomstributions pf of" gures, e

z.p — (a)
a [111]

2.0 — & [001]
+ [110]

1.8—

)I
a) 1.4—

UJ

1.2—

& [2o1]
+ [113]
& tuzonite

Q'

r' ~
X
X0

iF
D

, 'x
+

g V3
L3

0
0,2

(a)

1.0—

0.8

0
e1

0
Cp

(b)0

( I s I

I
I

I
l

I
I

+CH

(c)

-0.1—

-0.2—)I
~ -0.3—

LU

O
-0.4—

-0.5—

0
V1 o

(x1 0
V2

X

& [111]
~ [oo1]
+ [110]

CP
0 V3

o2 0
h.D [201]

+ [113]
& luzonlte

(e)~ Q (i)

-0.6
0

GBAs
0.2

X

I I I I

o.4 0.6 0.8 1.0
AIAs

IG. 1. Pseudopotential-calculated direct band gaps (sym-FIG. . seu o
ifferent la er orienta-bols) o s af A1As/GaAs superstructures with differ y

s mbols. (a) Ab-S T ble II for definitions of structural symtions. ee a e
oncentration-solute values, an g(b) band aps relative to the conce

s xE (GaAs)+(1 —x)E~(AlAs) shown asas ag g
das e ine.h d 1' The solid line depicts the band gap o e

sin the full fitalloy as o taine rb
'

d f om the cluster expansion using
(Table V).

t e cluster expansion. SeeFIG. 2. Atomic figures used in t e
ure coordinates, and TableTable III for the definition of the figure c

esi nate the various figures.IV f the nomenclature used to desigor e
(a) and (b): pair figures; (c) and (d): three- o y ge-bod fi ures; (e) an
(f): four-body figures.
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with k& vertices (i.e., a selection of k& out of N sites).
Figure 2 depicts a number of such clusters in the fcc lat-
tice and Table III defines their vertices. The expansion is
defined with respect to an orthonormal set of coeKcients,
as follows. One defines the spin product

II~(o)=S, S2 Skf f f
for each of the 2 figures in configuration o.. The set
I II&(o )] is orthonormal, [including the "empty figure'*

f=(0, 1) for which Ho, (o )=1] in that for two figures f
and f ' we have

P~=2 g II&(o )P(o). .
o.=1

(9)

The series (8) may be reduced using symmetry: denoting
by R one of the NL operations of the space group of the
lattice (not the space group of a particular configuration
o), we have

P(ko )=P(o ) (10)

figure f to the lattice property P is given from Eqs.
(6)—(8) by

2N

g II~(o )II~.(cr)=2 6~~ . (6)

Equation (6) shows that 2 II&(o ) is the transpose ma-
trix of II&(o.); multiplying the matrices in reverse order
one obtains the completeness condition between the two
configurations o and o',

and

II+
&

(R. cr ) = III(o ),
hence, Eq. (9) gives

(12)

g Il~(o )II~(cr')=2 5
f

One can hence rigorously expand any property P(o ) of
the lattice configuration o. in the orthonormal set of
I II~(o. ) I as

2N

P(a )= g III(o )p&
f=1

where the configuration-independent contribution pI of

P(cr) =N g II~(cr )D~pF,
F

(13)

where the "lattice-averaged spin product" (denoted by an
overbar) of the prototype figure F in configuration cr is

(14)

so all XDF symmetry-related figures contribute equally to
P(o. ). This fact can be used to reduce the sum in Eq. (8)
to just the symmetry-inequivalent figures F,

Figure

(0, 1)
(1,1)

Site positions
(in units of a =2)

Empty
(0,0,0)

Pairs
(2, 1)=J2
(2,2) =%2
(2,3)=L2
{2,4) =M2
(2,5) =N2
(2,6)=Oq

(2,6) =P2
(2,8) = Q,

(0,0,0) (1,1,0)
(0,0,0) (2,0,0)
(0,0,0) (2, 1,1)
(0,0,0) (2,2,0)
(0,0,0) (3,1,0)
(0,0,0) (2,2,2)
(0,0,0) (3,2, 1)
(0,0,0) (0,4,0)

TABLE III. Definition of the vertices of the figures (Fig. 2)
considered here for fcc lattices.

bP(cr ) =P(cr ) —[( I —x )P( A )+xP(B)] .

The cluster expansion for hP is then

(15)

and 2VI is the number of operations R in the lattice space
group (e.g. , NL =48N for fcc lattices). The set I IIF(o )]
characterizes unequivocally the structure of configuration
o. The cluster expansion of Eq. (8) defines a multisite Is-
ing Hamiltonian which includes "interactions" pF =pk ~
between k sites separated by up to the mth-neighbor dis-
tance (the choice k =2, m = 1 corresponds to the classic
nearest-neighbor pair interaction case).

It is useful to expand the configurational property
P(o ) with respect to some reference configuration. One
possibility is to expand it relative to the property P of
equivalent amounts of pure 3 and pure 8 lattices. The
excess property b,P for the A, „B,system (with compo-
sition x) with respect to equivalent amounts of A and B is

Three body
(1,1,1)=J3
(2, 1,1)=K3
(3,1,1)=L,
(3,2, 1)=L3
(3,3, 1)=L3-

Four body
(4, 1)=J4
(4,2) =%4
(4,3)=L4
Square

(0,0,0) (1,1,0) (1,0, 1}
(0,0,0) (1,1,0) (2,0,0)
{0,0,0) (1,1,0) (2, 1,1)
(0,0,0) (1,1,0) (1,1,2)

(0,0,0) (1,1,0) ( —1,2, 1)

(0,0,0) (1,1,0) (1,0, 1) (0,1,1)
(0,0,0) (1,1,0) (1,0, 1) (2,0,0)
(0,0,0) (1,1,0) (1,0, 1) (2,1,1)

(0,0,0) (1,1,0) ( —1,1,0) (0,2,0)

Rl)ok)1
(16)

( II„) =(2x —1)

Phenomenologically, the band gap of the random
A1 8 alloy has traditionally been expressed as

where g= 1 for k even and 7) =(2x —1) for k odd.
For a perfectly random (R) alloy, one needs to consid-

er an ensemble average over the 2 configurations. This
gives
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E' '(x) = [(1—x )E ( A )+xE (B)] —bx (1—x ), (18)

where

b 2-body +b 3-body +b 4-body + (19)

2-body X 4 2, mP2, m
m &0

b3 body (2x —1 ) g 4D3 mp3
m &0

b4b, d„=[(2x—1) +1] g 4D4 p4
m&0

(20)

where b is the "bowing" coefBcient. Using Eqs.
(15)—(18) we can then express b as a series of interac-
tions:

(23)

with the weights

periodic structures) from which pF for F ~F,„can be
obtained, and (iii) examine convergence by using t pF j to
predict the property P(cr') for other structures
[cr jW[cr j; if this fails, F,„ is increased until transfera-
bility is established.

Generalizing the Connolly and Williams approach we
specialize the expansion of Eq. (13) to a set of N, periodic
structures [o j = Is j for which (i) P(cr ) can be readily cal-
culated (e.g. , from band theory), and (ii) IIIF(s)j are
known trivially. One then obtains the effective cluster
properties [pF j by minimizing the weighted variance,

N, N~ 2

g co, P(s) —g IIF(s)D+pF =minimum,
s=1 F

and so on. Alternatively, one can write

b(x) =bp+(2x —1)bi+(2x —1) b2+ (21)
co, =48N, (s)/NG(s) . (24)

where

bp: g (4D2 p2 +4D4 p4 )+
m &0

b, = g 4D3 p3 +
m &0

b2= g 4D4 p4 +.
m &0

(22)

Here N, (s) and NG(s) are the number of atoms per unit
cell and the number of point group operations for the
structure s, respectively. Our basic strategy will be to use
the band gaps IP(s)j calculated from band-structure
theory for a set of ordered structures Is j (Table II) and
obtain [pF j from Eqs. (23) and (24). We will then exam-
ine convergence and transferability. A converged set of

This shows that (i) nonzero bowing is a statement of ex-
istence of many-body (including pair) interactions since

p0, and p i &
describe the purely linear composition

dependence, i.e., the first bracketed term in Eq. (18). (ii)
The composition-independent piece b0 of the bowing pa-
rameter (assumed to be the only piece in most phenome-
nological treatments) refiects even-body interactions;
composition dependence of b then arises from three- and
more-body effects. (iii) Odd-body corrections to optical
bowing vanish at x =

—,'.
While the complete cluster expansions of Eqs. (8) or

(13) are formally exact, they merely replace a direct cal-
culation of 2 values of P(cr) by an equivalent number of
calculations of the elementary contributions [pf j. The
utility of these expansions rests, however, on the possibil-
ity of identifying a hierarchy of a small number ( ((2 )

of figures whose contributions pk to the lattice property
P dominates those of the remaining figures. Note the
limitation here: in general, one could not predict P(cr)
for configurations o. whose unit-cell size exceeds the di-
mension of the largest figure included in the expansion
(unless pk is negligible for larger figures). To the extent
that the basic cluster expansion of Eq. (13) converges reg-
ularly and rapidly with respect to the figures (a point to
examine below), one can use any sufficiently large set of
[P(cr ) j in Eq. (9) to evaluate the effective cluster proper-
ties [pF j. Conversely, nonunique values of [pF j obtained
from two different sets of configurations [o j and jo'j of
comparable sizes testify to the importance of interactions
beyond the truncation limit used. This suggests that one
can (i) establish a trial maximum figure F,„ to be re-
tained in the cluster expansion of Eq. (13), (ii) select a
computationally convenient set of configuration [o j (e.g.,

Pair energies 3-body energies 4-body energies
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200
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E
E

0.0
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E~"-100
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-200

-300-
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X2 x5 x5
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0 0.0
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K4 ~L4
0

4
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Size of figure (arbitrary units)

FIG. 3. Product of the degeneracy factor Dk and the in-

teraction coefficient pk . (a) Cluster expansion of the direct
band gap of A1As/GaAs systems (Dk and pk of Table VI).
(b) Cluster expansion of the excess total energy of A1As/GaAs
systems (Dk ~ and Jk of Table VI).



[pF } can then be used to predict band gaps of arbitrary
structures.

shown in Fig. 2. In addition to the normalization con-
stant po, and the site-only p, , figures we use (i) eight
pair (k=2) interactions [Figs. 2(a) and 2(b)], (ii) four
three-body (k =3) figures [Figs. 2(e) and 2(d)] and (iii)
four four-body (k=4) figures [Figs. 2(c) and 2(f)]. The
resulting IIit of 18 interactions to 27 band gaps is given in
Table V under the heading "full 6t." Table VI gives the
interaction energies [pk } along with the values ob-
tained by fitting the band gap obtained in a virtual crystal
approximation (VCA). The latter is nearly linear with
composition, so all of the many-body terms are negligible.
The product of the degeneracy factor Dk and the in-
teraction energy pk is shown graphically in Fig. 3.

IV. INTERACTION CONSTANTS
I QR THE A1As/Gals SYSTEMS

The pseudopotential calculated band gaps Eg(s) of our
27 structures (Table II) were used in Eq. (23) to obtain the
interaction energies [pk }. Table IV gives the correla-
tion functions IIk (s) for these and other structures as
well as the weights ~, . Since there is no prior experience
as to the rate of convergence of the band-gap cluster ex-
pansion, we started with a rather large set of 18 jIigures,

A C ABC2 A 2BC3 A282C4 A3BC4 A4B4C8 R
CA CP o. , 13, y, CH V, IV, Y, Z~ F, L, V, IV, X, Y, Z, D4 SQS-8

1 6 8 12 9 18 12 16 48 24 12 12 4 16 48 24 24 12 8 96

Composition

Name

Weight ~,
Figures Bq, m

(0, 1)=Jo
(1,1)=J1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 1

3 3 3
1 1 1 1 1 1 10
2 2 2 2 2 2 2

Pairs:

(2, 1)=J2

(2,2)=X,
(2,3)=L
(2,4) =M2

(2,5)=%
(2,6)=O,
(2, 7)=P
(2, 8) =Q~

(2,9)=R2
(2,9)=Z,'

1 1

2 6 0
1 1

3 3

0 1

3

1 1

3 3

0

1

2
1 ——' 0

3

1 1 —1

1

3
1

9
1

3
1

6
1

6
1

6 0
—1

3

0 q

0 q
1 q2

12

0 q
1 q2

1 q2

0 q

0 q

0 0
1

3
5
9

1

3
2
3

1

3

1

3

1

6
1

3

1

9 0 0

0 0

0 0

1 0 0 0
1

3
1 0
3

1 1 1

1

3
1

3
1

4
1

6
0 0 0
1

3
1

9
1

3
1

3
1

2
1

9
1

3
1

9
1

3
1

2
1

6
1 —-' 0

3
1

3
1

60 0 0 0
1

3
1 1 —1 0 0 1 u 0 0 1 0 —10 0

0 0
3

0 1

3
1

3
1

3
1

9
1

3
1

4
1 ——' 0

3
1

9
1

6 0 0
1

3
1

9
1

3

5
9 1 1 1 1 0 0 1 1 1 1

0

0
1 1

3 3

1

3

1

3

1

3
1

3
1

3

1

6

1

3

0
2 1
3

1

6
0 0 0 0 0 0

1

2
1

3
1

2
1

6
1

3

1

60 0
1

9
1

9
1

3
2
3(2, 10)=52 12 0 0 1 0 0 0

Three body:

(1,1, 1)=J, 1

3
0 0

0 0

0

0 0 0

0 0 ——'
3 9

0 1 1

2 2
1 q3

0 q'
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 1 1 1

6 2 2
1

6
1

6
1

6
1

6
(2, 1, 1)=K3 12 —1

(3, 1, 1)=L3 24 0 1 1

2 4
1

12
1 q3

24

12

6
0 0 0 0

0 1 1 1

2 2 4
1

12
1

6(3,2, 1)=L'
(3,3, 1)=L," 0 1

6
1 1

2 2
0 0 0 0

Four body:

{4,1)=J4 0 q41 1 —1
3

1 ——' 0

1 1 1

1

3 1 0 0 —1 1 —1 —1 0 0 0 0 1 1

24

q

1

9
1

6
1

3
1 1

2 6 6

0

1 1 1

3 3

1

6
1

3
1

2
1

3
(4,2) =K4

(4, 3)=L4
Square

0 0
1

9
1

9

3
1

3
1

2
1 1

2 3

1

3

2
3

1

5
9

1

3
1

3
1

3
1

3
1

9

TABLE IV. Correlation functions II& (s) [Eq. (14)] for figures (k, m) (shown in Fig. 2 and Table III) in structures s (defined in
Table Ii). Dk is the degeneracy factor. To obtain the results for AB2C3 from those of A2BC3, switch the sign of the odd-body
(k = 1,3) figures. The same applies to A ~B and A3BC4~ AB3C4 structures. For the (R) random alloys, q =2x —1.
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From these results, we conclude the following.
(i) The cluster expansion for the direct band gap [Fig.

3(a)] converges considerably slower than that for the total
energy [Eq. (2) and Fig. 3(b)] in that the latter is dom-
inated by the nearest-neighbor pair energy J2 2 while the
former requires a considerably larger number of higher
terms.

(ii) Nevertheless, the cluster expansion of the band gap
is reasonably accurate in that the standard deviation for
the fit (Table V) is comparable to the underlying precision
of the pseudopotential calculation.

(iii) The cluster energies of Fig. 3(a) exhibit an overall
decrease with size, in that the contributions from figures
with larger interatomic separations are rather small.

V. CONVERGENCE AND TRANSFERABILITY

We have conducted four tests to examine the conver-
gence of the cluster expansion.

First, we have recalculated Ipk } from Eq. (23), using

as input only 10 out of 27 structures; the resulting in-
teraction energies were then used to predict the band
gaps of the remaining 17 ordered structures not used in
the f'tt. The last two columns of Table V show that the
prediction error (relative to the "exact" pseudopotential
values) has increased only to 0.04 eV compared to 0.03
eV in the complete fit; both deviations are close to the rel-
ative uncertainty in the pseudopotential calculations of
the band gaps. Note that while both fits predict very
similar band gaps, the nonunique values of [pk } can
differ.

As a second test, we have calculated the band gap of
the random Al, „Ga As alloy from Eqs. (13) and (17),
using different sets of ordered structures for extracting
Ipk }. Table VII shows that the random alloy gap is
predicted reasonably robustly starting with different
choices of ordered structures. In general, the band gaps
of disordered alloys can be predicted with greater accura-
cy than those of ordered structures since the former

TABLE V: Pseudopotential-calculated and cluster expanded LDA band gaps using N, structures
and Nf figures. The "full fit" was carried out for 1V, =27 structures and the Nf =18 interactions shown
in Table VI. The "partial fit" was carried out for N, =10 structures (denoted here by an asterisk) and

Nf =9 interactions. These include Jo and J&, the first five pair interactions J» E&, L» M» and N2 as
well as the three-body terms J3 and L3. "Difference" refers to the cluster expansion value minus the
pseudopotential-calculated band gap. Values in the last two columns not indicated by an asterisk
denote predicted quantities (i.e., not included in the fit). The last two lines give the average error (AE)
over the N, structures used in the fit ("AE of fit") and over the 27 structures ("AE of predictions").

Structures
Calculated

(eV)

Full fit

N, =27; Nf =18
Fitted Difference

(eV) (eV)

Partial fit

N, =10; Nf =9
Fitted Difference

(eV) (eV)

GaAs
AlAs
CA
CP
a1
A2

Pl
P2

y2
CH
V2
W2
Y2
Z2
F1
F3
L1
L3
V1
V3
8'1
8'3
Y1
Y3
Z1
Z3

AE of fit
AE of predictions

0.69
2.18
1.23
1.03
0.97
1.28
1.07
1.39
1.15
1.63
1.46
1.19
1.38
1.40
1.27
1.04
1.69
1.00
1.36
0.88
1.37
0.92
1.52
1.01
1.67
0.99
1.60

0.69
2.18
1.22
0.99
0.99
1.30
1.14
1.43
1 ~ 17
1.68
1.45
1.14
1.36
1.38
1.24
1.05
1.67
0.95
1.40
0.87
1.48
0.90
1.53
1.06
1.63
0.99
1.57

0.00
0.00

—0.01
—0.04
+0.02
+0.02
+0.07
+0.04
+0.02
+0.05
—0.01
—0.05
—0.02
—0.02
—0.03
+0.01
—0.02
—0.05
+0.04
—0.01
+0.11
+0.02
+0.01
+0.05
—0.04
—0.00
—0.03
+0.03
+0.03

0.69*
2.18
1.17*
1.03*
0.97*
1.28*
1.15
1.40
1.17
1.66
1.46*
1 ~ 17
1.32
1.30
1.27*
1.11
1.66
1.06*
1.42*
0.90
1.51
0.90
1.57
1.02
1.58
1.01*
1.57*

0.00*
o.oo*

—0.06
0.00
o.oo*
o.m'

+0.08
+0.01
+0.02
+0.03

o.oo*
—0.02
—0.06
—0.10

0.00*
+0.07
—0.03
+0.06*
+0.06
+0.02
+0.14
+0.06
+0.05
+0.01
—0.09
+0.02
—0.03
+0.02
+0.04



8680 R. MAGRI AND ALEX ZUNGER

TABLE VI. Band-gap expansion coefficients pk and the analogous expansion coefficients Jk for
the total energy [Eq. (2)]. pk (VCA) gives the cluster coefficients for expansion of the virtual crystal
approximation to the band gap.

Figure

{0,1)=Jp
(1,1)=J)

Pairs
{2,1)=J2
(2,2)=K,
(2,3)=L2
(2,4) =M2
(2,5) =N~
(2,6) =Oq
(2,7) =P2
(2,8) = Qp

6
3

12
6

12
4

24
3

pk (me V)

1262.86
584.06

—25.68
13.05
20.68

—41.44
6.40

16.80
3.58

11.05

Pk (VCA)

1435.7
740.9

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

5.2638
—0.0059

—0.8054
—0.0156
—0.0018
—0.0044

0.0003
—0.0085
—0.0024
—0.0027

Three body
(1,1,1)=J3
(2, 1,1)=K3
(3,1,1)=L3
(3,2, 1)=L3

8
12
24
24

—12.92
—0.90
10.36

1.10

0.00
0.00
0.00
0.00

0.0083
—0.0025
—0.0008
—0.0004

Four body
(4, 1)=J4
(4,2) =K4
Square

(4,3 ) =L4

2
12
3
12

17.80
—7.79
22.80

1.17

0.00
0.00

0.00
0.00

—0.0106
—0.0005
—0.0004

0.0035

Es (D4) —E (CP) =(4J) 24L~)—(25)

where represents all higher many-body terms. The
pseudopotential (PS) calculation gives

E' '(D ) —E' '(CP)= —0.02 eV . (26)

represent an average over ordered structures.
A third way to examine the cluster expansion involves

the direct calculation (not a fit) of some pi, values.
Table IV shows that the structure A4B4C~ denoted D4
(Refs. 50—52) has identical pair (k=2) and three-body
(k =3) correlation functions IIk to that of the CP
structure, for all of the considered orders of m; these
structures differ only in some of the four-body terms. Us-
ing Eq. (13) and the IIk values of Table IV we then
have from the cluster expansion (CE)

Comparison of (25) with (26), using the values of j& and
L4 from Table VI then shows that all higher-order terms
equal 0.06 eV, a reasonably small correction.

A fourth test consisted of using the cluster expansion
to predict the band gap of a complex, low symmetry
structure. We selected the SQS-8 structures (defined in
Ref. 48) consisting of an A2B3A2B, superlattice along
the [113]direction, or the transposed BzA~B2A, struc-
ture. The average of the band gaps of these two struc-
tures, as obtained by direct pseudopotential calculation,
is 1.38+0.03 eV. The cluster expansion using 27 ordered
structures as a basis gave 1.33 eV, showing again reason-
able convergence.

Based on these tests we conclude that our cluster ex-
pansion can predict the band gaps of arbitrary substitu-
tional A1As/GaAs structures (whose unit cells are con-
tained within our largest figures) to within better than 0.1

TABLE VII. Predicted LDA band gap of the random Alp 5Gap 5As alloy using diff'erent sets of N, ordered structures.

N, Structures used in expansion

A, B,CA, L1,L3

A, B,CA, CP, CH, Z2

Interaction terms

Jp J~ Jz J3 J
Jp, J),J2,,K2, Lz, M

Allo y gap at ~= —,
'

(eV)

1.231

1.281

10 A, B,CA, CH, CP, Z2
al, a2, L 1,L3

Jp& Jl & J2&K2 L2
M2, N2, J3,L3

1.281

27 27 structures (Table IV)
Jp, JI,J2,K2,L2
M2, N2, 02,J
K3,L3,J4,K4

1.301
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eV, i.e., just a bit above the precision of the underlying
pseudopotential calculation.

VI. APPLICATIONS
OF THE CLUSTER EXPANSION

The solid lines in Fig. 1 show the predicted band gap of
perfectly random Al& „Ga As solid solutions, using Eqs.
(15)—(17) and the interaction energies of Table VI. We
see that the bowing of (E~(x) )z is nonparabolic. Using
Eqs. (19) and (20) we find

b2-gody =0.59 eV,

b3»d„=0.64(2x —1) eV,

b~» „d=0.098[(2 x—1) +1] eV,

(27)

i.e., two- and three-body interactions are dominant. The
comparison of these values to experiment is somewhat
clouded by the LDA error on the side of theory, and by
the fact that aHoy data is usually displayed as an average
over certain composition ranges, on the side of experi-
ment. Recent careful experimental studies ' have re-
vealed, however, an unusual nonparabolic behavior of
(E~(x))z, with a small and constant bowing in the
GaAs-rich range and a significantly larger bowing at
higher Al concentrations, in qualitative agreement with
our results (Fig. 1). Recent tight-binding model calcula-
tions have shown small bowing "in the GaAs-rich re-
gion; more refined tight-binding calculations ' ' revealed
a strong negative bowing in the GaAs-rich alloy that is
not seen in our calculation and in most recent experimen-
tal data. ' Calculations based on the coherent potential
approximation show likewise a smaller bowing in the
Ga-rich alloy (b -0.1 eV) than in the Al-rich alloy
(b-0.25), while VCA calculations (see also Table VI)
reveaI essentially no bowing in this system.

Figure 1(a) depicts the absolute values of the calculated
band gaps, whereas Fig. 1(b) displays the values of
b.E~(x ), after subtracting the linear weighted average of
the band gap of the constituents xE&( A )+(1—x )Ez(B).
This highlights the fact that hE (x) is significantly asym-
metric with respect to the midcomposition x =

—,
' value, in

sharp contrast with the highly symmetric excess total en-
ergy b,E„,(x). Our foregoing analysis [see Eq. (27)]
shows that this reAects significant odd-body interactions
controlling the band gap [Fig. 3(a)] but not the total ener-

gy [Fig. 3(b)].

B. ER'ects of short-range order on the band gap
of disordered Al& „Ga„As

Equation (17) applies to substitutional alloys that are
perfectly random, hence, so do our alloy results of Eqs.
(19)—(22), and Fig. 1. Fu, Chao, and Osorio and Has-

Having established the practical convergence and
transferability of the band-gap cluster expansion, we next
apply it to predict band gaps for structures that are too
complex to be calculated via Eq. (3).

A. Predicting the direct band gap
of the Al~ Ga„As random alloy

bun, Singh, and Roth pointed out that short-range or-
der (SRO) could afFect the alloy band gap. While it was
expected qualitatively that the Al, Ga As alloy will
tend to phase separate at low temperatures (hence the
SRO wiH consist of a greater clustering tendency than
that granted by random statistics), the precise form of
SRO was not known. Fu, Chao, and Osorio hence as-
sumed a simple form of SRO consistent with clustering
tendencies, finding that it led to significant upward hom-
ing (b &0) of the direct band gap in Al, „Ga„As.

The effects of SRO on the alloy band gap can be de-
scribed within our formalism, using accurately calculated
values of the SRO. Wei, Ferreira, and Zunger ' ' per-
formed a cluster expansion of the total energy [Eq. (1)] of
AIAs/GaAs and used the resulting interaction energies J
to calculate (via the cluster variation method) the
temperature-composition phase diagram. They also ob-
tained the excess clustering probabilities

EQ„(x,T)=Q„(x,T)—Q„' '(x, ~ ), (28)

where Q„(x,T) is the probability of finding at (x, T) the
As-centered clusters Al~ „Ga„(0~ n ~ 4) and
Q„'"'(x, oo ) is the random probability (at x =—,', this is —,'„
—,'„—,'„—,'„and —,', for n =0, 1, 2, 3, and 4, respectively).
Figure 8 of Ref. 4(b) depicts that bQ„(x, T), showing
that at finite temperatures the alloy is enriched by the
n =0 (Al„) and n =4 (Ga&) clusters over what random
statistics would grant, while the mixed A13Ga, AlzGaz,
and A1Ga3 clusters are deficient. We next describe how
such thermodynamic results could be incorporated into
our cluster expansion for the band gaps, giving the effect
of SRO on optical properties.

Our Eq. (13) can be reformulated as a sum over a set of
ordered configurations {s] rather than over figures {F]
by noting that the interaction energies pF are

y[ll (s)] 'E (s)
F s

(29)

and E (s) is the band gap of structure s. Inserting Eq.
(29) into Eq. (13) and taking the configurational average
(denoted by angular brackets) appropriate to the disor-
dered phase, one gets

&E, &, = yQ, E,(.) (30)

where the weights are

Q, = g II (s) '(ll (ct)) .
F

(31)

Hence the band gap of the random alloy can be written as
a sum over those of ordered structures with weights given
by the therinal average in Eq. (31) (this was illustrated in
Table VII). While in general the weights Q, of Eq. (31)
cannot be interpreted as probabilities, in special cases "
they can. This is the case where the maximum figureF,„defines a translational repeat unit such that the or-
dered structures Is ] can be described as a superposition
of cells n each being a particular arrangement of 3 and 8
atoms at the vertices of F, . A simple example is whenF,„ is a nearest-neighbor tetrahedron (k =4) and {s]
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are the 2"=16 ordered structures A„B4 „(O~n ~4)
spanned by this figure. Then, the alloy band gap can be
written as

SRO effects created by finite temperature equilibrium
have but a negligible effect on the direct band gap of
A1As/GaAs alloys.

(Es)~ = g Q„(x,T)Es(n ) . (32)
C. Predicting direct band gaps of ordered structures

4

E
2

1

c
1

~~
U)

6$ -3
(3 4

Effect of SRO

0.1

GaAs
0.3 0.5 0.7 0.9

Composition AIAs

FICx. 4. Di6'erence in the direct band gap of AlAs/GaAs al-
loys containing short-range order (calculated from the thermo-
dynamic model of Ref. 4 at T=300 K) and the perfectly ran-
dom alloy (T~ a. ).

At T~ oo, it can be shown "' ' that Q„(x, ~ ) becomes
the random Bernoulli probability.

To see the effect of SRO on the alloy's band gap, we
use the function Q„(x,T) computed in Ref. 4(b) for
Al, „Ga„As and contrast the band gap (E )z obtained
from Eq. (32) with that obtained by substituting in this
equation the Bernoulli distribution Q„' '(x, ao ) appropri-
ate to the perfectly random alloy with no SRO. To exag-
gerate the effects, we use Q„(x,T) at a rather low teinper-
ature of 300 K (well below growth temperatures), where
bQ„(x, T) of Eq. (28) is large. We can use for E (n) in

Eq. (32) the band gaps of the 16 structures that are exact-
ly spanned by F,„being a tetrahedron. These consist of
five distinct configurations A (zinc blende), A3B (luzon-
ite), AB (CA), AB3 (luzonite), and B (zinc blende) with
ratios 1:4:6:4:1. To obtain more accurate results (see
Table VII) we can use the renormalization trick of Ref. 4
whereby Es(n) [denoted EE(n, V) in Eq. (2.13) of Ref
4(a)] is replaced by its renormalized from [denoted e„ in
Eq. (2.27) of Ref. 4(a)]. Equation (6.16) of Ref. 4(a) gives
this quantity where all pair interactions are folded in.
Figure 4 shows the difference between the alloy band gap
computed with SRO [i.e., using Q„(x,T=300 K)] and
the band gap of the perfectly random alloy [using
Q„(x, ~ )]. We see that (i) SRO reduces the band gap in
the GaAs-rich region and raises it in the A1As-rich re-
gion but that (ii) the magnitude of the effect is totally
negligible, even though we have used b, Q„at low temper-
atures where SRO effects are largest. Both observations
disagree with the model of Ref. 55. We conclude that

The central challenge of a cluster expansion approach
of the sort attempted here is to design a lattice
configuration with a given band gap, or one that is likely
to have the largest possible (or smallest possible) direct
band gap at a given composition x. For systems with a
large number of sites M per unit cell, small gap structures
will, most likely, correspond to superlattices with a
sufficiently large number of GaAs layers (so quantum
confinement, that increases the gap, is small) and any
number of A1As layers. This is so because in long-period
type-I superlattices the band gap equals that of the con-
stituent with the smaller of the two band gaps. However,
prediction of structures with a maximum band gap (or
structures with minimum gap but with a small number of
atoms per unit cell) is nontrivial. To the authors'
knowledge, there is no way that this question can be ad-
dressed in the context of k space (i.e., band-structure)
methods except by trial-and-error calculations of the
band structure of many different structures. However,
the establishment of a reasonably converged cluster ex-
pansion in terms of linear contributions [Eq. (13)] from
real-space atomic clusters enables a direct and simple
way for addressing this problem. Simply stated, the
linear form states that cluster (k, m ) contributes an ener-
gy Dk IIk (s)pk to the band gap of structure s. Fig-
ure 3(a) shows, for example, that the third-neighbor pair
L2 and the third-neighbor triangle L3 tend to
significantly increase (decrease) the band gap in struc-
tures having positive (negative) values for III2 and IIL3.
This establishes a simple design principle for band gaps of
substitutional systems in terms of a search for structures
with a desired frequency IIk of the appropriate atomic
figures.

We have constructed a file containing all possible
atomic configurations on a binary fcc lattice with up to M
sites (avoiding duplication ), and obtained their IIk
values. To find the structures with maximum band gap,
we then search P(o ) of Eq. (13) (using our calculated in-
teraction energies p~) for all 2 configurations o. In this
preliminary study we searched only 2' = 1024
configurations with up to M = 10 sites.

We found that for M ~ 10 atoms, all maximum band-
gap structures are [201] superlattices. Of these, some
were included (unwittingly), in our data base of structures
(Table II), i.e., the (A1As), /(GaAs)2 "yl" structure at
x =—'„ the (AIAs)2/(GaAs)z chalcopyrite (CH) structure
at x= —,', and the (AIAs)z/(GaAs), "y2" structure at
x =

—,'. Unsuspected maximum gap structures that were
not included in our data base but were identified in the
search are the (AIAs), /(GaAs)~/(AIAs), /(GaAs)2 [201]
superlattices at x = 4, for which the ten-term cluster ex-
pansion gave a predicted direct band gap of 1.10 eV, and
the (A1As)4/(GaAs), /(A1As)2/(GaAs), [201] superlattice
at x =—', for which the same cluster expansion predicts a
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gap of 1.72 eV.
Although computationally expensive, we have calculat-

ed the self-consistent band structure of the former x =
—,
'

structure using the pseudopotential method with precise-
ly equivalent basis sets and Brillouin-zone sampling used
for all other structures. This gave a direct band gap of
1.07 eV, very close to the prediction of the cluster expan-
sion of 1.10 eV. This highlights the usefulness of such
cluster expansions in the design of materials with
specified properties. Note that both values are larger
than the linearly weighted average —,'Eg (A1As)
+ ~Eg (GaAs) and then the largest band gap at x =—,

' con-
tained in our "basis set" (e.g., see Fig. 3).

VII. SUMMARY

We have demonstrated that the direct band gap of sub-
stitutional A1As/CraAs systems can be usefully expanded

in terms of contributions from a hierarchy of atomic clus-
ters. %'e find that two-body and three-body figures are
dominant, and that the expansion requires larger figures
than needed to express the total energy surface. This ex-
pansion enables the prediction of the band gap of random
alloys, alloys with short-range order, and gap of complex
ordered structures.
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