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The effects of the nonrelativistic Zitterbemegung (trembling motion), originated by interband transi-
tions, on the electron-phonon interaction is considered. It is shown that the one-phonon matrix ele-
ments of intraband transitions are damped with respect to the single-band case. In two-band systems, the
lowest-order damping is equivalent to a Debye-Wailer factor, with the decay length given by the spatial
amplitude of the Zitterbewegung. Two-band systems whose Hamiltonian becomes Dirac-like along a
certain direction (defined as pseudorelativistic) are discussed. They show an extreme effect in the zero-

gap limit, i.e., the total suppression of one-phonon processes, closely related to the divergence of the Zit-
terbeuregung amplitude near the I point.

I. INTRODUCTION

In two recent papers, ' which we shall refer to as pa-
pers I and II, respectively, the authors studied some pseu-
dorelativistic aspects of the quantum theory of crystals,
with special reference to the two-band case. In paper I
the Hamiltonian of a linear chain is expanded on a basis
of atomic orbitals with opposite parity, placed in alternate
sites. It is shown that the resulting two-band Hamiltoni-
an becomes Dirac-like, and that the band picture can be
expressed in analogy with relativistic concepts, such as
rest mass, Compton wavelength, and Zitterbemegung. In
paper II, a more systematic study is performed in arbi-
trary dimension and for different parity relations, show-
ing that in the multiband case the electron quasivelocity
(defined as the gradient of the Hamiltonian with respect
to the quasimomentum) does not commute with the Ham-
iltonian, even though the quasimomentum does. Thus, a
sort of "self-acceleration" arises, in the Bloch formalism,
which leads the particle to oscillate around the average
trajectory, in close analogy with the Zitterbemegung
(trembling motion) in the relativistic quantum theory.
Similar results have been obtained independently by oth-
er authors, in a slightly different context. These effects
are small in the standard case of bandwidth comparable
with the gap. They become increasingly important for
vanishing gap, i.e., when the spectrum tends to a single
degenerate band, a limit which we call "ultrarelativistic, "
since in the example of paper I the velocity of the elec-
tron along the chain tends to a limiting value, indepen-
dent of the wave vector, just like an ultrarelativistic mass-
less particle. In paper II the rigid-lattice theory of the
nonrelativistic Zitterbemegung is illustrated in general
and applications are performed to the localization length

of defect states. The aim of the present paper is to dis-
cuss the effects of the Zitterbewegung on the electron-
phonon interaction. We use a linear combination of
atomic orbitals (LCAO) formalism, developed in paper
II, which is independent both of the internal symmetries
of the orbitals and of the lattice symmetries.

In Scc. II we recall some basic results and generalize to
the polyatomic case the expression of the two-band Zitter-
bemegung operator obtained in paper II for monatomic
systems. In Sec. III we study the problem of the
electron-phonon interactions in multiband systems, by
using our LCAO formalism. We show that a multiband
effect is present even in the intraband processes of
electron-phonon scattering. This results in a damping of
the one-phonon matrix element, with respect to the
single-band case. To the lowest order in the momentum
transfer and in the interband coupling, the damping effect
is quadratic in a characteristic wavelength, which turns
out to be the spatial extension of the Zitterbemegung.

In Sec. IV we consider the electron-phonon interac-
tions in systems whose Hamiltonian becomes Dirac-like
along a certain direction, which we call pseudorelativistic.
These systems are the generalization of the one-
dimensional chain studied in paper I, and are defined as
"class (b) systems" in paper II. The energy-momentum
conservation and the selection rules obtained from the re-
sults of Sec. III are analyzed in this special case for arbi-
trary momentum transfer. We define two regimes, "ul-
trasonic" and "subsonic, "according to whether the limit-
ing velocity of the pseudorelativistic electron does or does
not exceed the sound velocity. In the supersonic regime
electrons interacting with soft phonons can undergo both
interband and intraband transitions. In contrast, in the
subsonic regime, only interband transitions are allowed.
Due to the selection rules, the rate of one-phonon pro-
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cesses always vanishes, in the "ultrarelativistic" zero-gap
limit, whereas the Zitterbewegung becomes divergingly
large near the I point.

II. BAND STRUCTURE AND
ZITTERBE WEG UNG IN CRYSTALS

of a periodic lattice IR„ I (T is the kinetic energy) is ex-
panded on a basis of localized atomic orbitals
(r n, a) =qi (r —R„) (et=1,2, . . . , G), forming an
orthonormal set of G elements in each site. This amounts
to introduce a G X G potential matrix

V(R„—R )=I(a, n ~H(m, f3) ]

acting on a G-dimensional space of column matrices

c(R) ) = Ic (R ) I,

(2a)

(2b)

whose elements c (R. ) are the projections of the quan-
tum state on the ath orbitals of the jth site. Since the
(Ii (r —R„)'s are not assumed to be Wannier functions, a
further overlap matrix

S(R„—R )=t (a, n ~m, P) I (2c)

has to be introduced, accounting for the overlap in-
tegrals. By taking the space Fourier transforms of the
matrices Eqs. (2),

4(k)= gc(R„)e

W(k) = g V(R„)e (3)

Let us first recall some results of paper II, using the
same symbols adopted therein. Matrices will be indicated
by underlined characters, and vectors in the direct or re-
ciprocal space by bold characters. In Sec. II of paper II
the single-particle Hamiltonian

H =T+ g V(r —R„) A p(k)=A't)( —k)=Ap ( —k) (A =)o, W, e), (5)

which actually expresses the time-reversal symmetry.
From Eq. (5), the imaginary part Im[A(k)] is an odd
function of k, so that one has in particular, to the lowest
nonvanishing order in k,

3

Im (e) —= g k„
a Im(e)

ak„ R=O

Thus a power expansion of the Bloch Hamiltonian
e(k)=s(P/h') may contain a term linear in the quasi-
momentum P =6k, of the form CP. It is this term that,
in the long-wavelength limit, leads the Hamiltonian to as-
sume a relativistic form, if the 6 X 6 matrices C&, C2, C3,
and e(0) have suitable commutation relations, reminis-
cent of a Pauli or Clifford algebra. We stress that the ori-
gin of the CP contribution is related to the existence of
terms having opposite spatial parity, and represents an in-
terband interaction. In fact, the LCAO representation of
Im[e(k)] is an antisymmetric matrix, which thereby cou-
ples only different orbitals. In the present section we do
not consider the effects of the relativistic form of the
Hamiltonian on the electron-phonon scattering, leaving
the discussion to Sec. IV.

In the case of two arbitrary orbitals (G =2), not neces-
sarily of well-defined spatial parity, the Hamiltonian Eq.
(4a) reads

V(r —R„)= g Vd(r —R„—d)
d

results from the contributions Vd of different potentials
(possibly spherically symmetrical with respect to the
points R„+d). In this case, one has to relax the assump-
tion of a well-defined spatial parity, with respect to the
sites [R„I,since one has to include odd and even contri-
butions, both from the potentials Vd(r —R„—d), and
from the orbitals %d (r —R„—d). However, the
definitions (3) and the equations (4) still hold true, and the
matrix element rule turns out to be

X(k) = QS(R„)e

defined in the first Brillouin zone 0&, the eigenvalue equa-
tion reads

e(k) =E()(k)I+A, (k)

ep(k)
=Ep(k)I+

(k) ig(k)
E)

e (k)e(0(k)
'

—ep(k)
(6)

—1~ —1

p =X, u=pN,

e(k)u (k) =E„u(k)

with

(4a)

(4b)

where I is the identity matrix, co, c„and 0 are real, and
e) sin 0 is an odd function of k, because of the rule (5).
The calculations performed in Sec. III of paper II can be
applied to Eq. (6), which yields the following expressions
for the eigenvalues E„ in Eq. (4a):

where c.,p, 8' are self-adjoint. For real orbitals of well-
defined parity and for an even potential V(r) = V( —r) in
Eq. (1), one derives the following rule: Each matrix ele
ment A t)(k) (A = W, X, c, ) is odd (even) in k and pure
imaginary (real) if the t(vo orbitals a,P have opposite
(identical) spatial parity. This rule applies, for example,
to monatomic systems, for which the R„'s may be chosen
to coincide with the atomic sites. Let us consider an ex-
tension to systems whose unit cell contains more atomic
or molecular centers, so that the site potential

E„=E()+E=Ep+Qsp+e, .

The corresponding eigenvectors are

(7a)

X—E —
C, O

(7c)

1 X
u+ = ;g, u ;0, (7b)

1+x x 1+x
with
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In paper II, one calculates the Zitterbemegung operator
Z(k) describing the "trembling motion" of a charge in a
crystal due to interband transitions in the case of orbitals
of well-defined parity. The same method (for an alterna-
tive derivation, see Ref. 4), can also be applied to the
Hamiltonian (7a), valid in the general case, with the re-
sult

1 0
Z(k) =

2 (Fic)Eo Eoc)E) ) . ;e2E —ie
r

Ee

+cpc)BO;ge

III. ELECTRON-PHONON INTERACTION
IN TWO-BAND SYSTEMS

In the present section we extend to the multiband case
the standard single-band formalism for the electron-
phonon interaction, developed in textbooks. This will
be done by using the generalized LCAO approach out-
lined in Sec. II. The coordinate representation of the
electron-phonon interaction reads, for one-phonon pro-
cesses,

where the symbol B. . ., applied to a scalar function of k,
indicates the gradient in k ( and is thereby a Uector in the
reciprocal space). The difference between Eq. (8) of the
present paper and Eq. (19) in paper II results in the
second term in large parentheses, proportional to BO. In
fact, for orbitals of well-defined parity, the phase 0 may
be 0 or ~/2 (if the two orbitals have the same or the op-
posite parity, respectively), but is independent of k in any
case.

w „(r)= g J dke " (k+K„)
(2m. )

~

X A(k)V(k+K„), (9)

where [K J are the reciprocal-lattice vectors, Qi is the
first Brillouin zone, and V(k) and A(k) are, respectively,
the Fourier transform of the site potential V(r) and of
the lattice displacements. Let y (k) be the Fourier trans-
form of the a orbital (localized in the coordinate origin).
The rates of one-phonon processes depend on the matrix
elements between the Bloch eigenstates ~k, o ), with wave
vector k and belonging to the band (or branch) o. Let cr

label the eigensolutions u (k) of Eq. (4a) (o =+ for two-
band systems). Because of the third relation (4b) and of
the first relation (3), the coordinate representation of the
Bloch functions reads

—y[e( —R„)]tp '(k) .(k)X
(10)

where N is the number of sites and the symbol %(r—R„)
stands for the column matrix formed by the G orbitals in
the nth site ( t indicates the adjoint, i.e., the row matrix
formed by the complex conjugates of the G orbitals). By
constructing (o.', k'~k, o ) from Eq. (10), it can be seen
that the matrix p

' accounts for the overlap integrals
[see the second relation (4b) and the second relation (3)],
in such a way that the orthonormality relations are
satisfied, i.e., ( r'c, k'~k, o ) =:-,5(k —k')5 ~ (:-, being the
volume of the first Brillouin zone). By means of Eqs. (9)
and (10), the matrix element of the electron-phonon in-
teraction, connecting a state with wave vector k, in the
band (or branch) cr, to one with wave vector k' in the
band (or branch) o.', becomes

~ ~2
(o,kiw h~k', o') = i g u (k)p '(k)y(k+K, +K;k'+K )(2~)'",.—

Xp '(k')u (k')(k —k'+ K, ) A(k —k')V(k —k'+ K, ), (1 la)

where the G X G matrix y is defined as

y ti(k;k') =y*(k)pter(k')

for k and k' fulfilling the condition

k —k'+K, EQ, .

(1 lb)

(1 lc)

whole space) of two orthonormal functions y and g&,
which yields X y(k+K;k'+K ) =I/:-, . In this case, —
Eq. (11a) becomes

(cr, k~w „~k',o') = u" (k)u .(k')(k —k')
)3/2 —~

The terms of the sum in Eq. (1 la) may correspond to nor
mal (K, =0) or to umklapp (K,WO) processes. If the or-
bitals 4 (r) have a localization length sufficiently small,
compared with the First-nearest-neighbor (FNN) dis-
tance, the overlap integrals can be neglected (p=I ), and
the Fourier transform y (k) varies smoothly, in the first
Brillouin zone. Hence, from Eqs. (11b) and (1 lc), it fol-
lows that the matrix y in Eq. (1 la) is almost independent
of k and k'. If one considers normal processes, the sum
in "m" can be approximated by the integral in k (over the

X A(k —k')V(k —k') . (12)

The single-band case, obtained by setting u =u ~ =1,
corresponds to the standard matrix element depending
only on the transferred wave vector q=k' —k. The mul-
tiband efFect results in the scalar product of the energy
eigenvectors [Eq. (4a)], in the initial and final state. If
u (k)Au .(k'), not only an interband coupling is pro-
duced for o Ao', but the intraband coupling itself
(o =cr') tends in general to decrease in modulus,
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with respect to the single-band case, since
lu (k)u (k')I ~ lu (k)u (k)~=1. We can now connect
the damping of the electron-phonon coupling to Zitter-
bemegung considered in Sec. II. For the sake of brevity,
we drop the band index o. in u and use the same conven-
tion as in Sec. II concerning the derivatives in k. Thus
au is the k gradient of u (vector in k space) and
aa'u is the Hessian (tensor of rank 2) of the second
derivatives. Since u (k)u (k) =1, it follows
that (au )u+ u (au ) =0 and (aa'u')u + u '(aa u )

+(au )(a'u )+(a'u )(au ) =0. With the aid of these rela-
tions, an expansion to the lowest nonvanishing order in
the transferred wave vector q= k' —k gives

~u (k)u(k')~ =1—(au q)(au q) —(u au. q)

An application of the general Eq. (13) to any one of the
matrices u+ in the two-band case, Eqs. (7) yields

IV. ELECTRON-PHONON INTERACTION
AND ZITTERSE 8'EGUNG IN THK PRESENCE

OF A PSEUDORELATIVISTIC DIRECTION

e —Eo(0)I—=MC cr3+P Ccr2,

where

(15a)

%"e now apply some results of Secs. II and III to the
study of one-phonon normal processes in crystals [denot-
ed "class (b)" in paper II], formed by two orbitals having
opposite and we11-defined parity. These are characterized
by a pseudorelativistic direction, along which the Hamil-
tonian becomes Dirac-like in the long-wavelength limit.
To see this, we set 0= vr/—2 in Eq. (6), on account of the
matrix element rule mentioned in Sec. II. Then we ex-
pand to erst order in k, and use the Pauli matrices o.„(@=1,2, 3) to represent the 2X2 matrix b, in Eq. (6)
(without any relation with the electron's spin). This
yields

[(.,a.,—.,aE, ) q]' (ae] )0 Eo(0)
P =4k, C-= M= (15b)

2

+(ao q)
4E

t4
(aH. q)=1—(Z q)'— (14)

where the second equality is obtained by using Eq. (8).
From Eq. (14) it is seen that the two-band structure
damps the electron-phonon coupling for intraband pro-
cesses by an amount that, to the lowest order in q, equals
the square product between the momentum transfer and
the Zitterbewegung displacement, plus a term proportion-
al to the fourth power in the ratio between the interband
coupling E& and the gapwidth 2E [see Eq. (7a)]. However,
Eq. (14) shows that (Z q) already includes the contribu-
tions proportional to (e&/2E), so that the last term in
Eq. (14) is a higher-order correction that can be neglected
in the limit of small transferred wave vectors and small
interband couplings.

It was mentioned in paper II that the Zitterbemegung
in multiband systems is a description of a true physical
process, related to the periodic (in space) force experi-
enced by the particle in the lattice. Now we have a fur-
ther indication that the term "trembling motion" is to be
taken literally, at least in a perturbative description. In
fact, the damping term (Z q) is reminiscent of the
lowest-order correction due to a Debye-Wailer factor, if
~Z~ would measure the amplitude of the oscillations per-
formed by the pointlike target, exchanging a momentum
q with a scattering wave. Hence, as far as the interaction
with soft phonons is concerned, in the limit of small in-
terband coupling, the "trembling motion" of the electron
around its center of mass is quite similar to a real har-
monic oscillation. This analogy is less appropriate for
large interband couplings, i.e., in the limit of vanishing
gap. As we shall see in the following section, in this case
one cannot use a perturbative approach, and the effect of
the Zitterbeuregung may be so large as to suppress all
one-phonon processes.

C=——Q D %[V,2(D) —E„S,2(D)],
D

(16)

where [D] are the vectors connecting a given site to its
FNN's, E„is the twofold-degenerate atomic level in each
site, and the matrix elements between the two orbitals 1
and 2 in the FNN sites can be calculated according to
Eqs. (2a) —(2c). The existence of a special direction, like
C/C, means that some kind of anisotropy has been impli-
citly introduced. This anisotropy, due to the interaction
between s- and p-like bands, has been actually observed
and studied theoretically in zero-gap materials like a-Sn
and HgSe. In Fig. 1 we sketch a model lattice of class
(b), whose pseudorelativistic direction C/C originates
from the application of a shear stress. The model is made
by planar structures, with sites occupied by s-p orbitals
(solid circles and open ellipses, respectively), the latter be-
ing responsible for the interplanar coupling. Figure 1(a)
shows the unstressed lattice, with the p orbitals orthogo-
nal to the planes. In this case, both V,2(D) and S,2(D)
entering Eq. (16) vanish for parity reasons and C=O.
Figure 1(b) shows the effect of a shear stress along the
planes, leading the p orbitals to form an angle OD+m/2
with the planes in the direction of the applied stress. In
this case one has nonvanishing contributions V,2(D) and

Equations (15) show that in a lattice of arbitrary dimen-
sion, the opposite-parity condition for the pair of orbitals
in each site leads the Hamiltonian to become Dirac-like
in the long-wavelength limit, with a limiting velocity C
proportional to the gradient (aE&)o, calculated in k=0.
Equations (15) imply that the current associated to the
pseudorelativistic Hamiltonian is directed along C. Thus
we expect a strong anisotropic behavior of the electric
conductivity, whenever long-wavelength electrons dom-
inate the charge transport. It is possible to show that, in
the tight-binding approximation with only erst-nearest-
neighbor (FNN) interaction, the expression for the pseu-
dorelativistic velocity is
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++M C +(P.C) + V g=++M C +(P C+Q C)

(intraband), (18a)

—V'M'C4+(P. C)2+ V g =V'M'C'+(P C+Q C)'

(interband), (18b)

where Q = QI is the modulus of the phonon momentum.
We refer to soft phonons since their energy is V, Q only in
a suitable long-wavelength liniit. In Eq. (18a) it is possi-
ble to select the positive sign without loss of generality,
because the other case reduces to the former, with the
substitutions P+Q~P', Q~ —Q'. By squaring Eqs.
(18) and solving with respect to Q, one gets the two con-
ditions

V,
I cospI ~ ( interband ), (19a)

V,
I cos&I ~ (intraband ), (19b)

FIG. 1. A sketch of a model lattice with a pseudorelativistic
direction. Planar structures, with sites occupied by s orbitals
(solid circles) and p orbitals (open ellipses) are coupled with one
another mainly by the p orbitals. In the unstressed lattice (a)
the p orbitals are orthogonal to the planes. A stress along the
planes (b) forces the symmetry axis of the p orbitals to form an
angle 0DW~/2 with the planes. Arrows indicate the direction
of the resulting pseudorelativistic velocity.

S,2(D), proportional to cos OD [see Eq. (A2) of Ref. 5],
giving rise to a pseudorelativistic velocity, in the direc-
tion of the applied stress. Each chain of inclined p orbit-
als realizes a one-dimensional system quite similar to the
one studied in paper I.

Equations (15) are a special case of Eq. (6), so that, by
means of Eqs. (7), one readily gets two energy bands and
two dispersion relations

+E=++M C +(C.P) (17a)

in the long-wavelength limit and with a suitable choice of
the energy origin. The two eigenstates u+ in the bands
are'

1
Q+ =

2 iX

for the angle P between the velocity C and the phonon
momentum Q. In the "ultrasonic" regime C) V, the
conditions (19) can both be satisfied. In contrast the
"subsonic" regime C & V, leads to a vanishing of the in-
traband transitions.

Let us now consider the "ultrarelativistic" zero-gap
limit M~O, which yields E=IP CI [second Eq. (17a)]
and leads to a single degenerate band. As suggested by
the example in paper I, this limit is realized for the model
system in Fig. 1, when the symmetry axis of the odd-
parity orbital forms a critical angle with the planes, de-
pending on the FNN distance in the planes themselves.
In the ultrarelativistic limit, the third equation (17b)
yields x =P.c/IP CI, so that, from the first two equa-
tions (17b)

1 (P C)(P' C)
[ (P)] —(P')=

[ (P)] (P') = 1+
IP cIIP' cI

(20)

Recalling Eq. (12) (o =+), Eqs. (20) imply that, in the ul-
trarelativistic limit, interband or intraband transitions are
forbidden, according to whether the projections of P and
P' on C have the same or the opposite sign, respectively.
Thus, in addition to the conditions (19), one has also to
impose that the quantity (P C)(P C+Q C) is negatiue
for interband transitions and positive for intraband transi-
tions. For this to occur, one needs

(17b) V,
I
cosP I

~ (interband), (21a)

One may restrict the analysis to absorption processes,
since the emission is obviously symmetrical. From Eq.
(17a), the energy-momentum conservation for the absorp-
tion of one soft longitudinal phonon of momentum Q (in
arbitrary dimension) and velocity V„ leads to the follow-
ing equations:

V,
I cosP I

~ '
(intraband) . (21b)

Since the inequalities (19) and (21) cannot be satisfied
simultaneously (apart from the liiniting case V, =C), it is
seen that the vanishing of the gap in a crystal of. class (b),
with a pseudorelativistic direction, leads to the suppres-
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sion of alt' electron-phonon processes, involving a single
soft phonon. Unlike the case of small interband coupling
(Sec. III), the vanishing of the gapwidth makes the right-
hand side members of Eqs. (20) not expandable in a
power series of P' —P. In the same limit, Eq. (34b) of pa-
per II shows that Z (k) tends to 5(k, )/k„5 being the
Dirac function, and k, being the component of k parallel
to the pseudorelativistic velocity C. We can thus relate
the singular behavior of Eqs. (20), and the resulting con-
ditions (21), to the singularity of the Zitterbetoegung in
k=o, in the limit of vanishing gapwidth. The electron-
phonon interaction for zero-gap semiconductors has been
studied in a different formalism, for example in Ref. 11.
It is theoretically suggested, and experimentally verified'
that the electron-phonon coupling is in general softened
in these materials. For class (b) systems, this may result
in the suppression of one-phonon processes and in a
divergingly large amplitude of the Z&tterbewegung near
the I point.

V. CONCLUSIONS

The present paper is on the same line as paper II and
Ref. 4, in which interband transitions in multiband crys-
tals are interpreted as a nonrelativistic Zitterbewegung in
the Bloch formalism. The origin of this effect is the true
force experienced by the particle in the crystal, which is
periodical in space in the rigid-lattice approximation.
The present paper approaches the next step of the prob-
lem, i.e., the effects of the Zitterbemegung on the
electron-phonon interaction. The main result obtained
for two-band systems is that, in the limit of small

transferred wave vectors and small interband couplings,
the Zitterbemegung behaves like a harmonic oscillation of
the electron, around its center of mass. In fact, the re-
sulting damping on the electron-pho non coupling is
reproducible, to first order, by a Debye-Wailer factor.
This result is general and independent of the form of the
two-band Hamiltonian. However, one may suspect that
the Zitterbemegung is more relevant if the Bloch Hamil-
tonian has a pseudorelativistic form. Thus we focus our
attention on the existence of terms in the Hamiltonian of
the form CP (i.e., linear in the quasimomentum P). The
CP terms may be responsible for pseudorelativistic
effects, which are relevant for the physics of narrow-gap
semiconductors. ' In particular, some crystals, defined
as "class (b)" in paper II, are shown to display a Dirac-
like behavior in the long-wavelength limit, along a special
"pseudorelativistic" direction. These are characterized
by the fact that the band structure originates from the
mixing of opposite-parity orbitals. A model system is en-
visaged in Fig. 1, whose pseudorelativistic behavior origi-
nates from an applied stress. The most relevant result ob-
tained for class (b) crystals is the suppression of one-
phonon processes in the zero-gap (ultrarelativistic) lim-
it, " an effect that is closely related to the divergingly
large amplitude of the Zitterbemegung near the I point.

ACKNOWLEDGMENTS

We thank Dr. P. Kocevar for a valuable discussion.
We thank also Dr. S. V. Vonsovsky and Dr. Svirsky for
providing us with their paper (Ref. 4). This work was
partially supported by the Italian Ministry of Education.

F. Cannata, L. Ferrari, and G. Russo, Solid State Commun. 74,
309 (1990)'.

L. Ferrari and G. Russo, Phys. Rev. B 42, 7454 (1990).
A. O. Barut and A. J. Bracken, Phys. Rev. D 23, 2454 (1981).

4S. V. Vonsovsky, M. S. Svirsky, and L. M. Svirskaya, Sov. J.
Theor. Math. Phys. (Russian ed. ) 85, 211 (1990).

5For a discussion on the use of complex orbitals, carrying a local
current, in a one-dimensional LCAO calculation, see F. Can-
nata, L. Ferrari, and G. Russo, Nuovo Cimento D I2, 1519
(1990).

D. Pines, Elementary Excitations in Solids (Benjamin, New
York, 1963).

7In Eq. (10) we use the conventional matrix-multiplication rule.
It may be worth mentioning that a harmonic motion of the

electron around the center of mass is found in Ref. 3 in the
framework of the Dirac equation.

N. N. Berchenko and M. V. Pashkvskii, Usp. Fiz. Nauk 119
223 (1976) [Sov. Phys. Usp. 19, 462 (1976)].
We notice that Eq. (17b) in paper II, reporting the column ma-
trices u+ with the same symbols as in the present paper, con-
tains an error of sign in the expression of u
V. A. Volkov and Yu. V. Kopaev, Zh. Eksp. Teor. Fiz. 64,
2184 (1973) [Sov. Phys. JETP 37, 1103 (1973)]; see also the
contribution of M. L. Cohen and Y. W. Tsang in Ref. 13.
V. I. Ivanov-Omskii, B.T. Kolomiets, V. K. Ogorodnikov, and
K. P. Smekalova, Fiz. Tekh. Poluprovodn. 4, 264 (1970) [Sov.
Phys. Semicond. 4, 214 (1970)]; L. Gel'mont, V. I. Ivanov-
Omskii, B. T. Kolomiets, V. K. Ogorodnikov, and K. P.
Smekalova, ibid 5, 266 (1971) [ib.id 5, 228 (1971)]..

~3The Physics of Semimetals and Narrow Gap Semiconductors, -

edited by D. L. Carter and R. T. Bate (Pergamon, Oxford,
1971).


