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Photonic band structure of two-dimensional systems: The triangular lattice
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By the use of a position-dependent dielectric constant and the plane-wave method, we have calculated
the photonic band structure for electromagnetic waves in a structure consisting of a periodic array of
parallel dielectric rods of circular cross section, whose intersections with a perpendicular plane form a

triangular lattice. The rods are embedded in a background medium with a different dielectric constant.
The electromagnetic waves are assumed to propagate in a plane perpendicular to the rods, and two po-
larizations of the waves are considered. Absolute gaps in the resulting band structures are found for
waves of both polarizations, and the dependence of the widths of these gaps on the ratio of the dielectric
constants of the rods and of the background, and on the fraction of the total volume occupied by the

rods, is investigated.

There has been a growing interest in recent years in the
determination of the dispersion curves for electromagnet-
ic waves propagating in three-dimensional, periodic,
dielectric structures. The object of these investigations is
finding out whether the band formed by the branches of
these dispersion curves can be separated by absolute fre-
quency gaps, which exist for all values of the wave vector
in the corresponding Brillouin zone, and which give rise
to gaps in the density of states of the waves propagating
in these structures. These photonic band structures have
now been calculated in a scalar wave approximation'
and on the basis of Maxwell's equations. They have
also been investigated experimentally. '

There are several reasons for the interest in photonic
band structures. It has been suggested that if a three-
dimensional, periodic, dielectric structure is disordered in
such a way that it remains periodic on average, it may be
easier to observe in it the Anderson localization of light
whose frequency is close to a band edge of the corre-
sponding periodic structure than it would be in a disor-
dered dielectric structure that is homogeneous on aver-
age. " In addition, since electromagnetic modes with fre-
quencies in the absolute gaps are totally absent, spontane-
ous emission is forbidden in situations in which the band
gap overlaps the electronic band edge. The suppression
of spontaneous emission can improve the performance of
many optical and electronic devices. " The absence of
electromagnetic modes in a certain frequency range can
also modify the basic properties of many atomic, molecu-
lar, and excitonic systems. '

In contrast with the several studies of the photonic
band structures of three-dimensional, periodic, dielectric
systems, to our knowledge there has been only one inves-
tigation of these band structures for two-dimensional,
periodic, dielectric systems. In a recent paper' we have
calculated the (photonic) band structure for a system that
consists of an array of infinitely long, parallel, dielectric
rods, each with a circular cross section of radius R and
characterized by a dielectric constant e„embedded in a
background dielectric material characterized by a dielec-
tric constant eb. The intersections of these rods with a

perpendicular plane formed a square lattice. The elec-
tromagnetic waves were assumed to propagate in a plane
perpendicular to the rods, and two polarizations of these
waves were considered: the magnetic vector parallel to
the rods (H polarization) and the electric vector parallel
to the rods (E polarization). It was found that the band
structure in each case displays an absolute gap, i.e., a gap
that exists for all values of the two-dimensional wave vec-
tor kI~ characterizing these electromagnetic waves in the
corresponding Brillouin zone, and gives rise to a gap in
their density of states.

In this paper we present the results for the photonic
band structures for electromagnetic waves of both H and
E polarization in a structure consisting of a periodic ar-
ray of paralle1 dielectric rods of circular cross section and
dielectric constant e, whose intersections with a perpen-
dicular plane form a triangular lattice. The dielectric
rods are embedded in a background dielectric material
whose dielectric constant is eb. This structure is of in-
terest because dielectric structures of this symmetry are
now being fabricated for experimental studies of photonic
band structures. '

As in Ref. 14 we assume that the dielectric rods of
dielectric constant e, are parallel to the x3 axis. We fur-
ther assume that the rods do not overlap. The intersec-
tions of the axes of these rods with the x &x2 plane form a
two-dimensional Bravais lattice whose sites are given by
the vectors

itai+i2az .

Here a& and a2 are the two noncollinear primitive transla-
tion vectors of the lattice, while I, and I2 are any two in-
tegers, positive, negative, or zero, which we denote col-
lectively by /. The area of the primitive unit cell of this
lattice or, equivalently, of the corresponding %'igner-
Seitz cell, is a, = ~a, X a2~.

The dielectric constant of this composite system is po-
sition dependent, and will be denoted by e(x~~). Here

1&1+x2x2 where x& and x2 are unit vectors along
the x& and x2 axes, respectively, is a position vector in
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The Maxwell "curl" equations for the three nonzero field
components are

Bx (

~E1 l co H3,
BX2 C

(3a)

~H3 l Q) l COD, = e(x„)E
1

(3b)

BH3

()xp

ECO l CO

(3c)

When we eliminate E, and Ez from these equations we
obtain the equation satisfied by H3, which we write in the
form

aH, ~ 1 aH,+ + -- H3=0 .
aXI .(XII) aX, aX2 .(XI, ) aX2

(4)

To solve this equation we expand e '(xll) and H3(xllfco)
according to

—y g(G )e'
e(xll)

(5)

H (x f~)= g g(k ~ )e'

where kIl=x&k2+x2k2 is the two-dimensional wave vec-
tor of the wave and

the x,x2 plane. e(xll) is a periodic function of xll and
satisfies the relation e xll+ xll(l ) }=@(x

We now turn to a calculation of the photonic band
structure for electromagentic waves propagating in this
structure in a plane perpendicular to the dielectric rods.
As in Ref. 14 we use the position-dependent dielectric
constant together with the plane-wave method for this
purpose. %'e consider electromagnetic waves of H and E
polarization in turn.

In the case of H polarization we seek solutions of
Maxwell's equations which have the forms

H(x;t)=(0, 0, H3(x„x2 fco)) exp( idiot)—,

E(x;t)=(E,(x2,x2 co), E2(x„x2Ice), 0) exp( icot—) .

(2b)

the equation for the coefficients t 2 (kll I Crll) I

+(kll++II kll++jl) (+II +jl)~(kill+if)
G

II

The Maxwell curl equations in this case are

'BH2 BH ] l Q) Q)D = i e(—x —)E3
Bx& Bx2 c c3 II 3

~E3 . co= —l—H2,
Bx I c

~E3 . co=l'—H) .
Bx2 C

(1 la)

(1 lb)

(1 lc)

We eliminate H, and H2 from these equations and obtain
as the equation for E3

1 0 0 Q)+ E3+ E3=0 . (12)
clx 1 Bx2 c

To solve Eq. (12) we again use the expansion (5) and write
E3 (xi( I co ) in the form

E3 (xff I CO): y 8 (kff I'Gll )e

The equation satisfied by the coefficients I8 ( Elf f
&

II
) I is

(13)

2

y@GII-Gjl)(k)l+Gjf)'&(kill&if) =
Gl c

II

(14)

which also has the form of a standard eigenvalue prob-
lem, albeit for a nonsymmetric matrix. However, the re-
placement

which has the form of a standard eigenvalue problem for
a symmetric matrix.

In the case of E polarization we seek solutions of
Maxwell's equations which have the forms

E(x; t) = (0, 0, E3(x „x2 I
co) ) exp( i cot—), (10a)

H(x;t)=(H, (x„x2 fco), H2(x„x2 Ice), 0) exp( iso—t) .

(10b)

Gll(h) =h, b, +h2b2

is a vector of the lattice reciprocal to the one defined by
the vectors [xll(l ) I. Here h, and h2 are any two iiltegers
that we denote collectively by h, while the primitive
translation vectors of this lattice are given by

C(kill GII) = lkll+Gll f~(kill+If)

yields an eigenvalue problem for a symmetric matrix:

g lkl, +Of(I@+If +jf)Ik„+C'jlf C(kl(I G
G

II

(15)

~ (a(2) g(2) )
a~

~
( ~(1) ~(1) )

C

where a". is the jth Cartesian component of a, . When
these expansions are substituted into Eq. (4) we obtain as

The eigenvalue problems posed by Eqs. (9) and (16) are
somewhat simpler than their counterparts in Ref. 14.

We see that Fourier coefficients [@Vlf)I of e '(xll)
play a central role in the determination of the photonic
band structures for both polarizations. To determine
them we write e '(xll) in the form



PHOTONIC BAND STRUCTURE OF TWO-DIMENSIONAI SYSTEMS: THE

1 1 1

E(xii ) ts E~
g S(xii —x„(1 ) ) (17)

where the integration in the second line of this equation
is over the entire x

&
x 2 plane. When we take into account

the definition of the function S(xii ), Eq. (18), we obtain

1 for XII ER
0 for xii+R

where R is the region of the x
&
x 2 plane defined by the

cross section of the rod whose axis intersects that plane at
xII =0. The Fourier coefficient 8Cxii ) is then given by

1 1 f d'x„e
6'b Qq R

1 1f+ (1—f), A„=O
Eg 6'b

CG )=
II

(20a)

g g0
(20b)

—iG x
II I I

e(xii )

1 1
~G, O +

&b
f d'x e I' IIS(x )

6'b a~

(19)

where f is the filling fraction, i.e., the fraction of the total
volume occupied by the rods. It is given by f=a& /a„
where aR is the area of the domain R, i.e., the cross-
sectional area of the rod.

We apply the preceding results to the case in which the
intersections of the axes of the dielectric rods with the
x

y
x 2 plane form a triangular lattice, for which
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ai=a(1, 0), a2=a( —,', —'+3) and b&=(2m. /a)(1, —
—,'V3),

bz= (2n./a)(0, —', &3). The rods are assumed to have a cir-
cular cross section of radius R, and we find that for this
case

(21a)

2J, (GiiR)

e& (GiiR)
(21b)

where the filling fraction f=(2n./V3)R /a, and Ji(x)
is a Bessel function.

In Fig. 1(a) we present the photonic band structure for
the case of I polarization when e, =14, eb = 1, and the
filling fraction f=0.431. A total of 271 plane waves was
used in obtaining this result. Along the right-hand rnar-

gin of this figure we have plotted the density of photonic
states in arbitrary units. This density of states was ob-
tained by solving Eqs. (9) and (16) at each of 9600 uni-
formly spaced values of k~~ inside the first Brillouin zone
for the triangular lattice studied here. In fact, the calcu-
lations were carried out for values of ki~ in the irreducible
1/12 of this Brillouin zone, outlined by the heavy lines in
the inset to Fig. 1(a). This was possible because, due to
the circular cross section of the dielectric cylinders, the
frequency co(kii) in each band satisfies the relation

ro(Skii) =co(kii), where S is a 2 X 2 real, orthogonal matrix
representative of any of the 12 operations of the point
group C6„of the triangular lattice. The plot of the densi-

ty of states confirms what can be seen from the band
structure itself, viz. , that an absolute band gap exists in
the band structure in the frequency range considered.

In Fig. 1(b) we present the photonic band structure and
the corresponding photonic density of states for the case
of E polarization when F., =5, e& =1, and f=0.169. A
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FIG. 2. The photonic band structure and density of states {a)II polar. ization: e, =1, e~ =12.5, f=0.6; (b) E polarization: e, =1,
e~ =12.5, f=0.8.
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total of 271 plane waves was used in obtaining this result.
An absolute band gap is also present in this band struc-
ture.

The results presented in Fig. 1 represent the photonic
band structure for a periodic array of dielectric rods in
vacuum. In Fig. 2 we present photonic band structures
for a periodic array of cylindrical holes drilled in a dielec-
tric matrix. In Fig. 2(a) we present the photonic band
structure and the corresponding photonic density of
states for the case of H polarization when e, = 1,
eb =12.5, and f=0.6. A total of 271 plane waves was
used in obtaining this result. Both the band structure
and the density of states reveal the existence of an abso-
lute band gap in the frequency range considered. In Fig.
2(b) the photonic band structure and density of states are
presented for the case of E polarization when e, =1,
ei, =12.5, and f=0.8. The number of plane waves used
in obtaining this result was 469. Three absolute band
gaps are present in this band structure in the frequency
range considered, of which the lowest-frequency one is
the broadest and the one explicitly indicated.

The filling fraction f employed in calculating the re-
sults presented in Figs. 1 and 2 was the optimal filling
fraction for the contrast e&/e& assumed. The optimal
filling fraction is defined as the value of f that gives the
largest width of the lowest-frequency band gap for a
given value of e& le&. In Fig. 3(a) we plot the optimal
filling fraction as a function of e, when eb =1, for the

case of H polarization. The optimal filling fraction was
calculated on the basis of the variation with f of the
width of the band gap in the photonic density of states
for each value of e& /e&. The nonmonotonic dependence
of the optimal filling fraction on the contrast in this case
should be noted. In Fig. 3(b) we plot the optimal filling
fraction as a function of e, for eb = 1, for the case of E
polarization.

In Fig. 4(a) the optimal filling fraction is plotted as a
function of eb when e, =1, for the case of H polarization.
In Fig. 4(b) it is plotted as a function of eb when e, =1,
for the case of E polarization.

Finally, in Figs. 5 and 6 we present the dependence of
the width of the absolute band gap on the contrast
e& /e&, when the filling fraction at each contrast has the
optimal value. In Figs. 5(a) and 5(b) this dependence is
plotted as a function of e, when eb = 1, for the cases of H
and E polarization, respectively. Similarly, in Figs. 6(a)
and 6(b) this dependence is plotted as a function of ei,
when e, =1, for the cases of H and E polarization, re-
spectively. In all four cases plotted in Figs. 5 and 6 the
width of the absolute band gap increases with increasing
contrast.

In this paper we have presented an approach to the cal-
culation of the photonic band structures for electromag-
netic waves of H and E polarization propagating in the
plane perpendicular to a two-dimensional, periodic array
of identical, nonoverlapping dielectric cylinders of arbi-
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trary cross section embedded in a dielectric matrix whose
dielectric constant differs from that of the cylinders. This
approach, which is based on the use of a position-
dependent dielectric constant and an expansion of the
electromagnetic field components in plane waves, results
in a standard eigenvalue problem for a symmetric matrix
for determining the dispersion curves (band structure) of
the electromagnetic waves propagating in the system be-
ing studied. We have applied it here to obtain the pho-
tonic band structures of an infinite array of dielectric
cylinders of circular cross section, whose intersections
with a perpendicular plane form a triangular lattice. In
this case the matrices to be diagonalized become real
symmetric matrices.

In all four cases considered, viz. , waves of 0 and E po-
larization in structures of dielectric cylinders in vacuum
and of cylindrical holes in a dielectric matrix, an absolute
band gap has been found, i.e., a frequency range in which
no electromagnetic waves of either polarization can prop-

0.00
6 8 10 12 14 16 18 20

E'b

FICs. 6. The width of the absolute band gap as a function of
contrast at the optimal filling fraction for that contrast. (a) H
polarization, e, = 1; (b) E polarization, e, = 1.

agate in a plane perpendicular to the cylinders. The
dependence of the optimal filling fraction on the contrast
in these systems has been studied together with the
dependence of the width of the absolute band gap on the
contrast at the optimal filling fraction.

The frequencies of these absolute band gaps fall into an
experimentally accessible range for reasonable values of
the cylinder radius R and lattice constant a. Thus, for
example, the width of the absolute band gap depicted in
Fig. 1(b) is 1.62 0Hz, and is centered at a frequency of
5.99 GHz, when R =5 mm and a =2.32 cm. It is hoped
that experimental determinations of the photonic band
structures for the systems investigated in this paper will
be available in the near future for comparison with the
theoretical results presented here.

We are grateful to Dr. E. Yablonovitch for keeping us
informed of his experimental investigations of two-
dimensional photonic band structures. This work was
supported in part by NSF Grant No. DMR 89-18184. It
was also supported in part by the University of Califor-
nia, Irvine, through an allocation of computer time.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
S. John and R. Rangarajan, Phys. Rev. B 38, 10 101 (1988).
E. N. Economou and A. Zdetsis, Phys. Rev. B 40, 1334 (1989).

4S. Satpathy, Ze Zhang, and M. R. Salehpour, Phys. Rev. Lett.

64, 1239 (1990);65, 2478(E) (1990).
5K. M. Leung and Y. F. Liu, Phys. Rev. B 41, 10 188 (1990).
K. M. Leung and Y. F. Liu, Phys. Rev. Lett. 65, 2646 (1990).

7Z. Zhang and S. Satpathy, Phys. Rev. 65, 2650 (1990).



PHOTONIC BAND STRUCTURE OF TWO-DIMENSIONAL SYSTEMS: THE. . . 8571

~K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett.
65, 3152 (1990).

9E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950
(1989).
E. Yablonovitch and T. J. Gmitter, J. Opt. Soc. Am. A 7, 1792
(1990).
S. John, Phys. Rev. Lett. 58, 2486 (1987).

2E. Yablonovitch, T. J. Gmitter, and R. Bhat, Phys. Rev. Lett.
61, 2546 (1988).
G. Kurizki and A. Z. Genack, Phys. Rev. Lett. 61, 2269
(1988).

~M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng,
Opt. Commun. 80, 199 (1991).

I5E. Yablonovitch (private communication).


