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Axisymmetric spherical-cavity resonator. I. Normal modes
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The problem of the normal modes of electromagnetic oscillations in a spherical-cavity resonator with
axisymmetric interior and ideally conducting walls is solved. The method involves the construction of a
complete set of solutions of the axisymmetric wave equation in spherical coordinates, a coordinate sys-
tem in which the equation is not separable. Fitting the boundary conditions at the surface of the sphere
results in an equation for the normal modes in the form of the roots of an infinite-dimensional deter-
minant. The determinant is evaluated by the method of successive truncations. Numerical results are
presented for the normal modes as a function of the dielectric asymmetry. The field lines for some of the
lowest modes and selected choices of parameters are drawn.

I. INTRODUCTION

We consider the problem of normal modes of the elec-
tromagnetic oscillations in a spherical resonating cavity
filled with an axisymmetric medium, e.g. , ruby. This is a
specialization of the problem of the scattering by a gyro-
tropic sphere, discussed by Ford and Werner. ' The
differences lie in the assumed form of the dielectric rela-
tion between the displacement vector D and the electric
vector E, the boundary conditions at the surface of the
sphere, and absorption properties of the dielectric. The
problem of free oscillations in the interior of a sphere was
solved by Macdonald in 1902: He solved the problem of
electromagnetic oscillations for the case of an ideal con-
ducting sphere with a isotropic dielectric interior. He
also noted the existence of what we nowadays call TE
and TM modes. We shall, therefore, refer to this prob-
lem as Macdonald's problem from now on.

The problem that we are solving is then a generaliza-
tion of Macdonald's problem to the case of an axially
symmetric transparent cavity resonator. The basic
difficulty of this problem is that there is no coordinate
system in which the Maxwell equations are separable and
which has both axial and spherical symmetry. In the
Ford-Werner paper, it is shown how to surmount this
difficulty, and we apply the same techniques here.

The interest in this problem is chieAy due to the experi-
ments of Strayer, Dick, and Tward on superconductor-
coated microwave cavity resonators with sapphire interi-
ors. The aim of these experimental researches has been
the development of stable microwave-frequency stan-
dards with very high quality factor. We, therefore, un-
dertook the solution of this problem in order to further
the understanding of the experimental results. In fact, we
shall compare our theory with the experimental results of
Strayer, Dick, and Tward in a later paper.

In Sec. II we write the basic equations for an axisym-
metric medium and introduce the vector spherical waves.
In Sec. III we construct the general solution of the ax-
isymmetric wave equation inside the sphere, fit the
boundary conditions, and den ve an equation for the

II. GENERAL EQUATIONS AND FORMULAS

In this section we shall present the general equations
for an axisymmetric medium and equations in such ma-
terial. In Sec. IIA we give the Maxwell equations and
dielectric relation in an axisymmetric medium. Then, in
Sec. II B, we discuss the boundary conditions for a
superconductor-coated resonating cavity. In Sec. II C, in
order to develop the modern notation that we shall be us-
ing in the general problem, we give solutions of the
vector-wave equation in spherical coordinates. There we
introduce vector spherical waves, giving the essential for-
mulas we need.

A. General equations

The basic equations are the macroscopic Maxwell
equations, and we shall write them in Gaussian units.
For fields varying harmonically in time [E(r, t )
=E(r)e ' '], they are

~ CO . COcurlE —i—B=0, curlB+ i—D =0,
C C

(2.1)

where B is the magnetic field, E is the electric field, and
D is the electric displacement field. Here the first equa-
tion is Faraday s law of induction, and the second is
Ampere's law. These equations are completed when the
dielectric relation between E and D field is specified, i.e.,

D=e.E . (2.2)

The dielectric tensor appearing in the dielectric rela-
tion (2.2) may, in general, be a complex function of fre-
quency co. Since we are interested in a transparent medi-
um, we take it to be real and independent of co for the fre-

normal-mode frequencies. In Sec. IV we describe our
method of numerical solution and discuss the numerical
calculation of normal modes. We present the outcome of
these calculations, displaying the normal-mode frequen-
cies as a function of dielectric asymmetry. We draw the
electric-field lines for some of the lowest modes.
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quencies of interest.
The most general cylindrically symmetric form that

the dielectric tensor can have is the gyrotropic case:

e 0

The spherical-wave solutions regular at the origin are

u,m(qr)=j, (qr)Yt~(r), l=0, 1,2, 3, . . . ,

m =0, +1, . . . , +l . (2.11)

&xy &xx 0

0 0 e„
(2.3) Here jI is the spherical Bessel function and Y& is the

(scalar) spherical harmonic.
The vector spherical waves are solutions in spherical

coordinates of the vector-wave equation

The axisymmetric case is for
waxy

0 The isotropic case
corresponds to ex~ =0 and E'xx E'zz 6'.

Inside the dielectric, D must satisfy the equation ob-
tained by eliminating B from (2.1) and invoking (2.2), i.e.,

2

curl curlE — — D=0 .CO
(2.4)

c

Here

V(V.U) —VX(VXU)+q U=O . (2.12)

The identity V X ( V X ) =VV —V shows that this is just
the Helmholtz equation (2.10) acting on a vector wave.
The vector spherical waves regular at the origin can be
expressed in terms of simple vector analytical operations
on the scalar spherical waves. They are of three kinds:

E=E D, (2.5)

where e is the inverse of the dielectric tensor (2.3). It
will be convenient to adopt the notation of Ref. 1 and to
express the inverse dielectric relation in the axisymmetric
case as

Bi (qr) =(I/q)Vu&

CI (qr) = i [l—(l + 1)] '~2r X Vul

AI (qr)=(i/q)V XC&

(2.13)

E=(V ' D) =(D+yz Dz)/Z,

where

&xx &zz

&zz

Substituting the expression (2.6) into (2.4), we obtain
'2

VXVX(D+yz Dz) —Z — D=O .
c

(2.6)

(2.7)

(2.8)
AIm 0, V Btm q+Im & V CIm =0, (2.14)

For I =0 the vector spherical waves AI and CI are
identically zero. The set of A&~, Bl~, and CI (with
I =0, 1,2, . . . , I =0,+1, . . . , +I, and the continuous
parameter q) form a complete set of basis functions for
vector functions of spherical coordinates. The members
of this set are linearly independent and have been con-
structed so as to have the following simple vector analyti-
cal properties:

We shall call Eq. (2.8) the axisymmetric wave equation.

B. Boundary conditions

VX AI =iqC(, V X BI =0, V XCI = —iq AI

(2.15)

We here discuss the boundary conditions to be applied
when we consider electromagnetic fields within a cavity.
We consider the cavity walls to be ideal conductors. The
boundary conditions at the surface of the cavity will then
follow from the Maxwell equations (2.1) by standard ar-
guments. At the surface the tangential component of E
must vanish to avoid having infinite surface currents.
For the same reason, the normal component of B must
vanish. Thus we have

AIm
I

21+1 jI+~(qr)& p~+&(r)

' 1/2

With the help of well-known formulas from vector
analysis, one can readily verify that these vector fields
satisfy the vector-wave equation (2.12).

It is useful to express the vector spherical waves explic-
itly in terms of vector spherical harmonics:

1/2

nXEIsurrace=0» n'Blsurrace=0 ' (2.9) I+1
2l +1 JI i(qr»l, I 1(—

Here n is a unit normal at the surface. For time-varying
fields these boundary conditions are not independent, as
we shall later see explicitly.

I+1
BI

' 1/2

jt+ i(q") PI+ i(

1/2

C. Vector spherical waves I
2l +1 j ~ ~(qr)Y p~ (2.16)

V u+q u=0. (2.10)

We begin by introducing scalar spherical waves. These
are the solutions in spherical coordinates of the scalar-
wave equation (Helmholtz's equation):

In the application of the boundary conditions, we shall
also need the formulas
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and

r-Bgm = d ((qr)
d (qr)

r CIm 0,

di((qr)
qr d (qr)

i a(—(qr )Y(((r),
r XB( =i[I(l +1)]' [j((qr)/qr]Y(((r),

r X C( =il((qr )
l

2l+1

1/2

Y( (+ ((qr)

1/2l+1+ Y((—((r}

r A(~ = —[I(1+1)] [j((qr)/qr]Y(~(r),

(2.17)

(2.18)

which leads to an eigenvalue problem for the coefficients
of the vector spherical waves. In Sec. IIIB we expand
the fields inside the sphere in terms of this solution. We
then apply the boundary conditions to obtain an infinite
set of coupled homogeneous linear algebraic equations
for the expansion coefficients. The roots of the deter-
minant of the coefficients of this set of homogeneous
equations give the normal-mode frequencies. In Sec.
III C we discuss the auxiliary eigenvalue problem which
occurs in the general solution.

A. General solution in an axisymmetric medium

D(qr)=g[((( A, (qr)+c( C( (qr)],
1, m

(3.1)

We shall seek a solution of the axisymmetric wave
equation (2.8) in the interior of the cavity. We begin by
expanding the D field in a series of vector spherical
waves. Since the divergence of D must be zero, it follows
that the vector spherical waves B& do not appear in the
expansion of the D field. Thus we may write

III. SOLUTION FOR AN AXISYMMETRIC CAVITY

In this section we shall generalize Macdonald's prob-
lem to the case of an axisymmetric spherical-cavity reso-
nator. The cavity is filled with an isotropic, axisymmetric
dielectric material, e.g. , sapphire. We shall assume the
walls of cavity to be ideal conductors, while the material
is assumed to be transparent with magnetic permeability
p = 1. We take the radius of the cavity to be a.

We begin in Sec. III A by constructing the general reg-
ular solution in spherical coordinates of Maxwell equa-
tions for an axisymmetric medium. This solution will be
in the form of an infinite series of vector spherical waves,

where q is as yet unknown and aI and cI are the expan-
sion coefficients which are yet to be determined. Here
the summation goes from l =l,„ to l = ~, where l;„ is
the larger of m and 1. In order to proceed further, we
need the formulas'

z A(~ z =g ( R (( A(.~ +S(( B(.~ + T(( C( m ),
Il

(3.2)

2

z C(~z=g P(( A(~+Q((. B(.m+
I I 5OC(

where

R((, =H(i+2, m)H(l+ l, m)5( (+@+ H~(I + l, m)+ H (l, m) 5( (+H(l, m)H(l —l, m)5( ( 2=R((,

S ~
=—

11'

' 1/2

H(l + l, m)H(I +2~m)5( (+p+ [I(l + 1)]
2 —(I +1)H (I + l, m)+IH (l, m) 5(. (

1/2
l —1+ H(l, m)H(l —l, m)5( (

1/21/2
m lH(I+ 1,m)5(. (+(— H(l m)5(

T((' H(l +1 m)5(, (+(— H(l, m)5(', ( —( Pl'(
(I +2) I —1

m I+1
I+2

(3.3)

with

2 2 2
1/2

H(l, m)—= (I —1)(l —m )

I (4I 1)— (3.4)

Then inserting the expansion (3.1) into the dielectric relation (2.6) for the D field and using formulas (3.2} and (3.3},
we get
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D+ YZ D X ~aim(511'+ Y+II' )+ Iml ll' j I m'+ Y(~l m~ll' + Im Qll' )~l m'

I, I'

I

+ r&I TII +&I Y l l
=+1 511

l (l +1 (3.5)

Next, we put this expression into the axisymmetric wave equation (2.8) and use the expansion (3.1). Then, using the
curl formulas (2.15), the axisymmetric wave equation becomes

0=VXVX(D+yz Dz) —qoD

2

I:&I (511(q' qo)—+q'Y&II )+ci q'YPII 1&I + q'Y~I PII +ci q'Y 5!I+(q' qo)5—lll(1 +1)

(3.6)

But the vector spherical waves are linearly independent; hence, equating separately the coefFicients of AI and CI to
zero, we obtain two infinite sets of equations for the coefFicients aI and c&

I', (+!'! F51'I ) + I' I'! )
I'

2

X I'm
l (l + 1 )

I'I O' I'I I'm I'I
1'

Here we have defined p through the relation

(3.7)

2

(3.8)
1+pp

where qo =e,„(m/c ) . For every value of IM for which there is a solution of these equations, there will be a correspond-
ing solution of the axisymmetric wave equation, where 0 ~

IM
~ 1. We note that (3.8) implies that normal-mode frequen-

cies will be dependent on y'. Moreover, it suggests the existence of normal-mode frequencies that are independent of y
for p=0.

Next, we note from the form of matrices given in definitions (3.3) that the matrix PII connects only values of l and l'
with opposite parity, while the matrix RI& connects only values with the same parity. Hence we may classify the solu-
tions of Eqs. (3.7) into two types: euen, for which cI =0 for odd l and aI =0 for even l, and odd, for which ai =0 for
odd l and cI =0 for even l. These two types correspond to odd and even parity for the corresponding D. Therefore,
for the odd solutions we introduce

cl, I odd
(1mP =

ai leven (3.9)

while for the even solutj. ons we introduce

aI, l odd
d+ ei, l even . (3.10)

Then Eqs. (3.7) can be written in the form of an eigenvalue problem:

y(™ll' P5ll')dl'm (3.11)

where o =-+, and

—(m /l)H(l + l, m)51. I+1+[m l/(l +1)j 511—[m/(l +l)]H(l, m) 511 I, cr =( —1)

H(l+2, m)H(l+ 1,m)5 1+12
—(m/l+2)H(l+1, m)51. 1+, ,

r

t

+ H (l + l, m)+ H (l, m) 511—(m/l —1)H(l, m)51 I I+H(l, m)H(l —i, m)5« I 2,l+2 I —1

1)I+I

(3.12a)

(3.12b)
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D„= g d,m(p)C, m(qr)+ g d, (p) A,m(qr)
I odd I even

(3.13)

D += g d,+(p)A, (qr)+ g d,+(p)C, (qr) .
I odd I even

(3.14)

The infinite matrix, A, whose elements are the .A&&', is
real and symmetric, and so the eigenvalues p are real.
For each m and o., there is a spectrum of eigenvalues p.
We shall see later that this spectrum is, in fact, continu-
ous, with eigenvalues falling in the region 0 ~p ~ 1. The
solutions of the axisymmetric wave equation (2.8) are la-
beled by m, o., and the eigenvalue p. Further discussion
of this eigenvalue problem is given in Sec. III C and also
in Sec. IV.

Thus, for each m, cr, and p, there will be a correspond-
ing regular solution D„ofthe axisymmetric wave equa-
tion. Thus

The symbol used here, 8„,for the magnetic field should
not be confused with the symbol 8I for the spherical
waves.

This completes the construction of solutions of the ax-
isymmetric wave equation (2.8) in spherical coordinates.
The general solution within the cavity wi11 be a superposi-
tion of the solutions that we have found.

B. Satisfying the boundary conditions

We shall now construct solutions in the interior of the
sphere that will satisfy the boundary conditions (2.9).
The electric displacement vector D inside the sphere
must be a linear combination of solutions (3.13) and
(3.14), for fixed m and cr, of the vector-wave equation
(2.4). Since the boundary-value problem is invariant un-
der rotations about the z axis and spatial inversions, the
solutions within the sphere will be characterized by the
parameters m and o.. Therefore, for the solution inside
the sphere, we will have the form

The corresponding electric field is found from (3.5). Us-
ing (3.7), we can write

D (r)= g G (p)D„(r} .
CO

(3.19)

Emo 1+3'P Dma
P — P

The coefficients G (p) are determined by the boundary
conditions at the surface of the sphere. The correspond-
ing superpositions for the electric and magnetic fields are

where

+—g fl(I +1)] '~
b& (p)B& (qr), (3.15)

I

and

Ema(r) —g 'q Gma(p)Ema(r)
CO

p
P

(3.20)

(3.16)

~l(l + 1)y (gm+gm )da o ( 1)1+1

&~ (p)= I'

0, cr =( —1)' .
()=g G ( )B (),

CO
P

p

(3.21)

The subscripts o =( —1)'+' and ( —1)' on the left-hand
side of Eq. (3.16) mean that, if o is even, then for even l
the quantity b, &+ (p) is given by upper expression (3.16)
and for odd l it is given by the lower one; for odd o. the
meaning is just the reverse.

The corresponding magnetic field is obtained from the
first of Eqs. (2.1), using the formulas (2.16) for the curl of
vector spherical waves,

gyP (p)G (p)=0, /=1, 2, . . . ,
P

where

(3.22)

where E„and B„are given by Eqs. (3.16), (3.18), and
(3.19). We have chosen the factor cq/co for convenience.

Using the formulas (3.9) and the orthogonality of the
vector spherical harmonics, the continuity of the tangen-
tial component of the electric field at the surface gives

8m—
qC I odd

(p) A/ (qr)
(1+yp)di (p)~$(x) y&/ ( )pP/( )x,

—

xP (p)= —
( 1 )1+1

(1+ yp)dim (p)xP1 (x), o.= ( —1)',

(3.23a)

(3.23b)

and

+ g d, (p)C, (qr)
I even

(3.17)

and we have introduced

x =qa, (3.24)

qc g di+(p)C1 (qr)
I odd

d i+ (p) Ai (qr)
I even

(3.18)

where q is given by (3.8), to simplify the notation. For
each m and o these equations are an infinite set of homo-
geneous linear equations for the coefficients G (p). For
a nontrivial solution to Eqs. (3.22) to exist, the deter-
minant of the coeKcients must be zero. The quantities
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det(y ) =0 . (3.25)

This condition gives the resonant frequencies of the
sphere.

The continuity of the normal component of the mag-
netic field requires r B~„,=0. However, this condition
does not lead to an independent equation, since the nor-
mal modes automatically satisfy this boundary condition.

Before leaving this section, we should like to emphasize
that the solution presented so far is a formal one. Since p
is a continuous parameter, the sums over p are, in fact,
integrals. This poses the problem of how to interpret the
quantities y (p) or the determinant appearing in Eq.
(3.25). We shall address these issues in the next section,
where we discuss the numerical solution of the problem.

(p) may be considered as the elements of a matrix
whose rows are labeled by land whose columns are

labeled by p. The condition for the existence of solutions
to Eqs. (3.22) may then be expressed formally as

tors dP (p=O) are all different. The p=O eigenvalue has
the additional property that the quantity 6& (p=O) is
identically zero; i.e., for the p=O eigenvalue, the electric
field [Eq. (3.15)] has no longitudinal component.

These eigenvectors are closely related to the functions
(j)

d ~ that occur in the irreducible representations of
finite rotations. The fact that Eqs. (3.26) and (3.27) solve
the eigenvalue problem (3.11) may be verified by direct
substitution into Eq. (3.11) and using the recurrence rela-
tions for the Legendre polynomials. We obtained this
solution by expanding the fields inside the sphere in terms
of the plane-wave solutions of the axisymmetric wave
equation (2.8), expanding the plane waves in terms of vec-
tor spherical waves, fitting the boundary conditions, and
finally comparing with the equations obtained in Sec.
III B."

The spectrum of eigenvalues being continuous, the sum
over p appearing in Sec. III B should be interpreted as an
integral, a convenient choice being

C. Auxiliary eigenvalue problem g~f d8.
0

(3.29)

(21 + 1)(l —m)!
4+i (l + 1)(l +m)!di (8)=(i)'( —1)

The auxiliary eigenvalue problem (3.11) can be solved
exactly. The eigenvalues p are continuously distributed
in the interval 0 &p & 1. There are two distinct classes of
eigenvectors: those associated with p=0 and those asso-
ciated with @%0. For @=0 the eigenvectors are

1/2

g di~(8)di (8') =5(8—8'),

f d8 dim(8)dl m(8) ''5ll'
0

(3.30)

For a given m and 0 the eigenvectors given in (3.26)
and (3.27) form a complete orthonormal set of functions
in the interval [0,~] and thus

dP
sin 8, o =( —1)'

d cos8

imPP, o =( —1)'+'

(3.26a)

(3.26b)

where ti(8 —8') is the Dirac 5. (The orthogonality for
different m and o. is a consequence of the orthogonality
properties of the vector spherical waves. )

IV. NUMERICAL RESULTS

where ir/2 & 8 & n.. For pAO the eigenvectors are
1/2

(2l +1)(l —m)!
4~l(l + 1)(1+m)!dt~ (8)= (i)'( —1)

imPP, o =( —1)'

X . dpm—sin 8, cr=( —1)
d (cos8) '

(3.27a)

(3.27b)

where 0 & 8 & m. /2. Here PP =PP(cos8) is the associated
Legendre function and the eigenvalue p is given by

In this section we shall discuss our method for the nu-
merical evaluation of the normal-mode frequencies and
the associated electric-field lines. In Sec. IVA we give
the basic equations and outline the algorithm for the
computation of the normal-mode frequencies. This algo-
rithm will be based on successive truncations of the
infinite-dimensional equations of Sec. III. In Sec. IVB
we present the results of our numerical calculations for
the normal-mode frequencies. Plots of these frequencies
as a function of dielectric asymmetry will be given and
discussed. In Sec. IVC we calculate the electric-field
lines for the lowest modes of the cavity and compare
them with the lowest modes of the Macdonald problem.
Graphs of the field lines for several values of y are
presented and discussed.

0 for —& 0&~,
2

(3.28a)
A. Algorithm@-

sin 0 for 0 0&—
2

(3.28b)

We note that there is an infinite degeneracy for
m/2 0 m' since, for this range of 8, p is identically zero.
However, this degeneracy is not carried over to the elec-
tric and magnetic fields since the corresponding eigenvec-

In the evaluation of the infinite determinant (3.25), we
are faced with the problem of columns that are labeled by
the continuous index p. To resolve this difficulty we have
used a method that turns out to be computationally sim-

ple and efficient. The basis of our algorithm is replacing
the expansion (3.1) for the electric displacement field D
by a finite sum. Thus all the infinite sums over l' and I'
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are to be replaced by finite sums from l =l;„to I =l,„,
where I;„ is the larger of m and 1. Thus the infinite
determinant in Eq. (3.25) (Ref. 13) may be evaluated by
successive truncations. The parameter / „characterizes
the truncations; successive truncations correspond to in-
creasing I,„. We truncate the eigenvalue problem (3.11)
by replacing the matrices by their XXN upper-left
corner, where X =I, —l;„+1. The parameter
determines the order of approximation. As N is in-
creased, the accuracy of the calculation increases. Then
the infinite-dimensional eigenvalue problem (3.11) be-
comes

(A(i, —
Pauli, )di =-0, l =l;„,l;„+1, . . . , I

min

(4.1)

N

X dim (Pk )dl'm (Pk ) '|Ill
k=1

(4.2)

As X becomes large, the eigenvalues fill the interval
0&pk 1 densely, and the corresponding eigenvectors
become asymptotically equivalent to Eqs. (3.26) and
(3.27), aside from normalization factors.

Next, we approximate the infinite set of Eqs. (3.22) by
the Gnite set of equations

Since the matrix JV is a real symmetric N XN matrix,
it follows that there will be N distinct eigenvectors dIk
(k =1,2, . . . , N), where we have used the notation
di (pk ) =dik . The corresponding eigenvalues pk will be
real and discrete and will fall in the region 0&p & 1, i.e.,
within the spectrum of the exact solution. For each trun-
cation of size X, it turns out that there is one
[(N —1)/2]-fold degenerate zero eigenvalue and
[(N+1)/2] distinct positive eigenvalues. We note here
that the number of distinct eigenvectors with eigenvalue
p =0 is equal to the multiplicity of the eigenvalue 0.

In the truncated problem, the eigenvectors satisfy the
orthogonality and completeness relations

N

y dlin (P'k )dim (Pk') ~kk'
1=1

We have computed the normal-mode frequencies in the
form of the quantities

x ="I/~xx
C

(4.6)

for m =0, 1,2, 3 and l „=7. Note that x is, in fact, the
output of our numerical solution. We may designate the
modes by the x „. Here m is the azimuthal number,
taking the values 0, +1,+2, . . . , o.=+ is the parity, and
n indicates the nth root of the determinant in Eq. (4.5).

The results of these numerical calculations are
displayed in Figs. 1 —6. All throughout our numerical
calculations, we have set a = 1 and 8= 1. Thus the reso-
nant frequencies are given in units of c/a+8. We have
displayed the normal-mode wave numbers in the range
0&x &8 for the interval —1&y &1

In Fig. 1 we have plotted the normal-mode wave num-

truncation size was increased. In practice, reasonable nu-
merical convergence is usually achieved for N as low as 3.
However, to get accurate results, especially near the limit
y= —1, we have used X as large as 17. There is a limit
beyond which further increase in the truncation size wor-
sens the convergence since rounding errors become im-
portant. We reached this limit for the truncation size
&=21. Our accuracy, based on how much a typical root
changed in successive truncations, was about 1 part in
10'.

This algorithm was implemented both on a Digital
Equipment Corporation VAX-8600 using FORTRAN. The
calculation of a single normal-mode frequency (in double
precision), for N =9, took 2 s of CPU time. Convergence
occurs more rapidly for the lower modes of the cavity
than the higher ones. When two modes become very
close to each other, the interference between them in-
creases the computational e6'ort considerably. Moreover, ,

as y ~—1, the determinant of the matrix of the
coeKcients becomes very small and rescaling the deter-
minant becomes necessary.

B. Normal-mode frequencies

N

Xlk Gk =0, I =l;„,. . . , 1,„
k=1

(4.3)

where

Xlk =Xl (Pk) Gk —=G (Pk) . (4.4)
O

Note that g is now a real, but not symmetric, square
%XX matrix. The resonant frequencies are then given
by the condition

det(X )=0, (4.5)

which is an N XN determinant.
In the numerical solution of the (finite) auxiliary eigen-

value (4.1), we have taken advantage of standard subrou-
tines. '

We have tested the convergence of our method by
comparing the successive values of the same root as the

0 I I I I I I I I

—0.5 0
7

0.5

FIG. 1. Normal-mode frequencies x „ for an axisymmetric
spherical-cavity resonator as a function of y, with m =0 and
0 =odd.
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tion (4.3). We evaluate the G (p) by imposing the con-
straint

GmcT
k (4.8)

O

3

0—1

I I i I I I I

—0.5
I I I I I I I I

0.5

FIG. 5. Normal-mode frequencies x „ for an axisymmetric
spherical-cavity resonator as a function of y, with m = 1 and
o.=even.

C. Electric-field lines

The electric-field lines (electric lines of force) are
defined to be everywhere tangent to the E field vector and
to have the same direction. The equation for the
(electric-) field lines is then

dr E
ds E (4.7)

Here s is the arc length along the field line and E is the
magnitude of the electric-field vector. Similar definitions
hold for the electric displacement field D and the magnet-
ic field B.

Our method of numerical solution of Eq. (4.7) for the
electric-field lines is similar to the successive truncation
method discussed in Sec. IVA. We replace the infinite
expansion (3.19) for the odd- and even-parity electric dis-
placement vector D with finite sums up to X. In the cal-
culation of these sums, we need the expansion coeKcients
G (p). These are the solutions to the truncated equa-

which may be understood by writing out the determinant
of the matrix g for m =0 case explicitly and by noting
that the resulting determinant factorizes into a product of
spherical Bessel functions j&(x) multiplied by a deter-
minant of lower rank. The product of the spherical
Bessel functions will be independent of y, while the deter-
minant will be a function of y.

These graphs of normal-mode frequencies versus y in-
dicate that the classification of modes into TE and TM is
no longer possible since, for a given parity o., the TE and
TM modes are mixed. Therefore, we classify the modes
according to parameters m, o., and n, where n indicates
the nth root of det(y ). The lowest-lying mode for
m =0 and o. =+ is still the lowest mode for all values of
m and o.. This is the fundamental mode of the cavity, a
situation similar to the Macdonald's case. The azimuthal
symmetry of the problem implies that the normal modes
are doubly degenerate, corresponding to +m and —m
modes.

This corresponds to fixing the normalization of the ex-
pansion coefficients. Next, we use the dielectric relation
(2.6) to compute the corresponding electric field. Then,
having the electric field at hand, we calculate the field
lines.

We have used a fourth-order Runge-Kutta method' to
integrate Eq. (4.6). These computations were performed
on the VAX-8600 in double precision. It takes about 7 s
of CPU time on the VAX to calculate a single field line
for a typical value of y and X =9.

It is difficult to give a general rule for the speed of con-
vergence in this problem. However, a number of reason-
ably general statements can be made. As the parameter y
increases (decreases), progressively larger truncations
must be used. Moreover, the computation of higher mul-
tipole field lines requires larger truncations. We have ob-
served that convergence occurs more rapidly for the fun-
damental mode than for any other mode. But for all the
modes, convergence for the field lines occurs at larger
truncations than for the corresponding normal mode.

We have computed the electric-field lines for m =0
and o.=+ and —.We have only considered those modes
for which the frequency is a function of y. For the con-
stant y modes of axisymmetric cavity, the field lines (both
electric and magnetic) are given by the corresponding TE
field lines of Macdonald with m =0 and an effective
dielectric constant e.

For y-dependent modes, the magnetic field will be
purely planar; the magnetic-field lines will be circles cen-
tered around the z axis. The electric field, on the other
hand, will have a z component and the electric-field lines
will vary as y is varied. We have plotted the field lines
for three values of y: y=0 (the Macdonald field lines),
y = —0.9, and y = 1, in Figs. 6(a), 6(b), and 6(c). We have
plotted the field lines for the isotropic (Macdonald) case
so as to be able to show more clearly the effect of varying
y. These plots are the projections of the field lines onto
the xz plane.

There are two limits that are of interest: y —+ —1 and
y —+ ~. In the first limit the material is conducting along
the z axis and insulating in the xy plane. Note that at this
limit the electric displacement field has no z component;
it lies completely in the xy plane. The other limit, on the
other hand, is the opposite limit in which the material in-
side the sphere is insulating along the z axis and conduct-
ing in the xy plane.

In Fig. 6(a) we have plotted the field lines for the fun-
damental mode of the cavity at y=0. 9, 0, and 1. The
middle figure shows the field lines of the isotropic cavity
y=0. This is the TM&& mode with qoa =2.74. The field
lines are exactly the same as those that one obtains, for
the fundamental mode, in the Macdonald problem. " The
field lines are perpendicular at the surface since the
tangential component of the electric field must vanish
there. The top part of Fig. 6(a) shows the change in the
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have plotted the field lines with y = 1 and qoa =6.044. In
the limit that y = ~, we should expect to see very sharp
turns in the elbows of the field lines. Moreover, we ex-
pect to see six sharply defined regions that are separated
by curves that have acute angle elbows.

CD

Cl
II

Ci

ll

(a) (b) (c)

FIG. 6. Electric-field lines for m =0 modes of the cavity: (a)
field lines for the fondamental mode of the cavity with 0.=even,
(b) field lines for the next higher mode of the cavity with
o. =odd, and (c) field lines for the second higher mode of the
cavity with cr =even.

fundamental mode when we approach the y= —1 limit.
The Geld lines are plotted for y = —0.9, with qoa =0.897.
The field lines have become more curved so as to counter
the large conductivity along the z axis. We infer that at
y = —1 the field lines will be parallel to the xy plane since
at this limit the electric Geld has no z component. In the
bottom part of Fig. 6(a), we observe the effect of having a
large y. We have plotted the field lines of the fundamen-
tal mode for y = 1 and qoa =3.797. As y becomes larger
and larger, the material will behave more and more like a
stack of parallel-plate capacitors. The field lines will be-
come more and more straight as we approach the limit
g~ OO.

In the middle part of Fig. 6(b), we have displayed the
first odd-parity mode for y=0 and qoa =3.87, i.e., the
second mode of the isotropic cavity, TM2&. We note that
there are four nodes present in Fig. 6(b). As y is varied,
these regions remain distinct. The top part of Fig. 6(b)
shows the field lines for the first higher odd-parity mode
with y= —0.9 and qoa =2.2S4. The bottom part of Fig.
6(b), on the other hand, shows the effect on the field lines
when y is increased. Here we have plotted the field lines
for the first odd-parity mode with y =1 and qoa =4.891.
As we approach infinity, we should expect to see more
parallel field hnes along the z axis. At both limits,
y = —1 and ~, we expect to see the curved lines to have
90 elbows, indicating the marked difference in material
properties in different directions.

The field lines for the first even-parity mode are plotted
in Fig. 6(c). In the middle part of Fig. 6(c), we have plot-
ted the TM3& mode of the isotropic cavity with
qoa=4. 97. The top part of the figure shows the field
lines with y= —0.9 and qoa =1.86. At y= —1, we
should then expect the bulk of field lines to be straight
lines going from top to bottom with a few curved ones
crowded to the sides. In the bottom part of the figure, we

V. SUMMARY AND CONCLUSIONS

In this paper we have formally solved the problem of
the resonant frequencies of a metallic sphere filled with
an axisymmetric material and evaluated those frequencies
numerically. The complexity of the problem arises from
the fact that the axisymmetric wave equation [Eq. (2.8)] is
not separable in spherical coordinates.

Our technique for solution has involved the following
steps.

(i) Inside the sphere we chose to solve for the electric
displacement vector D. We expanded D in terms of vec-
tor spherical waves A& and C& [Eq. (3.1)].

(ii) We found in order for this expansion to be a solu-
tion of the axisymmetric wave function, special condi-
tions on the expansion coefficients a& and c& must be
satisfied. We found that these special conditions could be
cast in the form of an auxiliary eigenvalue problem [Eq.
(3.11)] in which the components of the eigenvectors di
were a& and c& and the eigenvalues p determined the
spectrum of the allowed wave numbers q [Eq. (3.8)] inside
the sphere. The solutions to this eigenvalue problem
were found to be separable into results of even and odd
parity (cr =+1).

(iii) Thus, for each eigenvalue p, magnetic quantum
number m, and parity cr, we found a solution D„of the
axisymmetric wave equation [Eqs. (3.13) and (3.14)]. The
general solution, therefore, involves a sum over all these
solutions, in which we called the expansion coefficients

(p).
(iv) The electric field E and magnetic field 8 could then

be written down using the inverse dielectric relation
E=(7 ' D) and Faraday's law [Eq. (2.1)], respectively.

(v) The boundary conditions were applied in Sec. III B.
There we required (a) continuity of the normal com-
ponent of D and (b) continuity of the tangential com-
ponent of E. The application of these boundary condi-
tions led to four scalar equations for the unknown
coefficients G (p) inside the sphere. Only two of these
equations were independent.

(vi) These equations were, in fact, found to be matrix
equations of infinite size. We outlined a numerical tech-
nique for their solution in Sec. IV A, using the method of
successive truncations. The roots of the determinant of
the coefficients were the resonant frequencies of the
sphere. We also gave results of our numerical computa-
tion of these modes and the corresponding field lines.

There are a number of directions where extensions of
this work may prove interesting and useful: (i) calcula-
tion of the normal modes for an ellipsoidal resonator, (ii)
investigation of the changes in the normal modes when
full dielectric anisotropy is included, and (iii) exploration
of the possibility of mode conversion in axisymmetric
resonators and its application to switching devices.
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