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Mixed-spin Ising model on the Bethe lattice
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We obtain the phase diagram of a ferromagnetic mixed Ising system, consisting of spin- —, and

spin-5 variables, on a Bethe lattice of coordination number z, with nearest-neighbor exchange in-
teractions and single-ion terms. The problem is formulated as a discrete nonlinear map. There is a
tricritical point for S integer and z ~ 5. In the infinite-coordination-number limit, we regain the re-
sults of an exact calculation for a Curie-Weiss version of the model.

I. INTRODUCTION

We consider a ferromagnetic mixed-spin Ising model,
given by the Hamiltonian

where the first sum is over nearest-neighbor sites on
difFerent sublattices, s;=S,S—1, . . . , —S, for all sites i
belonging to sublattice 3, and 0;=+1, for j belonging to
8. In two dimensions, for three-fold-coordinated lattices,
a simple decimation can be used to reduce the problem to
an exactly solvable spin- —,

' Ising model. ' The tempera-
ture (t =kz T/J) versus anisotropy (d =D/J) phase dia-
gram displays a simple A, line of second-order phase tran-
sitions. For lattices of higher coordination numbers,
however, including square and cubic lattices, recent
mean-field calculations indicate a much richer phase dia-
gram, with the possible existence of a tricritical point. '

In particular, the model with S = 1, with only two param-
eters in the even space, may be simpler than other sys-
tems which are known to display a rich multicritical be-
havior. To verify the main features of these phase dia-
grams, we have decided to undertake a more detailed in-
vestigation of some versions of this model, It should be
remarked that the study of mixed-spin systems is relevant
for the consideration of the behavior of ferrimagnetic
compounds.

In Sec. II the statistical problem is formulated as a
discrete nonlinear map on a Cayley tree. The spin vari-
ables s; and o- are associated with sites on successive
generations of the tree. The stable fixed points of the
map, corresponding to solutions on the Bethe lattice, give
the thermodynamic phases of the physical model. From
an analysis of the stability of these fixed points, supple-
mented by a Maxwell construction, we obtain all the
features of the phase diagrams for arbitrary values of the
lattice coordination number, z, and the spin S. For z =3,
the results can be compared to the exact solutions. For
half-integer values of S, the t-d phase diagrams display a
X line bordered by two asymptotes for very large and

very small values of d. The phase diagrams are qualita-
tively difFerent for integer values of S. In particular,
there is a tricritical point for S =1 and z & 5 (which does
not include a square lattice, in disagreement with a recent
approximate calculation ).

In Sec. III we perform some exact calculations for a
Curie-Weiss or mean-field version of the mixed-spin Ising
Hamiltonian. From an expression for the free energy, we
obtain the phase diagrams for integer as well as half-
integer values of S. The mean-field equations of state cor-
respond to the limit of infinite coordination number of
the solutions on the Bethe lattice.

II. SOLUTIQN ON THE BETHE LATTICE

Let us consider the mixed-spin model on a Cayley tree
of coordination number z =r+1. The spin variables o.

and s are associated with sites belonging to successive
generations of the tree (see Fig. 1). Let us call Z„(s) the
partition function of the mixed-spin model on a tree of n

generations with spin s on the top site, and W„(o.) the

FIG. 1. Three generations of a Cayley tree of coordination
number 3 (r =2) with a cr spin on top.
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partition function for a tree with n generations and a spin
0.=+1 on the top site. Assuming interactions between
nearest-neighbor spins, it is easy to write the recursion re-
lations

Z„+,(s)=e "' '[e' 'W (+)+e ' 'W (
—)]" (2.1)

where
—ds 2/gM, =2 ge "' ~'cosh"(sit)

X sinh(s It) [1—m„ tanh (s It) ]"

Xsinh[r tanh '[m„ tanh(s/r)]] (2.4)

W„+i(cr)=
s= —S, . . . , S

Introducing the notation

e Os/tZ (&) r (2.2)
—KB /1M2=g+2g e "' 'cosh"+'(s/t)

m„+2=tanh[r tanh '(Mi /M2)], (2.3)

PARA

N

0.8

W„(o ) =exp( A„+B„cr),
and defining m„=tanhB„, it is straightforward to rewrite
Eqs. (2.1) and (2.2) as a second-order recursion relation,

X[1—m„ tanh (s/t)]"~

Xcoshjr tanh '[m„ tanh(s/t)]J, (2.5)

with g=1 for integer S and g=0 for half-integer S. In
these expressions, and throughout this section, the sums
are over s = 1,2, . . . , S for integer S, and over
s =

—,', —'„.. . , S for half-integer S.
Given a set of boundary conditions, the fixed points of

Eq. (2.3), m„+2= m„=m *, correspond to the equation of
state on the so-called Bethe lattice. From an expansion
of the right-hand side of Eq. (2.3) about the trivial fixed
point, m *=0,we obtain the paramagnetic limit of stabil-
ity,

FERR
g e "' 'cosh' '(s/t)[r tanh (sit) —1]= —,

' (2.6)
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for integer S, and

g e "' 'cosh"+'(s/t)[r tanh (s/t) —1]=0 (2.7)

for half-integer S. Equations (2.6) and (2.7), which are
drawn in the phase diagrams of Fig. 2 for S= 1 and Fig. 3
for S=—,', give the paramagnetic critical line when there
is no possibility of overlapping between the regions of fer-
romagnetic and paramagnetic fixed points.

In the d-t phase diagram, for integer S, the stability
border of the paramagnetic region comes from d = r + 1

at t =—0, being asymptotically limited by r tanh(S/t) =1.
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FICx. 2. (a) Phase diagram in the d/z vs t/z plane for S = 1

and z = 50. TCP is a tricritical point. The heavy line represents
the first-order transition. The dashed line is the upper limit of
stability of the ferromagnetic fixed point. The paramagnetic
line, given by Eq. (2.6), is represented by the light solid curve.
This is a typical phase diagram for an S integer and z &4. (b)
Phase diagram for S= 1 in the limit of infinite coordination
number. The notation is the same as in Fig. 2(a). These results
also come from the Curie-Weiss version of the model.
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FIG. 3. Typical phase diagram for half. -integer S. The solid
line represents the paramagnetic border. The dashed line is one
of the asymptotes. This figure is drawn for S= —and z =20.
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As shown in Fig. 2, for large r, the stability line is
depressed with a pronounced minimum approaching the
origin as r increases. In the infinite-coordination-number
limit, r~~ and J~O, with Jr fixed, as shown in Sec.

I

III, we finally regain the Curie-Weiss phase diagram for
integer S. The equation of state leads to the possible ex-
istence of a tricritical point whose location is given by
Eq. (2.6) supplemented by the condition

g e ' ~'cosh"+'(s/t) tanh [(r —2)r tanh (s/t) —Sr —2]=0 . (2.8)

For the typical case S =1, some calculations can be
performed explicitly. From Eq. (2.6), the line of stability
of the paramagnetic fixed point is given by

The partition function is written as

Z= g +exp( HIE—AT),
(o. j (s j

(3.2)

d =t ln[ [r tanh (1/t) —1]cosh"+'(1/t) } (2.9)

From Eqs. (2.6) and (2.8), we obtain the tricritical tem-
perature,

where the sums are over all spin configurations. Perform-
ing the first sum over the configurations j s ], we have

' 1/2

1/t = tanh
1 5r+2
l" P' 2

(2.10)
Z= g +exp (2JINktiT) g o~s Ds Ik—AT

[oj S jEB

(3.3)
A simple inspection shows that there is no tricritical
point for r (4, in agreement with the results of the exact
calculations for threefold-coordinated lattices in two di-
mensions. However, it should be pointed out that our
Bethe-lattice calculation indicates that there is no tricriti-
cal point for the square lattice (r =3), in disagreement
with recently reported approximate calculations. "

For r ~4, below the tricritical temperature, there is a
region of stability of both paramagnetic and ferromagnet-
ic fixed points. The border of stability of the ferromag-
netic fixed point is calculated numerically. As we have
not calculated an analytic expression for the free energy,
we can use a Maxwell construction to locate the first-
order thermodynamic border. It is easier to work with
the "field" D and the expectation value of s, Q= (s ),
as the conjugate thermodynamic variables to be con-
sidered. From an equal-area construction for the iso-
therm Q versus D, we have obtained the heavy line drawn
in Fig. 2. In the limit of the infinite coordination num-
ber, this procedure reproduces the results for the Curie-
Weiss model in Sec. III.

For half-integer S, the stability border of the paramag-
netic region is asymptotically limited by the curves
r tanh(1/2t) = 1 and r tanh(S/t) = l. As indicated in Fig.
3, where we show the critical line for S=—,

' and z =20,
there is no tricritical point. In the infinite-coordination-
number limit we obtain the Curie-Weiss results of the fol-
lowing section.

III. EXACT SOLUTION OF THE CURIE-WEISS
VERSION OF THE MODEL

The Curie-Weiss version of the mixed-spin model is
given by the Hamiltonian

H= —(2JIN) g g s, o +D g s, , (3.1)
iEA jCB iEA

where a spin variable s;, belonging to sublattice 2, in-
teracts with all the spins variables o. belonging to sublat-
tice B. As there are X/2 spins on each sublattice, we use
a factor 2 in the exchange term to give the same ground-
state energy as from Eq. (1.1).

where s = —S, —S+1, . . . , S —1,S. Defining a new
variable, m =(2/N) g, ~bio.~, it is easy to rewrite this ex-
pression as

(N /2)!
[(N/4)(1 —m) ]![(N/4)(1+ m )!

X g exp(mslt ds It)— (3.4)

where m = —1, —1+2/X, —1+4/X, . . . , + I.
In the thermodynamic limit X—+ ~ we have

+1
Z =(N/2) f dm exp[ —(N/2t)g (t, d;m)]—1

and

(3.5)

lim [
—(2t/N)lnZ] =g (t, d;mo), (3.6)

where the free energy g(t, d;mo) corresponds to the
minimum of the functional

g (t, d;m) = —t ln2+ t f dm tanh 'm
0

t ln g e—xp(ms/t ds /t)—(3.7)

The equation of state given by

g, (s/t) exp(ms/t ds /t)—
m =tanh

g, exp(mslt —ds /t)
(3.8)

g(t, d;m)= —t ln2+t f dm tanh 'm

—t ln[l+2e "~'cosh(m/t)],

from which we have the equation of state

(3.9)

displays qualitatively diA'erent features for integer and
half-integer values of S. Let us consider the typical cases
S=1 and —,'.

For S = 1, we have s = —1,0, + 1. Equation (3.7) is
then written as
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(2/t)e " 'sinh(m /t)
m =tanh

1+2e 'cosh(m /t)
(3.10)

d=t in[2(l —t )/r ] . (3.11)

It should be noted that Eq. (3.11) is the limit of Eq. (2.9)
for r ~ 00, J~0, with rJ fixed, and with d and t scaled to
d/r and t/r, respectively. The tricritical point (TCP) is
given by tzcp=&5/5 and drcp=(3&5 1n2)/5. Below
the tricritical temperature there is a region of coexistence
of phases. The border of stability of the ferromagnetic
phase is obtained from Eq. (3.10). As we have an explicit
expression for the free energy, it is easy to obtain the line

From this equation, we find an expression for the critical
line,

of first-order transitions. Also, we have used this form of
the free energy to check the Maxwell construction of the
preceding section. At T=O, from the minima of Eq.
(3.9), we have (i) for 0&d & 1, m =1 and g = —1+0; (ii)
for d &0, m =0 and g =0. This leads to a first-order
transition at t =0 and d= 1, as shown in Fig. (2b). The
same general features of the d-t phase diagram are also
obtained for all other integer values of the spin S.

For S=—'„we have the expression

g(t, d;m)= 2t—ln2+t f dm tanh 'm+(d/4t)
0

—in[e ~' cosh(3m /2t)+cosh(m /2t) ]

(3.12)

and

(3/t)e "~'sinh(3m /2t)+(1/t) sinh(m /2t)
m =tanh

e 'cosh(3m /2t)+cosh(m /2t)
(3.13)

The critical line is given by

d =$t/2) ln[(9 —4t )/(4t —1)], (3.14)

IV. CONCLUSIONS

Along the lines of a previous work for the spin-1 BEG
model, we have formulated a mixed-spin Hamiltonian on
a Cayley tree as a discrete nonlinear-mapping problem.

without the existence of a tricritical point. The minima
of Eq. (3.12), at T =0, yield (i) m = 1 and g =d /4 —

—,', for
d )—,'; (ii) m = 1 and g =9d/4 ——'„ for d & —,'. As there is
no overlap between regions of different phases, the first-
order transition is limited to the point t =0 with d =

—,'.

I

The stable fixed points of the map are associated with the
thermodynamic solutions on a Bethe lattice. For half-
integer values of S, the d-t phase diagrams display a sim-
ple A, line with an asymptotic behavior corresponding to
the spin- —,

' Ising limits, s =+—,
' or s =+S, for d ~~. For

integer values of S, the phase diagrams are qualitatively
different, with a tricritical point for lattices of coordina-
tion numbers z ~ 5 (at the ground state, for large enough
values of the anisotropy d, the spins are in the state
s =0). Although exact for the Bethe lattice, these results
are, at most, another approximation for the physical Bra-
vais lattices. In the limit of infinite coordination number,
z —+ ~, J—+0, with zJ fixed, we regain the mean-field re-
sults of an exact calculation for a Curie-Weiss version of
the model.

T. Iwashita and N. Uryu, Phys. Status Solidi (B) 125, 551
(1984);J. Phys. Soc. Jpn. 53, 721 (1984).

~L. L. Gonqalves, Phys. Scr. 32, 248 (1985).
A. F. Siqueira and I. P. Fittipaldi, J. Magn. Magn. Mater.

54-57, 678 (1986).
4T. Kaneyoshy, J. Phys. Soc. Jpn. 56, 2675 (1987).
5R. Qsorio, M. J. de 01iveira, and S. R. Salinas, J. Phys. : Con-

dens. Matter 1, 6887 (1989).


