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Optical nonlinearities due to excitonic molecules: Optical Stark effects and phase conjugation
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Large, nonlinear-optical phenomena are shown theoretically to be observable under nearly two-
photon resonant pumping of the excitonic molecule (EM), e.g., in a CuC1 crystal. When the exciton po-
lariton (EP) is resonantly pumped into the EM, they are hybridized with each other and show optical
Stark splitting. These splittings can be observed, respectively, as a sharp dip in the reAection spectrum
and two-photon absorption spectrum due to the EM. We can also clarify how these splittings change
into the blueshifts and redshifts of the EP and the EM as functions of the pump frequency and power.
The generation of the phase-conjugated wave is shown also to be enhanced under two-photon resonant
pumping of the EM. Some characteristics about pump-probe frequency and polarization dependences
are also clarified. We have also derived the effective Hamiltonian of the exciton and the EM from the
first-principles equation of motion for the exciton coupled with that of the EM. This Hamiltonian has
made possible the theoretical analysis of these nonlinear-optical phenomena.

I. INTRODUCTION

Since a proposal of giant two-photon absorption due to
the excitonic molecule (EM), ' many enhanced nonlinear-
optical phenomena have been observed under two-photon
resonant pumping of the EM. The EM is a bound
state of two single excitons. ' '" Therefore, two valence
electrons must be optically excited to form the EM. The
optical transition between the exciton (E) and the EM is
accompanied with a giant transition dipole moment. "
This comes from the freedom to choose the second
valence electron to create the EM inside a large orbital of
the EM around the first exciton. Therefore, this origi-
nates from the long-ranged Coulomb interaction among
two optically excited pairs of electrons and holes, and the
itinerant nature of electrons and holes in the conduction
and valence bands, respectively. Therefore, this giant
transition dipole moment is characteristic of the
crystal —the dense and regular arrays of atoms. In this
sense, nonlinear-optical phenomena associated with the E
and the EM are very characteristic of the crystal in con-
trast to those in atomic or molecular systems. As a re-
sult, we can expect the enhanced optical nonlinearities
under nearly two-photon resonant pumping of the EM.
The nonlinear-optical phenomena due to the EM were
theoretically described in terms of the three-level model
of a crystal ground state, an E level and an EM level,
which was intuitively derived. ' ' This giant dipole mo-
ment and the three-level model of the E and the EM can
be derived in this paper by following an equation of
motion derived from first principles for an E in the crys-
tal coupled with that of an EM. In Sec. II, we derive the
equations of motion for an E and EM from first princi-
ples. Then we can discuss under what conditions the
effective Hamiltonian is justified. The recent develop-
ment of laser systems and technologies has made it possi-
ble to observe precise spectroscopies in solids. Under
such a circumstance we discuss the optical Stark effects

of the E and the EM under resonant pumping between
the exciton polariton (EP) and the EM in Sec. III. In the
former works only the optical Stark shift of the exciton
was discussed under the off-resonant pumping of the E
(Refs. 15 and 16) or under nearly resonant pumping be-
tween the E and the EM. ' ' The points of the present
paper are as follows: not the E but the EP is hybridized
with the EM by the pump field so that both levels are
split and shifted. As a result, we should not simply con-
clude the blueshift or redshift of the E but we propose in
Sec. III a way to observe these optical Stark effects. The
two-photon absorption spectrum due to the EM under
the nearly resonant pumping clarifies the splitting of the
EM level and the transition to the blueshifts or redshifts
of the EM level, depending upon the pump frequency and
pump power. This will be shown in Sec. III A. We show
also in Sec. III B that the splitting of the EP dispersion
under the resonant pumping will be clearly observed as a
sharp dip in the reflection spectrum and that this one-
photon and two-photon measurement gives us the com-
plementary information on the optical Stark effects. This
gives another confirmation of the giant transition dipole
moment between the E and the EM. In Sec. IV, the gen-
eration of the phase-conjugated wave is shown to be
enhanced under two-photon resonant pumping of the
EM. This phase conjugation by the third-order process is
discussed in Sec. IV A and this is compared with that due
to the polariton-polariton collision process in Sec. IVB.
Here we can evaluate the large value of the third-order
polarizability g' ' under the nearly two-photon resonant
pumping of the EM. We can show that under the reso-
nant pumping of the EM by two pump waves with per-
pendicular polarizations, the phase conjugation becomes
possible by the fifth-order optical processes. This will be
discussed in Sec. IVC. Section V is devoted to the dis-
cussi6h and conclusion. Here we will discuss how to dis-
tinguish between the coherent distribution of the EM's
and the normal states of the EM's by the generation of
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the phase-conjugated waves and the future problems on
the optical nonlinearity due to the coherent EM's, e.g. ,
on the squeezing through the resonant pumping of the
coherent EM's.

II. EFFECTIVE HAMILTONIAN OF EXCITONS
AND EXCITONIC MOLECULES

II'= —X P~)E~
A, ,J

Px~ =p,„(d xj cj.+cJ. d zj ),

(2.2)

(2.3)

where p„ is a band-to-band transition dipole moment
and A, denotes the polarization direction. Here we take a
model that the conduction band is made of an s-state and
the valence band of a p-state the polarization of which is
specified by A, .

The exciton state operator Y„—:d, c; obeys the follow-
ing equation of motion:

The crystal is characterized by three-dimensional regu-
lar and dense arrays of atoms or molecules. We describe
here the electronic system of the crystal in terms of Wan-
nier functions localized at each lattice site, which are
made of a linear combination of the 81och states in the
specified conduction band or valence band. The annihila-
tion (creation) operators of the conduction electron in the
Wannier-function state localized around the jth lattice
site are denoted by ci (cj ) and the hole operators in the
valence-band Wannier state at the ath site by d, (d, ).
We accept a two-band model of the conduction and
valence bands. Then the Hamiltonian is given by

+ —,
' g V,l, d,td, dbdb —g V„c;c;d, d, . (2.1)

a, b

Due to the transfer energies T - and T,"b, electrons and
holes can propagate over the whole crystal. These excita-
tions interact with each other by the long-ranged
Coulomb interaction V „=+e /ep~r —r„~. Here, Ep is
a static dielectric constant of the crystal. As a result of
combined effects of the excitation transfer and the long-
ranged Coulomb interaction, the collective excitations
such as an exciton and an excitonic molecule are formed
as stable eigenmodes of the excited states of the crystal.

The crystal interacts with radiation field E& through
the following dipolar interaction:

transfer-matrix elements Tj and T,I„and we keep only
the zeroth-order and isotropic second-order moments.
Therefore, the exciton Hamiltonian H", which is the first
term on the right-hand side of Eq. (2.4), is given in the
efFective-mass approximation by

2 2 2

Hx —'RCOg
2V;— V

2m 2m I, E'p7"
(2.5)

where the effective masses m, and mI, are introduced, re-
spectively, at the conduction- and valence-band edges,
and fi~ is the band-gap energy. The homogeneous and
linear part of Eq. (2.4) is solved, and the eigenenergies
and eigenfunctions are given ' as

(2.6)

1

V
(2.7)

as follows

Cxi Cx C

=c g(d d +c c ) c;

= g (c„dy )(dyc, )+0(~ )

D, —=dxd,

d g(cycy+d d ) d

= X Yxy Yay . (2 9)

The electron-hole relative motion (r=r; —r, ) is de-
scribed by the hydrogen-like solution P„(r) and the
center-of-mass motion R= ( m, r; +ml, r, ) /M, with
M=—m, +m&, is in the plane-wave state with the wave
vector K, which is normalized in the crystal volume V.

As to the higher-order terms in Eq. (2.4), the electron
and hole number operators C„;=c c; and D, —=d d, are
rewritten in terms of the exciton operators F~ and Yy,.

making use of the relation

g(d~d~+c~c~ ) = 1

i' Y„.=[H, Y„jaj
=H„"Y„+g ( V„,—V; )( C„;Y,„D,1;;)—

Then the exciton operator Y„obeys the following non-
linear equation:

—iAY„+H"Y„

p„(E,6„E,C„—E;D„),. ——(2.4) +g(V V, )(Yy Yy Y Y'yYyY )

where a denotes both the site and polarization in some
cases but only the site in other cases. Here we also intro-
duced two-fermion operators C;—:c; c, D,b

=—d, db, and
Y„=—c; d, . In the effective-mass approximation, the elec-
tron and hole coordinates r; and r, are treated as contin-
uum variables, then a moment expansion is taken for the

xy

p E 5 ' g(1t Yy'+Y'yYy) (2.10)

This is the same expression as that in the boson descrip-
tion of excitons. ' This equation means that the
single-exciton motion Y„should be solved being coupled
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with that of two-exciton Y„-Ybj —=Z,b. ;~. Here the suffixes
of the Z operator denote that two holes are located at the
lattices a and b and two electrons at i and j. Note that
the radiation field excites the hole in the valence band
with the same orbital polarization. The operator Z,b,
obeys the following equation:

(2.11)

~abby ~ai+IIbj+ VM x X (2.12)

V = V,b + V;.—V„—Vb (2.13)

Let us consider that the crystal is irradiated by a
pump field Ey exp( i a)y t )

—+c.c and a test field

E,exp( —i', t )+c.c. Note, however, that E »E, . Here
we may expand the exciton operator Y and the biexciton
operator Z in terms of their eigenfunctions g„and qi

respectively, as follows:

p,„&V it)„(0)Ey
(2.16)

where P„(0) is a value at the origin of the electron-hole
relative motion in an exciton and is equal to (iraii)
with exciton Bohr radius a~.

The third term on the left-hand side of Eq. (2.10) is
written as follows:

spectively, and integrate those over the coordinates.
Here we take the expectation values of the radiation
fields, the E and EM operators with respect to the crystal
and the radiation system. Then the E and EM operators
as well as the external field can be treated as classical
variables. Here and hereafter we use the same notations
both for the classical variables and the corresponding
operators. Furthermore, we neglect all other terms be-
sides the 1s contribution for a single-exciton state, and
linearize with respect to the test field E, . Linear response
to the pump field alone is obtained from the linear part of
Eq. (2.10) as

Y„=g a„(t)P„(r„r;), (2.14) g ( V, —V,, )( Yy„Y,. Y, —Y„Y, Y, )

Z,b. ,
= gb (t)%' (r„rb, r, , r ) . (2.15)

X)y

P ( Vxa Vix )( yx ya;xi xyZxa;yi )

X)y

As long as the rotating-wave approximation is accepted,
these single-exciton and biexciton states are clearly dis-
tinguished. In Eqs. (2.14) and (2.15), a„and b are an-

nihilation operators of the E in state ~n ) and the EM in

state
~
m ). In the lowest order in the external fields, a„(t)

consists of two frequency components a„(e)y ) and a„(a), ),—ICO t —tcO&t

which have time dependences of e ~ and e ', and
we are interested in the frequency (ey„+co, ) component—(co +, )t
of b (t), i.e., b (co„+a),), which oscillates in e

For the orbitally nondegenerate valence and conduction
bands such as for CuC1 crystal, the molecular bound state
of two excitons are possible only for singlet (spin) states
both of two electrons and two holes in the excitonic mole-
cule. ' "' We insert these expansions into Eqs. (2.10)
and (2.11), inultiply it)„*(r„r,. ) and %*(r„rb,r;, ri), re-

X xy ( xa iy Vix Vya ) xa;yi
x,y

(2.17)

(2.18)

Here, Eq. (2.17) is obtained by using the antisymmetric
lations Zya;ix Yyi Yax ya xi an ax;yi ay Yxi

Zxa yt for exchanges of two electrons or two holes,
respectively, with other particles fixed. For derivation of
Eq. (2.18), coordinates x and y are interchanged in the
former half of (2.17). Here we insert the expansions of
Eqs. (2.14) and (2.15) into Eq. (2.10), multiply this equa-
tion by P*„(r„r;), and integrate this over al'. coordinates.
The expectation values are taken both for the E and EM
operators and the radiation field. Then we have the fol-
lowing equation for a i, (a), ):

A'(a)„—a), )a„(a),)+ g W'(Is, n;m)a„"(coy)I) (a) +a), )

m, n

=p,„v'V p„(0)E,—2p„p Z( ls, n; n')a„*(coy )[Ey a„(co,)+E,a„(a)y )],
n, n'

(2.19)

8'(ls, n;m)= g P*„(a,i)g„*(x,y)VC' (a, x;t',y),
a, i, x,y

(2.20)

y(ls, n;n')= g gi, (a, i)g„*(x,y)r/i„. (a, x) .
a)E)x

(2.21)

When the excitonic molecule in the bound state (ficob ) is
almost resonantly pumped by the two-photon (co +a), )

transition, we can neglect contributions to the nonlinear-
optical responses from the other two-exciton states be-
sides the bound state b and the other one-exciton state be-
sides the 1s state for the relative motion. This is justified
at least for the case of the CuC1 crystal, which has a large
exciton binding energy of 200 meV and the molecular one
30 meV. Then Eq. (2.17) is simplified as follows. Let us
consider the equation of motion for two excitations:
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i A' Z, ,
=(H„"+HP + V)Z

a
(2.22)

Z~, .~;= g b 'Il (r, r, ;r, r,. ),

First, we expand Z„, , in terms of eigenstates of two ex-
citations:

multiply g;, (x,y)g&, (a, i} on both sides of Eq. (2.22) and
integrate it over the coordinates. Then we have

x,y, a, i

X,y, i2, l

Pi, (x,y)P*„(a,i )(HP +H" fi~ —)4 b

gi, (x,y)f*„(a,i)VZ„, ;=. g b W(ls, I;m)

= g fi(co —2'„)b
2&V

(2.23)

where Q is defined for a bound state of two excitons
%b(x, a;y, i) as

2&V
P*„(x,y)g*„(a,i)%b(x, a;y, i) .

Comparing the first and third lines of Eq. (2.23), we have

We have successfully described many nonlinear-optical
phenomena due to the excitonic molecule in terms of the
following effective Hamiltonian, ' ' which was derived
intuitively:

H,s= g fico,„,(k)akai, + g fico (K)bKbK
k K

—g p,„,(akEk+H. c. )
k

W( ls, ls; b) = —fi(co„—cob /2) (2.24) p (bKal, Ei, +H.c. ),
K=kl+k2

(2.27}

A'(co„—co, )a„(co,)—p„gi, (0)Q E*b(co +co, )

Vkl (0}E(1 ) SF ) HF) (2.25)

As long as we are confined to the case of the two-photon
nearly resonant pumping of the EM, i.e., ub ——2', only
the bound EM state and the 1s E state are responsible for
the nonlinear-optical processes. Then inserting the ex-
pression Eq. (2.16) of a(co~) and the expression of Eq.
(2.24) into Eq. (2.19), we have

where A'co,„,(k):E+E,„,—+fi k /2M, fico (K)
=2(E —Eb„, ) Eb +A' K—~/4M, and p is the giant
transition dipole moment between a single E and an
EM." Here and hereafter the bound state of the EM
will be denoted by a suKx m. We can justify this effective
Hamiltonian by comparing the equations of motion de-
rived from this with Eqs. (2.25) and (2.26) as long as

ysF, yHF « 1. At the same time, we can obtain the transi-
tion dipole moments p,„,and p as

7HF
CO )~ COp

where ysF comes from the state-filling effect and AAHF is
the level shift due to the Hartree-Fock approximation. '

This shift is an order of 1 me V and the detuning
fi(co» —co ) is about 15 meV so that ys„and yet„are
much less than 1.

Let us derive the equation of motion for b(co„+co, )

from Eq. (2.11). We insert the expansions of I'„. and
Z,b. ;J, i.e., Eqs. (2.14) and (2.15) into Eq. (2.11), multiply
this by 'Pb(a, b; i,j), and integrate it over the coordinates.
Then we have the following equation:

It is noted, however, that the effective Hamiltonian (2.27)
is justified only under nearly resonant two-photon pump-
ing of the EM 2' =cob.

In the case of CuC1 crystal, for example, the exciton
binding energy E,"„is 200 meV and the molecular bind-
ing energy E is 30 meV. These come from Coulomb
and exchange interactions among electrons and holes,
and these interactions have been diagonalized already by
introducing the 1s E operator ak and the EM operator
bk. The next largest interaction is the dipolar interaction
of the lowest 1s exciton with the radiation field Ek. This
is estimated to be an order of 5 me V from the
longitudinal-transverse (LT) splitting. This bilinear in-
teraction is diagonalized into the exciton polariton (ck
and ck ) as described by the following equation:

fi(~b —ai, co~)b(co +co, ) —p,„—g„(0)Q*E a„(ai, )

=p„g„(0)Q*E,a„(co ) . (2.26)

Hdr= +[fico~(k)c c i+i@ c(ok)bi, bk j
k

+ g fig(k„k2)bKck ck +H. c.
K=kl+k~

(2.28)
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Rg(kiy k3) = —
pm i V (2rciiico3/V)C'„(ki )C,3(k3)

2mco„[p„gi, (0)] Q

(co„—co3)&V
(2.29)

When g(k„kz) is symmetrized with respect to exchange
of k, and k2, it should be replaced by

1/2
.Pm 2~

—,'g, (k„k, ) = —i

Here the coupling constant g (k„k2) between two polari-
tons and the EM is written in terms of the giant dipole
moment p and the exciton-to-polariton transformation
matrix elements C» and C,2 ..

Here, c3=c(k3=k2 —k, )Ic3] is an annihilation
(creation) operator of the EP with the wave vector
k3 k2 —k i . Under coherent pumping with the angular
frequency co3, the polaritons co (kz —k, ) =co3 are con-
sidered to constitute a coherent state:

1 co3t
c310),= &3e ' ~0)q. Then the operators c3 and c3 in

Eqs. (3.1) and (3.2) can be replaced by A 3e ' and
l co3t

c4 3e, respectively. The coupled equations of motion
are rewritten as follows:

[co—co~(k, )]c,—g*(k„k3 3 2e
' =Q,

—g(k„k3)A3ci+ [co+co3 co (k2)]$2lp Q

Two eigenfrequencies co+ are obtained as
X [QM3 11 1 i2 3

+Q~(C11(k3)C i 2 (k, ) ] .
co+ —coi &(co3+coi co~ )

+Q —,'(co3+co, —co ) +~gA3~ (3.3)
As long as C*,2(k, ) is neglected as ck, ))coi„ the result is
not changed.

Thus we have made it clear under what conditions the
effective Hamiltonian Eq. (2.28) is justified.

III. OPTICAL STARK EFFECT
OF THE EXCITONIC MOLECULE

where co, —= co (k, ), co„—= co (kz—=k, +k3), and
g=g(ki, k3). The operators b2 and c, are rewritten in
terms of operators a+ corresponding to the eigenfrequen-
cies co+ as follows:

When the pump field (co3, k3) resonantly excites the ex-
citon polariton (EP) at co, =co (k, ) into the excitonic mol-
ecule (EM) at co (k2=k, +k3), the EP and the EM are
hybridized and strong optical Stark splitting is expect-
ed. We will discuss how to observe these splittings by
the two-photon absorption spectrum due to the EM in
Sec. III A and how to observe these Stark e6'ects on the
change of the reAection spectrum in Sec. III B. These
two proposals are new in contrast to Refs. 17—19. These
optical (or sometimes called dynamical) Stark effects have
two characteristics in comparison to the atomic system
and the GaAs quantum-well system is, i6, 27, 28 First, the
present system of the EP and EM shows a stronger split-
ting by the factor Q Pi, (0)))1, which comes from the
giant transition dipole moment p between the E and the
EM. Second, two empty levels of the E and EM are
pumped by the field (co3, k3) so that no real excitations are
accompanied. ' Therefore, the rapid switching is ex-
pected in this nonlinear-optical process. In the case of
CuCl, nobody observed yet two-photon excitations of real
electrons and holes under these pumping frequencies.
This means that the two-photon absorption process does
not become an obstacle against fast switching, as in GaAs
quantum wells.

Equations of motion are derived for the annihilation
operator of the EP c(k, )—:c, and that of the EM
b (k2):b2 using the effec—tive Hamiltonian Eq. (2.28) and
neglecting relaxations of EP and EM as follows:

V) CuCl6.380—

6.375:":::::,':::::::::::::::::::::::::::::::::,::'::::::::::

: molecule ~
~m

(aV)
6.375

6.37

3.220—
6.365

6.36

3.21 5

3.21 0

xciton

3.205

(ev)
3.205

3.200
3.200(

0 1 2 3 4 5 6 7 8 9 10 11 12
(106c~ ")

ific, = [c»Heff ]

=A'co~(k, )ci+Ag*(ki, k3)c3tb2,

ikb2 = [b2, H, ff]

=fico (k2)b2+Ag(ki, k3)CiC3

(3.1)

(3.2)

FIG. 1. Dispersion relations of the exciton polaritons (EP)
and the excitonic molecule (EM) in the CuC1 crystal. The pump
field Aco3 =3. 170 eV hybridizes the lower-branch EP at
1.300 X 10 cm ' with the EM at 0.888 X 10 cm ' and induces
the splittings of the EM and the EP ( ——- —) into the hybri-
dized modes co~ ( ) as shown in the upper and lower insets.
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C)

l cc)3t
2e

C, + C,

Cb+ Cb — a

C,~=
Q(~~ —~i)'+ lg A3 I'

(3.4)

The dispersion changes of the EP and the EM due to
the pump field m3 will be detected, respectively, by the
refiection change around the EP frequency co&(k&) and
the giant two-photon absorption due to the EM around
2co~(ko)=co (k2=2ko). These will be discussed in the
following sections.

COy CO~

V (coy —coi) + IgA31

These eigenmodes are hybridized modes of the EP and
the EM over the wave vector k, and k2=k&+k3 when the
pumping EP co3 =—co (k3) pumps the EP co&

=—co (k, ) near-
ly resonantly into the EM co (k2=k, +k3). This is the
optical Stark splitting of the EP and the EM as shown in
Fig. 1 for A'I g A 3 I

= 1 meV.

A. Optical Stark splitting detected
by two-photon absorption

In this subsection, we evaluate the two-photon absorp-
tion spectrum due to the EM under the pumping. The
refiection spectrum around coo=co /2 is almost constant
so that we can well approximate the two-photon absorp-
tion spectrum by the conversion rate of two polaritons of
co~(ko) into the EM co (2ko):

1W' '[2m (k )]=
& g™ko Ag'(k, ko)ci, ci, b2i, H 2& k .&A'g(k, k )biz ci, ci, ko"f

=2~lg(k„ko)l'[I&+, I'&«+ —2~, (ko))+IC „I'S(n —2~, (ko))],
where

(3.5)

=
—,'[co~(2ko —k3)+co (k3)+co (2ko)]

+[-.' [~p«3)+~, (2ko —k3) —~ (2ko)]'+ lg(2ko —k3, k3) A 3 I'] '" . (3.6)

4irco„[p,„gi,(0)] Q A3
2 g(k„k3)A3 fi(co„—co3)3/ V

(3.7)

For the CuC1 crystal and the pump power
iiico3I A3I c/(Qe V)=1 MW/cm, we can estimate
Rlg(k„k3)A3I =1 meV. Here we used the giant oscilla-
tor effect Q =3600u /2, where u =40 A, ' the LT
splitting of the EP: 4irp, „/(iraiieo) =5 5meV an.d
e =4.66. The peak positions 0+ and Q, and the rela-
tive magnitudes of the oscillator strengths are plotted as a
function of the pump frequency co3=co (k3) for several
values of A3 in Fig. 2. Note here the following two
points. First, the split modes Q+ are observable with al-
most the same magnitudes in the frequency detuning
IA'co3 —3. 170 eVI ~AgA3, while under the much larger
detuning only one component is observable as the lower
part of Fig. 2 shows. Second, the two-photon absorption

When the pump-polariton k3 and the probe-polariton kp
propagate in the opposite directions as shown in Fig. 1,
the relevant polariton at k&=2kp k3=3kp behaves al-
most as an exciton so that C&& (k& ) ='1, while the pump
polariton at k3 behaves almost as a photon, so that

C i 2 ( k3 )= i p«cd» ( 0 )co» &2irIi /fi( co„co3 )

+co�

—
3

Then the splitting at the resonant pumping
co&(k3)+co (2ko —k3)=co (2ko), is estimated from Eq.
(2.29) as

due to b2=Cb+a++Cb a and the linear response due
to c& =C, +e++C, e give the complementary infor-
mation, as will be discussed in the following section.
Here the value 3.170 eV is determined as the polariton
energy Rco3= fico (k3), which satisfies the condition of res-
onant pumping: co (k3)+co (2ko —k3) =co (2ko). Here,
two points have been proposed: (1) hybridization of the
EP and the EM under resonant pumping between them
and (2) observation of the optical Stark splitting by two-
photon absorption due to the EM. Gonokami and
Shimano observed the optical Stark splitting of the
two-photon absorption line due to the EM in good agree-
ment with the present theory. This gives additional sup-
port of the giant transition dipole moment between the E
and the EM, and the enhanced optical nonlinearity due
to the giant transition dipole moment.

B. Re8ection spectrum

It is shown in this subsection that the hybridization of
the EP and the EM can be clearly observed as a sharp dip
in the reflection spectrum. Now let us consider a linear
response of the EP under the strong pumping. The ab-
sorption spectrum of the exciton is broad ( —5 meV) due
to the transverse-longitudinal splitting of excitons, while
the two-photon absorption line due to the EM is sharp
(-0.02 meV for the width) and strong due to the giant
transition dipole moment. Therefore it is very advanta-
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of the upper split-off branch appears at 3.202 eV with
small wave vector. This mode carriers photoenergy so
that a sharp dip is marked in the wide-frequency region
with high reAectivity due to the LT splitting of the exci-
ton. This phenomenon was already observed in Ref. 4
and analyzed in Refs. 33 and 34. The shape of the
reAection dip, however, is sensitive to the wave-number
dependence of the polariton relaxation constants. There-
fore the one-photon measurement of the optical Stark
effect has some disadvantages in comparison to the two-
photon measurement. This is a problem for future con-
sideration.

0.8

I+

0.6

II

+ I 0.4

D
0.2

l2

0.0—
0

hm3 —3,170
5

( meV)
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FIG. 2. Upper part: hybridized modes co+ of the EP
co~{2ko—k3 and the EM co (2ko) as a function of the pump fre-
quency A'co3 ——Am~I, 'k3). Note that co+ —

co& &0 and co —
co& &0.

0.5, 1, and 2 denote, respectively, Ag(2kp k3) c43 =0.5, 1.0, and
2.0 meV. Lower part: the EP component

~ C,J and the EM
~C~+~ as a function of A'co, . 0.5, 1, and 2 mean the same as in

the upper part.

geous to observe the optical Stark effect by the two-
photon absorption spectrum. These Stark effects are, in
principle, splittings both of a single-exciton state and a
biexciton state (EM). These states, however, are comple-
mentary in the following sense. When
co (2ko) —co&(2ko —k3) &roz(k3), i.e., Aco3) 3. 170 eV, the
redshifted EM (Cb ) has the larger oscillator strength
while the blueshifted EP (C, +) has the larger one. For

re (k3) (co (2ko) —co (2ko —k3), the states with the
larger oscillator strength are interchanged both for the
EP and the EM states as the lower part of Fig. 2 shows.
As a result, we may conclude that the splittings both of
the EP and the EM near the resonant pumping
co (2ko) =co (k3)+co~(2ko —k3) change into the blue-
shifts or redshifts of the EP and EM depending upon
co&(k3)~~co (2ko) —co&(2ko —k3), when the detuning in-
creases. That is, the EP shifts to the blue side for
ro~(k3):—ro3 & co (2ko) —co~(2ko —k3) while it shifts to the
red side for co3(co (2ko) —co~(2ko —k3). It is, however,
rather hard to observe the shift of an order of 1 meV for
the broad spectrum with the width 5 meV. ' It looks ad-
vantageous to observe the splitting of the polariton states
by the change of the reAection spectrum due to the pump
field. Under irradiation of 3.170 eV pump field to excite
the polariton at k =1.30X10 cm ' into the EM at
2ko=8. 88X10 cm ' in the CuC1 crystal, the new mode

IV. PHASE CONJUGATION
THROUGH THE EXCITONIC MOLECULE

t~ cc dt

=2 lim Im(0~ U (t)c kc kVU(t)~0)
f~oo

=21m(0~T[c „c kV(0)S(~, —a& )]~0) . (4.1)

Here the interaction Hamiltonian

and

K=kl+k~
~g ( kl, k2 )b ~ck ck +H. C. (4.2)

The forward and backward pump lasers excite the EM
at the wave vector k=O coherently by making the best
use of giant two-photon absorption process. ' This pro-
cess can be also considered as follows: (1) first the for-
ward ko and backward —ko polaritons are excited at the
crystal surfaces by the pump lasers, and (2) these polari-
tons are then converted into the EM at k=O. In the
CuC1 crystal, this EM has I,-symmetry, and only oppo-
sitely circularly polarized components of the two pump
polaritons ko and —ko can excite this EM. Therefore
when we use the oppositely circularly polarized pump
lasers for ko and —ko pump waves, only the EM with
k=O can be excited. When we use the linearly polarized
pump waves with the parallel polarization, not only the
EM's with k=O but also k=2ko and —2ko are excited.
The probe polariton with wave vector k created at the
crystal surface by the probe beam stimulates the emission
of the polariton with —k from the EM at k=O very
effectively also using the giant transition dipole moment.
This is just the phase-conjugated wave of the probe polar-
iton. The light phase conjugated to the probe light is tak-
en out at the crystal surface. On the other hand, Hasuo
et al. observed the phase-conjugated wave even under
pump-waved ko and —ko with the perpendicular polar-
izations with the same magnitude as for the case in which
the ko=O EM can be excited. This question can also be
answered in this section in terms of the effective Hamil-
tonian derived in Sec. II. These processes can also be de-
scribed by the same efFective Hamiltonian Eq. (2.28) as
for the optical Stark effects in Sec. III. The generation
rate of the phase-conjugated polariton co (

—k) is evalu-
ated as follows:
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S( Oc, —Oc ) =exp ——f V(r)dr (4.3)

A. Phase conjugation from the K =0 excitonic molecule

In this subsection, we rewrite the lowest-order phase-
conjugation process in terms of Eq. (4.1) before develop-
ing the higher-order processes in Sec. IV C. Let us con-
sider a case where the forward ko and backward —ko
pump waves with the opposite circular polarizations ex-
cite the EM at k=O nearly resonantly. We may assume
that both the pump waves and the probe wave as we11 as
the EM at k=0 constitute the coherent states ~0 &:

where V(r} is the interaction representation of V. The
propagator U(t)=exp( i—H, frt) and the initial state ~0&

is the coherent states of the EM at k=O and the probe
polariton co (k).

g p akbo'E ~+H. c.
k

P' '(O, kt) Ek +H. c."2
k)+k2=0

(4.8)

Therefore, the third-order polarization density
P' '(O, k) =pa&b—o/V is described in terms of the third-
order polarizability P(co) =y' '(2coo —co; —coo, co, —coo) as
follows:

and ko waves and k and —ko waves, and the subsequent
reflection of the third wave —ko and ko, respectively. On
the other hand, the third term describes the spacially
homogeneous process and corresponds to the present
mechanism in this section. The last term of Eq. (2.27) is
rewritten in terms of the third-order polarization
P' '(K, k, ) associated with deexcitation of the EM with
wave vector K into an exciton with k& and the radiation
field Ek with k2=K —k) as

I&~ c —t &tboIIO& —I~k ~-~ ~~»ojlp&

where 3k, 3 k, and 3k are the c numbers and
0 0

2g(ko, —ko}Aq 3
Bo=

(0) 2coo—i y —(0)

(4.4)

(4.5)
(a)

kp

—kp

Here, coo=co~(ko) =co~( —ko) and y (0) is transverse re-
laxation rate of the EM at k=O. This coherent EM is di-
vided into the probe wave k and its phase-conjugated
wave —k. This process is selectively stimulated by appli-
cation of the probe beam ck. The generation rate of the
phase-conjugated wave is evaluated by the lowest-order
perturbational expansions as shown diagrammatically in
Fig. 3(a):

lV"'=2~lg(k, —k) & f&o l'&(~g+~ g
—2~o)

g(ko, —ko)g(k, —k)( Ak A k ) A k
=8~

co (0)—2coo —iy (0)

(c)

kp

kp

kp

—kp

X 5(co~+ co k 2coo) (4.6)

+P(co)(Et, E q )Eg . (4.7)

The first two terms describe the generation of phase-
conjugated wave due to population gratings made by k

The same result is obtained for the case that the pump
polaritons and the probe polariton do not constitute the
coherent state. In this case, Ak, A k, and Ak are re-

0 0

placed by the expectation values of the corresponding po-
lariton operators. This point will be discussed in the final
section.

The matrix element Ag(k, —k) A kBo in Eq. (4.6) can be
described in terms of the third-order optical susceptibility
y' '(2coo —co; —coo, co, —coo), where the probe wave cok=co
and the signal co k=2coo —co. This is done as follows.
The third-order polarization corresponding to the gen-
eration of the phase-conjugated wave in the cubic crysta1
like CuC1 is written as

P' =a(co()[(Eg E~ )E ~ +(Ef, E I, )E~ ]

kp 2kp

(d) kp

kp

FIG. 3. Feynman diagrams evaluating the generation rate of
the phase-conjugated polariton —k under the forward ko and
backward —ko pump waves and the probe wave k; (a) the
third-order processes under nearly two-photon resonant pump-
ing of the EM, (b) third- and (c) fifth-order processes due to the
polariton-polariton scatterings, and (d) the fifth-order one due
to the EM under the perpendicular polarization E„ lE z ~~Ek.

0 0

Solid lines denote the coherent polaritons and double lines
denote the propagation of the EM. The thin line denotes the
generated single polariton and the circle denotes counting the
generation rate of the phase-conjugated polaritons.
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&r"'(O, k)) —=p &O~a'„b, ~o)/V

=p(cv)Ek(Ek .E—k ) .
0 0

(4.9)

Here we consider the probe and the phase-conjugated
waves to have the same linear polarization or the oppo-
site circular polarizations. We also assume the coherent
states &0~ho~0)=So and &O~ak~0)='Ci2Ak. Here the
exciton operator ak at the probe frequency can be ap-
proximately rewritten in terms of the lower-branch polar-
iton ck and the polariton-to-exciton transformation ma-
trix element C&2. In the case of CuC1, the probe frequen-
cy co=co (k) is by about 15 meV below the lowest exciton
co„under two-photon resonant pumping of the EM so
that C&2 is approximated by

Ci2 =i&(2m%'/V)p, „,co„/A(co„—co)v'cv . (4.10)

='10 i esu . (4.11)

Here we assumed the resonant pumping 2coo=m and
fiy (0)=0.1 meV. This extremely large y' ' originates
from (1) the resonant enhancement [ ~2coo —cv

~ (y (0)]
and (2) the giant transition dipole moment p,„g P&, (0)
( &)p,„) between the E and the EM states. The relaxa-
tion rate 2y (0) of the EM at k=O is very small at low
temperatures in good CuC1 crystals. If we have a good
sample with 2A'y (0)=0.02 meV at low temperature,
P(cv) increases to 10 i esu. Let us summarize several
characteristics of the phase conjugation under nearly
two-photon resonant pumping of the EM. First, we can
expect the extremely large g' ' under nearly two-photon
resonant pumping of the EM at k =0 by the counterpro-
pagating anticircularly polarized pump waves or linearly
polarized pump waves with the parallel polarization.
Second, this results in the large phase-conjugated wave,
which has the same polarization as the probe wave for
the linearly polarized probe wave, but has anticircular
polarization for the circularly polarized probe wave.
Third, the generation rate shows the peak as a function of
the pump frequency coo when 2coo=co . This, however,
has a weak dependence on the probe frequency cu only
through the factor (cv„—cv) ' in Eq. (4.11), as long as
R~cv„—co~ ='15 meV. Fourth, this signal is proportional
to ~Ak A k Ak~, i.e., linearly proportional to the prod-

0 0
uct of the forward- and backward-pump powers and the
probe power.

B. Phase conjugation due
to exciton-exciton collisions

The third-order polarizability P(co) is evaluated in the
present case as

2[@,.4 i, (0)]'Q'
P(cv) =

fi (co„—coo)(co„—co)[co 2co—o iy —(0)]

scatterings are responsible for generating of the phase-
conjugated signal. These interactions are also rewritten
in terms of polariton operators:

I
~pol z P v( 1&k2~'q)ck&+qck2 —qck&ck&

q, k),k2

(4.12)

,H = ggu(q)e 'ckt+ ck .
q, k i

(4.13)

Here the matrix elements v(k„k2;q) and v(q) are also
obtained by multiplying the exciton-exciton interaction
and the exciton-impurity scattering potential, respective-
ly, with products of the exciton-to-polariton transforma-
tion matrix elements, as will be shown later. The genera-
tion rate of the phase-conjugated wave is given to the
lowest order in Hp, &

in Eq. (4.1), which corresponds to
the diagram of Fig. 3(b), i.e., the third-order optical pro-
cess as follows:

pol

+iu, i(k —ko)i ]i 3k A k Ak i

X5(cv (k)+cup( —k) —cop(ko) —
cop( —ko) ) .

(4.14)

Here, v(k„k2, q) is approximated by

Q

vp, )(q) =' &,„, C i2 (co)C i, (co')Ci2 (coo)
26m b a 2 (4.15)

=A'g(k, —k)AkBo. v,](k+ko)AkAk A k

Therefore,

u, i(k+ko)%[co (0)—2coo —iy (0)]
fig(k, —k)2'(ko, —ko)

(4.16)

when k, ='k2 ——0 and all four polaritons have the same po-
larization and spin structures. For two excitons with the
same electron spins but perpendicular polarizations,
up, &(q) becomes half that of Eq. (4.15). This vanishes be-
tween two excitons in different spin states. These come
from the fact that the exchange process between two ex-
citons is dominant and a simple Coulomb interaction is
almost negligible. Here note again that
coo=cop(ko)=co ( —ko) for the pump field, co=co (k) for
the probe field, and co' =2cvo —co=co (

—k) for the phase-
conjugated signal. We list some characteristics of this
four-wave mixing process. First let us compare the rela-
tive magnitude of this four-wave mixing with the case of
Sec. IV A in which the EM plays the relevant role. The
matrix element of these processes is proportional to the
third-order susceptibility pp ] as follows:

When forward- and backward-pump lights as well as
probe light excite only polaritons so that the EM is not
resonantly pumped by any two-photon transitions, the
exciton-exciton collision and the exciton-impurity =' —0.1i, (4.17)

a~ E,„,fi[cv (0) 2cvo i y (0)]- —
l

Q iri (cv„—coo)(co„—co')
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where we used the material constants of CuC1; the exci-
ton Bohr radius a& =6.7 A, Q =3600X u /2=7. 2X10
A, the exciton binding energy E,„,=200 meV, and
A'y (0)= 1 meV. The value of y depends on the crystal
quality and the crystal temperature. The ratio of
y', I/y' ' will be much reduced for the better crystals with
the smaller y . For the present case, we may expect by
an order of magnitude (0.02) smaller signal for the
present exciton-exciton scatterings in comparison with
that of two-photon resonant pumping of the EM. Note
here that the present process comes from two channels as
Eq. (4.14) shows. Second, the frequency (coo, co) depen-
dence of this signal intensity is rather weak like
~o&coco'/[(co„—coo) (co„—co)(a)„—co')] as long as
coo, co, co' «co&„while the EM process in Sec. IV A shows
the peak of the signal intensity at 2coo=co . The probe-
frequency co dependence relative to the pump-frequency
mo does not show any singularity and any peak for the
present process of Fig. 3(b) but the next-higher-order pro-
cess of Fig. 3(c) shows the peak intensity when co=coo:

2

(5) 2' u „(ko—k)u „(2ko)
co (2ko —k)+co~(k) —2'~(ko) —iI

XiAq A I, AJAR i

X5(a) (k)+co (
—k) —co~(ko) —co„(—ko)) .

(4.18)

Here, I is a sum of the relaxation constants of four polar-
itons. When the pump-and-probe waves are nearly paral-
lel, the phase-conjugated signal due to the present process
shows the peak as a function of the probe-frequency co

when co =—co (k) is equal to the pump-frequency
coo=co (ko)=co (

—ko). The spectrum width is 2I . This
I

x,".IIE, I'
(3)

Epos

u, i(2ko)Aq Aj*,

%[co~(2ko —k)+ co~(k) —2'~(ko) —i I ]

26vrE, „,a~ AI, A f (2mfia)o) p"„$,„(0)

3fiI VA (co„—co )

(4.19)

This ratio becomes 0.2i when fiI =1 meV and the pump
power is 1 MW/cm . Therefore, 8 ',&/8'„',&-0.04 for
the present case and the perturbation expansions in the
pump powers are justified for the pump power weaker
than 1 MW/cm .

C. y"' process due to the excitonic molecule

The generation of the phase-conjugated wave under the
nearly two-photon resonant pumping of I

&
EM through

the lowest-order process in Fig. 3(a) becomes forbidden
when the colliding pump fields ko and —ko have perpen-
dicular linear polarizations. This is easily understood
from the fact that this phase-conjugation process is de-
scribed by P(co)(Ek E k )E I*, and it vanishes when

0 0

Ek lE &. We will show in this subsection that the
0 0

phase-conjugated wave is induced by the y' ' process de-
scribed in Fig. 3(d) under this perpendicular
configuration Ei, lE k, and then we will discuss some

0 0

characteristics of this process. The generation rate due
to the y' ' process under pumping with perpendicular po-
larization is evaluated corresponding to the process in
Fig. 3(d) as follows:

is the fifth-order optical process and the matrix element
of Eq. (4.1'8) is proportional to y~, I. Let us evaluate the
relative magnitude at the peak due to the processes of
Figs. 3(b) and 3(c):

g *(—k, ko) A q g (
—ko, 2ko —k) A g'(k, 2ko —k) A k82kW'"=2~-

[co ( —k)+co (ko) —co (ko —k) —iI"] [co (
—k)+co„(ko)—co (2ko —k) —co ( ko) —iI]— '

X5(co (k)+co (
—k) —co~(ko) —co~( —ko)) for 2coo-—co and Eq lE q ~iEk . (4.20)

Now let us list some characteristics of this process. First,
the phase-conjugated signal has polarization perpendicu-
lar to that of the probe wave. Under this configuration,
the EM at k=O is not excited and the EM's at k=2ko
and —2ko are induced. The EM's at —2ko, however,
cannot contribute to the present g' ' process because the
(
—2ko —k) polariton has polarization perpendicular to

the ko polariton so that the EM with —ko —k cannot be
excited by the polaritons ko and —2ko —k. Second, the
phase-conjugated signal due to this process shows two
peaks, as a function of probe frequency coo, at
2~o:—2' (ko)=co (2ko) and coo=co=co (k) when k is

nearly parallel to ko. Under nearly two-polariton pump-
ing of the EM or this degenerate four-wave mixing, two
denominators should be supplemented with sums of the

relaxation rates of relevant polaritons and/or EM, iI"—
and —i I, respectively. Third, the signal intensity
under this configuration is proportional to

~

A z A z A&A I*,
~ =IfIbI~, which is higher by the fac-

tor If =~A& Ak ~
than that of the y' ' process. This is

0 0

valid in the case of weak pump-and-probe fields.
Under such a strong pumping as the pump power,

which is much larger than 1 MW/cm, e.g. , in CuC1, we
must take two effects into account. First, the polaritons
at ko and —ko as well as the EM's at 2ko and —2ko are
split by an order of ~g(ko, ko) Az ~, which becomes larger

0
than the detuning ~co~(k) —co~(ko) ~

and the relaxation
constants I" and I . As a result, roughly speaking, two
energy denominators in Eq. (4.20) can be replaced by the
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order of the optical Stark shift and cancel out
g*(—kp, 2kp —k) A *

q and g*( —k, kp) Ai, in the

numerator. Then 8' ' becomes of the same order of
magnitude and has the same power dependence

~ A& A i. A& ~
as the y' ' contribution Eq. (4.6).

Second, even under the present polarization, other four-
wave mixing due to the y' ' process is possible although
the generation of the phase-conjugated wave due to the
y' ' process is forbidden. For example, two pump waves
with kp ( —kp) excite the EM with 2kp ( —2kp) and the
probe wave k induces the emission of the polariton with
2kp —k ( —2kp —k) when both the energy and wave vec-
tor are conserved. This corresponds to the third-order
process shown in Fig. 3(a) with the wave vectors
modified. These third-order processes attenuate the
pump-and-probe waves and these contribute to the relax-
ation constant I and I" in Eq. (4.20) as

yq ~ig(kpkp, )B2q A k p(2kp —k) . (4.21)

V. DISCUSSION AND CONCLUSION

In Secs. III and IV, we assumed that the EM's that are
pumped by the two-photon resonant transition constitute
the coherent states. When, however, we integrate the
phase-conjugated signal in some frequency width, the

Here, p(2kp —k) is the state density of the polariton at
2ka —k, which satisfies the energy conservation

co (2kp —k)=2'„(kp) —
p~ (k) =2cop —co .

This energy conservation is nearly satisfied only when the
detuning ~cop

—
co~ ~ I or I" for the case that the pump

wave k0 and the probe wave k are closely parallel. There-
fore, when such a strong pumping as the y' ' process of
Fig. 3(d) becomes of comparable order to the y' ' process
of Fig. 3(a), the present four-wave mixing reduces the sig-
nal when two conditions cop —co

~

~ I or I" and
~2cop —co

~

~I or I" are satisfied. The latter condition
means the enhancement of yz through ~B2k ~

in Eq.
0

(4.21). Third, after the EM's at 2kp and —2kp are reso-
nantly created, they decay into two polaritons in the or-
der of 50 psec. When the phase-conjugated signals are
observed using the laser pulses much longer than 50 psec,
the secondary polaritons created by these decay processes
enhance the relaxation rate I" and I ~

These characteristics of the g' ' process under

Ei, lE j, are consistent with the experimental facts. (a)
0 0

The phase-conjugated signal under the present process in
Sec. IV C is polarized perpendicular to that of the probe
wave. (b) The signal is of the same order of magnitude as
for the case of the y' ' process in Sec. IVA under the
off-resonant probe A'~ co —

cop ~ 1 me V when

~g (kp kp) A g ) ~co cop~, i.e., the pump power is much
0

larger than 1 MW/cm in CuC1. (c) The signals almost
vanish for the nearly degenerate case co =~0 and
2cop=co . This is because the lower-order (y' ') four-
wave mixing inducing the polaritons at 2k0 —k and
—2k0 —k attenuates the pump and signal waves.

wave signal intensity can be obtained even for normal dis-
tributions of the EM's around the relevant K. Now let us
discuss how to distinguish the coherent EM's, which are
Bose condensed in the specified wave-vector state K0,
from the normal distribution of EM's. It is possible to
create the coherent EM's at the specified wave-vector
state Kp (Ref. 5) near the origin by pumping, e.g., a CuC1
crystal with circularly polarized pump beams k0 and —k0
with the opposite rotation and KQ= k0 —ka. The
coherency of EM's is transferred from the coherent pump
beams. This is sometimes called the second kind of Bose
condensation. The EM with K0=2k0=8. 88 X 10 cm
in CuC1 relatively decays rapidly, say in 50 psec into two
polaritons due to the giant transition dipole moment.
Therefore the spectrum width 0.006 meV is inevitable for
the EM with K0=8.88X10 cm '. The resonant two-
photon transition by a linearly polarized single beam ex-
cites the EM at such a wave number 2k0 as
co (2kp)=2' (kp). On the other hand, colliding two
beams can excite the EM's at K=O or K near the origin.
These EM's have a much longer radiative lifetime so that
the spectrum broadening is much smaller. This is limited
to low lattice temperature and pure crystals in which the
EM is not scattered e6'ectively by phonons and imperfec-
tions. Under such a circumstance, we will be able to ob-
serve the distribution of EM's around the specified K0 by
the distribution of the phase-conjugated signal due to the

process (Sec. IVA) over co'=co (K)—pi (k) and
k'=K —k. When we use the probe beam with high
monochromaticity and such a frequency co and wave vec-
tor k as the signal frequency co' is located in the photon-
like branch, a distribution of the EM over the wave-
vector state K of co (K) will be observed with an
amplified precision in the frequency region due to the
strong dispersion relation. When the probe beam has
directionality k, the distribution of the EM over K will
be detected by analyzing the intensity profile of the
phase-conjugated signal spot in the radius direction.
These observations will be able to distinguish between the
coherent or normal distribution of the EM's over the
wave-vector state.

The large third-order optical polarizability of an order
of 10 esu, e.g., in good CuC1 crystal with Ay =0.01
meV, is also characteristic of the E and the EM system
under nearly two-photon resonant pumping of the EM.
This results in large optical Stark splittings and a strong
generation of the phase-conjugated waves due to the
EM's. We can also expect the strong squeezing of the
probe and signal lights under the colliding pumpings.
This CuC1 sample is enough to squeeze the probe and sig-
nal under the two-photon resonant pumping of the EM
due to the large y' ' value. The degree of the squeezing is
also dependent on whether the pumped EM's constitute a
coherent state or a normal state. This is also a problem
for future consideration.

We have derived in Sec. II the efFective Hamiltonian of
the E and the EM from the first-principles equations of
motion for excitations in the crystal. This is valid for the
description of excitations in I-VII semiconductors such as
CuC1 and CuBr and II-VI one such as CdS and ZnS in
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which the exciton Bohr radius is rather small and the ex-
citon binding energy is large. In III-V semiconductors
and IV element semiconductors, we must include the
state-filling ys„and saturation effects yHF,

' ' which
were derived in Sec. II. This is because the exciton Bohr
radius is very large so that the state-filling effect becomes
easily large. The EM is not observed yet in these semi-
conductors, e.g. , in GaAs as the exciton effect is rather
smail. For the crystals with stable E and EM such as
CuC1, we could describe in terms of this effective Hamil-
tonian the optical Stark splitting of the EM level and the
two-photon absorption measurement of this splitting in
Sec. II. At the same time, we could solve how this split-
ting gradually changes into the redshift and blueshift of
the E level and the EM level as a function of the pump
frequency and pump power. This splitting is also shown
to be as large as 2 meV when the resonant pumping be-
tween the EP and the EM in CuC1 is 1 MW/cm . We
can also clarify in terms of the Hamiltonian several

characteristics of the strong phase conjugation under res-
onant two-photon pumping of the EM in Sec. III. Some
features of experimental results can be explained in terms
of the present theory.
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