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Soft, fully separable ab initio pseudopotentials, introduced some years ago by Kleinman and Bylander
[Phys. Rev. Lett. 48, 1425 (1982)], have proven to be very useful for large-scale electronic-structure and
total-energy calculations. However, these pseudopotentials can induce unphysical results and destroy
important chemical properties of the atom in the solid, if not constructed cautiously. We present here a
detailed analysis of Kleinman-Bylander separable pseudopotentials. Two different techniques (a spectral
investigation, and the logarithmic-derivative construction) allow a deeper understanding of their proper-
ties. It is shown how the above-mentioned problems can be avoided.

I. INTRODUCTION

Electronic-structure calculations using pseudopoten-
tials have recently seen a great increase in applications to
many-atom systems, by the use of the Car-Parrinello
molecular-dynamics technique. ' One advantage of this
method is that it avoids the need to diagonalize directly
the Hamiltonian matrix. However, the evaluation of the
Hamiltonian acting on a trial wave function is still a com-
putationally expensive calculation when the usual form of
nonlocal norm-conserving pseudopotentials is used.

Soft, fully separable ab initio pseudopotentials, as pro-
posed by Kleinman and Bylander (KB pseudopotentials),
achieve a substantial reduction of computing time needed
to apply the Hamiltonian operator to wave functions.
However, they can cause unphysical results if not con-
structed cautiously. While a warning was already given
in the original KB paper, no rigorous understanding of
the problems was available. Some authors used KB se-
parable potentials in studies of large-size systems that
otherwise would have been intractable.

Recently, procedures ' were designed to force the
separability of the usual form of norm-conserving pseudo-
potentials, but these were not as efficient as the use of
the KB pseudopotentials. Moreover, it was realized '

that some iterative diagonalization schemes could
efficiently use a separable form for nonlocal pseudopoten-
tials. In order to avoid the difficulties, some empirical
rules for generating reliable KB pseudopotentials were
published by Bylander and Kleinman, while Vanderbilt
and Bloch' proposed interesting generalizations of the
KB form. Along the same line of thought, connections
between linear augmented plane wave (LAPW) and pseu-
dopotentials were exhibited. "

In a recent paper' Gonze, Kackell, and ScheNer pub-
lished a brief description of a more fundamental investi-
gation of KB pseudopotentials. Using selenium as an ex-
ample, they showed the appearance of some rapid devia-
tion of the logarithmic derivative from the all-electron

one, resulting in a spurious bound state (ghost state).
They also provided a theorem for the identification of
such ghosts. Subsequently Stumpf, Gonze, and ScheNer
compiled a list of fully separable ab initio pseudopoten-
tials. '

In the present paper, the general theoretical framework
for the analysis of KB pseudopotentials that was used in
Refs. 12 and 13 is presented. Two different techniques (a
spectral investigation and the logarithmic-derivative con-
struction) allow a deeper understanding of their proper-
ties. Some applications will be presented.

In Sec. II, we recall the background notions: local,
nonlocal, semilocal, and fully separable (KB) pseudopo-
tentials. The fundamental differences between semilocal
and fully separable pseudopotentials for the isolated atom
are emphasized in Sec. III. For the former pseudopoten-
tials, no ghost problems were reported. Indeed, we show
that a corollary of the Wronskian theorem prevents the
appearance of bound states below the reference atomic
level. This theorem is not valid for fully separable pseu-
dopotentials. We also propose an algorithm for the cal-
culation of logarithmic derivatives.

Our discussion is complemented by a spectral analysis
(Sec. IV), which leads to some absolute characterization
of the KB pseudopotentials, in terms of a parametrized
Hamiltonian. A "Kleinman-Bylander energy" (KB ener-
gy) explicitly characterizes the strength of the KB poten-
tial, while a "Kleinman-Bylander cosine" allows one to
distinguish between an artificially or an intrinsically large
KB energy.

In Sec. V, we present two theorems that are useful in
the analysis of the KB Hamiltonian. A corollary of these
two theorems has already been presented in Ref. 12: a
criterion for the existence of a "ghost level" under the
reference atomic energy level. We also show how to esti-
mate the energy range for this ghost level.

The two complementary approaches (logarithmic
derivative construction and spectral analysis) are then
used to show how to correct a KB pseudopotential (Sec.
VI). Simple and systematic ideas are developed. An in-
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troduction to "A list of separable, norm-conserving pseu-
dopotentials"' is then given and we use pseudopotentials
from this list for the calculation of the CxaAs band struc-
ture. Finally, we discuss briefly the application of the
ideas in this paper to the pseudopotential forms intro-
duced by Vanderbilt and Bloch. ' Atomic units (hartree)
are used throughout, except when explicitly mentioned.

II. SEPARABLE PSEUDOPOTENTIALS

V(r, r')= g Y&* (8,$) V&(p,p')Y
I, m

(2)

In this equation, there is one and only one Hermitian ker-
nel V, (p, p') for each angular momentum l, and this ker-
nel is a function of the one-dimensional radial variables p
and p' only.

In the common form of nonlocal pseudopotentials,
the kernel is diagonal:

Vt(p~p ) V&(p)5(p p ) .

Such a form is called semilocal (radially local, but angu-
larly nonlocal). By contrast, a local potential, which is
also characterized by a dirac function 5(p —p'), does not
depend on the angular momentum l. It acts locally also
in the angular coordinates.

Outside the cutoff radius, an ionic pseudopotential
(semilocal or general) has to reduce to the all-electron
ionic potential (which is local). Taking advantage of the
increasing centrifugal barrier for large l, a nonlocal po-
tential can be expressed as the sum of a local part and
some short-ranged nonlocal corrections for only a few an-
gular momenta (i ~l,„). Thus we get, for a general
nonlocal potential

V, (p,p')= V"'(p)5(p —p')+b, V, (p, p') for l ~ l,„, (4)

for a semilocal potential, we obtain

~l(p p ) V (p)5(p p )+~VI (p)5(p p )

for l ~ l,„,
and, in both cases,

Vi(p, p') = V"'(p)5(p —p') for l )I,„.
Note that inside the cutoff radius, the local potential V"'
will be nearly arbitrary, as soon as the nonlocal correc-
tions b, V&(p, p') are designed so as to reproduce the

In the real-space representation, a nonlocal pseudopo-
tential 0' is defined by a Hermitian kernel V(r, r'), such
that:

(r~ P'~p) = IV(r, r')y(r')dr' .

The atom is centered at the origin. Introducing spherical
symmetry, the kernel only depends on p= ~r~, p'= ~r',
and the cosine between r and r'. Expanding the kernel in
Legendre polynomials with respect to this cosine, and us-
ing the addition theorem for spherical harmonics, we ob-
tain the following general expression for energy-
independent Hermitian pseudopotentials, in spherical
coordinates r(8, P,p ), r'(O', P', p'):

correct kernels VI for each angular momentum l ~ l „.
In order to guarantee sufficient transferability,

Hamann, Schliiter, and Chiang (HSC) defined the norm-
conserving condition and generated semilocal norm-
conserving pseudopotentials (see also Ref. 15). Bachelet,
Hamann, and Schliiter (BHS) applied the HSC scheme to
generate a table of pseudopotentials for 94 elements.
This table is often used in common practice.

For fully separable pseudopotentials, the p and p'
dependences of the nonlocal potential are disconnected:

~Vi(p p')=+&" (p)frI'i(p ) . (7)

or, using the dirac bra-ket notation, this reads

I, m

(9)

Thus a separable potential is a sum of projectors.
Notice that a given D' operator can be cast into this

form in different ways. Indeed, there is one degree of
freedom in the choice of the wave vectors and coefficient,
given by

(10)

where a& is an arbitrary number.
Kleinman and Bylander gave a construction formula

for the generation of norm-conserving separable pseudo-
potentials. They connected the separable nonlocal parts
to the semilocal parts defined in the HSC scheme, or in
the BHS table':

X (yps ~gVSL~yps )

where pp&' is the HSC reference pseudo-wave-function of
angular momentum l [/pi' (r) = Yi (8,$)Rip'(p)] and
b, V& is the HSC (Ref. 2) semilocal correction to the local
potential [see also Eq. (5)]. The constant f& in the general
expression Eq. (9) corresponds to the inverse of the ma-
trix elements in the denominator of Eq. (11).

The KB formula connecting the fully separable form to
the semilocal form is unique in the following sense: if we
(a) require that

g V KB~ ~ps ) ~~ VSLyps (12)

and (b) use the form of Eq. (7), then we recover Eq. (11),
with a unique degree of freedom described by the factor a
in Eq. (10).

If we rely on other semilocal pseudopotential generat-
ing schemes, ' ' the result will be similar to Eq. (11).
The presence of the denominator in Eq. (11) can induce
some problems in the scattering properties of the poten-
tial as well as ghost states, as we will see in detail in Secs.
III and IV.

Mixing the angular and radial dependences [Eqs. (2) and
(7)] into single three-dimensional functions, we have

b V(r, r') = g gt* (r)fig& (r')
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III. PROBLEMS WITH FULLY SEPARABLE
PSEUDOPOTENTIALS

In Ref. 12 we described problems induced by the use of
the KB pseudopotential constructed from the BHS table,
with the help of Eq. (11), using selenium as an example.
A ghost state appears at 80 eV below the vacuum level,
well below the zero-node reference wave function. The
logarithmic derivative also differs strongly from the all-
electron logarithmic derivative.

For semilocal potentials the problems encountered
with fully separable pseudopotentials do not occur. The
following simple argument gives the essential reason for
the difference between semilocal and fully separable po-
tentials.

I.et us consider each angular momentum separately,
and construct the radial diff'erential equation governing
the behavior of the radial wave function. We use the fol-
lowing notations: three-dimensional partial wave at ener-

gy &~

(r, c)= Y& (0,P)RI(p, c) (13)

Q( + V' (p)u, (p, c)
dp

+b V& "(p)uI(p, c)—cuI(p, c)=0,
while for a general nonlocal potential (including KB), it is

d'"
2

+ V i (p)uI(p c)
dp

+ J 4V((p, p')uI(p', c)dp' cu((p, —c)=0 . (16)

and one-dimensional radial function at energy c,

u, (p, c)=Z, (p, c)p .

For a semilocal potential, the equation for the function
uI(p, c), at energy c, is

] d 0)
2

+ VI"(p)uh(p, c)
2 dp

+FI (p)f, J F, (p')uI(p', c)dp' cu—I(p, c)=0 (17)

The usual algorithms (e.g., Runge-Kutta and predictor-
corrector) to solve ordinary differential equations, and
construct logarithmic derivatives, are inadequate owing
to the integral part in Eq. (17). We took a computation-
ally efticient, stable, and simple method similar to the
Fredholm method for integral equations. The basic idea
is to consider the value of the integral in Eq. (17) first as a
constant factor, and solve the resulting inhomogeneous
ordinary differential equation. In a second step, a closure
formula will reintroduce the dependence of the integral
on the wave function. Explicitly, the algorithm reads as
follows.

(i) Find the general solution of the homogeneous equa-
tion and a special solution of the inhomogeneous equa-
tion without any integral part:

, + V,"(p)~(p, c)—cW(p, c)=01d 8 —~oc

dp
(18)

ic level. These unphysical states were termed "ghost
states" in Ref. 12. They should have at least one node,
because due to the Hermiticity of the Hamiltonian they
have to be orthogonal to the zero-node atomic reference
wave function, and two zero-node functions cannot be or-
thogonal to each other. The same argument does not
rule out the possibility that two one nod-e functions were
solutions of Eq. (16). As a consequence, the classification,
as well as the characterization of wave functions with
respect to the number of nodes, have to be abandoned.

The calculation of logarithmic derivatives, an impor-
tant tool for the analysis of differential equations, is not
obvious for fully separable potentials. Taking Eqs. (7)
and (16) we obtain

V I" contains the local part of the pseudopotential as
well as the centrifugal potential (angular momentum
dependent), and the hartree and the exchange-correlation
potential if the problem is treated self-consistently. At
any energy c, Eq. (15) is an ordinary differential equation,
where we recognize the kinetic-energy operator (second-
order derivative), the local potential contribution, and the
semilocal one, which has exactly the same form as the lo-
cal one. By contrast, Eq. (16) is an integrodi+erential
equation, because the nonlocal part of the pseudopoten-
tial does not reduce to a simple multiplication.

Without any further investigation, there is an impor-
tant difference between the semilocal and fully separable
pseudopotentials. Indeed, for an ordinary differential
equation, we have the following corollary of the Wronski-
an theorem "If one arranges the eigenstates in the or-
der of increasing energies co, c&, . . . , c„, the eigenfunc-
tions likewise fall in the order of increasing number of
nodes. " As it was pointed out in Ref. 12, this corollary
does not hold for the integrodifferential equation (16).

As a consequence it is possible that bound states ap-
pear at lower energies than the zero-node reference atom-

, + V t"(p)X(p, c) cX(p, c)=F,*—(p) .
1dX

dp
(19)

These equations can be solved for any energy using
predictor-corrector algorithms, for example.

(ii) Construct the integrals

and

W(c) =f,JF, (p) W(p, c)dp

X(c)=1+fifF((p)X(p, c)dp .

(20)

(21)

(iii) The solution of the integrodifferential equation is
then given by

u (p, c)=%[ 8'(p, c)X(c)—X(p, c)W(c) j, (22)

where K is a normalization factor.

Our procedure is different from the one proposed by
Bylander and Kleinman, and does not need any iterative
solution for a given energy.
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IV. SPECTRAL ANALYSIS

Following the line of thought of Sec. III, we consider
each angular momentum l separately. As the angular be-
havior is factored out, only one-dimensional quantities
will be handled. We first explain the basic notations for
this one-dimensional analysis. The Hamiltonian that
enters the radial Schrodinger equation (16) can be split
into three parts: the kinetic-energy operator, the local
potential (including the centrifugal barrier), and the non-
local correction. In the case of a fully separable part, we
have

&u, 'lb, v, lu, ') (23)

Here, the meaning of the bra-ket notation is

&uPlav, "luf')= f uf'(p) hv (p)uP(p)dp.
0

(24)

The uI
' are the reference eigenfunctions of the semilocal

Hamiltonian ' (as well as the KB Hamiltonian), with ei-
genvalue EI '. We introduce also the corresponding local
Hamiltonian, defined by Eq. (23) but leaving away the
nonlocal part:

P loc f+ V loc
I (25)

The eigenvalues of the local Hamiltonian are labeled
E& liFl „El2, . . . The eigenvalues of the local Hamiltoni-
an are consistently ordered with respect to the number of
nodes of the wave functions (the spectrum is "well
behaved").

The spectral analysis aims to characterize the nonlocal
part of the KB Hamiltonian, and to understand the
modifications brought by this nonlocal part to the well-
behaved local Hamiltonian spectrum. To achieve this,
we define the KB operator for angular momentum l:

lgVSL ps)
&

ps~VSLl

(30)

Equation (30) provides a canonical form of Eq. (9).
Indeed, as mentioned in Sec. II, the functions F& and fac-
tors f& are not unique: differently scaled Fl and f& could
give the same nonlocal operator [compare Eq. (10)]. By
contrast, EI is uniquely defined.

Owing to the fact that lui ) is normalized, El is an
energy characterization of the separable part of the pseu-
dopotential. The KB energy gives the order of magni-
tude of the energy modifications brought to the local
Hamiltonian spectrum where the KB operator is added
to it. It should be obvious that if EI is large, the
modification of the well-behaved local Hamiltonian spec-
trum will be large as well. We will analyze these
modifications in Sec. V.

Examination of Eq. (28) shows that the KB energy can
sometimes be quite large. AVI appears twice in the
numerator, and only once in the denominator. If 6VI is
large, the KB energy will be "intrinsically" large. On the
other hand, if the denominator nearly vanishes, the KB
energy will also be large: the evaluation of the matrix ele-
ment

&uf'lavi lul"~= f uf (p)*hvl (p)ul"(p)dp (31)
0

involves the integral of the square of the norm of the
wave function, which is always positive, multiplied by the
quantity b, Vi "(p), which can be somewhere positive and
somewhere negative. Weighted by lug'(p) l, the negative
and positive parts of b, v& (p) can nearly compensate,
leading to an accidentally small denominator, and an
"artificially large" KB energy.

We would like to measure quantitatively the extent to
which a KB energy is intrinsically or artificially large.
Note that uI

' is a normed function. We define the root-
mean-square value 5V&™of the potential 6 Vl (p) as

(gvrms)2
& (gvSL)2)

& psl(gvSL)2l ps) (32)

which is added to the local Hamiltonian to generate the
KB Hamiltonian.

We now consider the following eigenvector of the KB
operator:

l
b, Vi u f'). lt satisfies the eigenvalue equation

This quantity appears in the numerator of the KB energy,
and characterizes the intrinsic strength of the potential.
The ratio between b, vl' ' and the KB energy E& (the
latter combines intrinsic as well as artificial influences) is

g V K B
l
g VSL ps ) E&B

l
g VSL ps )

with the eigenvalue given by

ps' VSL
l
g VSL ps )

& u f'lb, v,' lu f')

(27)

(28)

g Vrms
&KB

1 EKB
I

& ugly, v,'"lug)
(&ul)"hv "lhvi "uP) )'

KBl ps) (33)

This eigenvalue will be called Kleinman-Bylander energy
(KB energy). We introduce also the normalized eigenvec-
tor )(( KB(l (34)

Ci is also equal to the cosine between lug') and
l6v& uP'). As a cosine,

1~Vi' uP&
ps~vSLlgVSL ps) )1/2 (29) The inverse of this KB cosine gives the artificial factor of

enhancement of the energy scale EVI' ' which leads to
the KB energy EI

Using these definitions, the KB operator reduces to the
following projector: EKB g Vrms1

I CKB I (35)
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It is now evident that if the KB cosine is nearly zero, E&

will be large.
To illustrate these points, we give in Table I numerical

values for the pseudopotentials of eight elements. %'e use
pseudopotentials of Ref. 14 with the d potential as local,
and define the s and p nonlocal corrections with respect
to this local potential.

The KB energies run from —381 to 6624 eV, and have
their smallest absolute value as —2 eV. The KB cosine
values range from —0.60 to 0.33, with the smallest abso-
lute value as 0.00202. From our experience (see Sec.
VII), we will use the C absolute value of 0.15 as the
limit between artificially and intrinsically large KB ener-
gy. Seven KB energy absolute values (from the total of
16 in Table I) are quite large (absolute value above 100
eV). Having a look at the corresponding KB cosine, we
see that the KB energies for carbon p and oxygen s and p
are mainly intrinsic, while they are mainly artificial in the
other four cases. The As s state is especially dramatic:
the KB energy is 6624 eV. The corresponding KB
cosine, which is equal to 0.00202, leads to an enhance-
ment factor of 495 with respect to the characteristic ener-

gy AV,' '.
The KB energy and cosine are indicators that we wi11

use to correct the KB pseudopotentials (see Sec. VI).

V. THE PARAMETRIZED HAMILTONIAN

For a further analysis of the modification to the local
Hamiltonian brought by the KB operator we introduce
the following parametrized Hamiltonian:

Q KB(g) —P loc+
~
&

KB )g( &
KB

~
(36)

where 8"' and the KB wave function are axed (note
that any reference to angular momentum indices l has
been suppressed in this section), while the quantity A, is
considered a parameter that can take any value between
—00 and + 00. Of course, if the parameter I, vanishes,
we recover the local Hamiltonian, while if A, =E, we
recover the true KB Hamiltonian.

The spectrum Eo(A, ), El(A. ), . . . of this parametrized
Hamiltonian can be considered as a function of the pa-
rameter A, . The indices of the eigenvalues correspond to
the energy ordering of the levels, and are in general not a
node classification.

In order to find out the evolution of each eigenenergy
curve as a function of A, we consider first a finite-
dimensional space of dimension N. A' (A, ) has exactly
N real eigenvalues and N orthogonal eigenvectors, be-
cause the studied Hamiltonian is Hermitian (mathemati-
cally, the Hamiltonian is equivalent to a Hermitian ma-
trix).

Theorem 1. Each eigenenergy curve E;(A.) is an in-

creasing function of A, with

dE;(A, )
0 1. (37)

s

P
84

—189
0.33

—0.18

TABLE I. KB energies E and KB cosine C for pseudo-
potentials of eight elements. s and p angular momenta are con-
sidered. The pseudopotentials are taken for the BHS (Ref. 14)
table, with the d potential used as a local potential.

EKB (eV)

The proofs of this theorem and the following one are
given in the Appendix.

Theorem 2. At the asymptotic limit of very large abso-
lute values of A, the parametrized Hamiltonian can be
split into three terms:

p KB(g) pp locp+ i+ KB)g(l- KB~+g (3g)

0

Al

Si s

168
—381

63
32

93
51

0.33
—0.18

0.31
0.26

0.31
0.27

The last term is asymptotically small. The first term acts
in a dimension (N —1)-space, and is independent of A, . It
is the projection of the local Hamiltonian on some sub-
space, by the projector operator P = 1 —

~
u ) ( u

(which is independent of A, ). The second term acts in a
one-dimensional space, which is orthogonal to the previ-
ously mentioned (N 1)-dimensional —space, in the large
A, asymptotic limit. A, and u are defined as

s

P

—62
—2

—0.13
—0.60

and

g=g+ (g KB~/ 'oc~gg ) (39)

s —190 —0.055
—0.41 ~g ) = igKB)+ —py' '~/KB)1

(40)

As

Se

s 6624
—17

332
—190

0.0020
—0.16

0.050
—0.022

Note that k is a linear function of A, , with slope 1, and
that the wave function u reduces to u in the asymp-
totic limit.

The two theorems impose strong requirements on the
shape of the spectrum. A typical example is shown in
Fig. 1. Note the monotonic increase of each eigenenergy
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and the corresponding local Hamiltonian (for which
A, =0):for a positive energy A, +,

Eo(0) & Eo(A, + ) & E i (0) & E i (A,
+

) & Ez(0) & (43)

for a negative energy k

lDI
C5

I
LLJ

Q 3

(arb. units)

FIG. 1. Solid lines: the eigenvalues E;(A, ) of a typical
parametrized Hamiltonian 8 (A, ) [Eq. (36)], numbered from 0
to 5, according to their energy. The dimension of the vector
space is 6. Dash-dotted lines are straight lines having the same
asymptotic behavior as the eigenvalues. The difference between
the two sets of lines is mainly the avoided crossings of eigenval-
ues.

E, (
—~ ) &E, (A, ) &E,(0) &E,(k+) &E,(+ ~ ) . (41)

The second theorem connects the values at —~ and at
+ ~. Indeed, all the asymptotic values of energies corre-
sponding to the constant term (first term) of Eq. (38) are
identical in the —~ and + ~ cases, except that their
numbering is different. This can be seen in Fig. 1. The
first level at —oo is the linearly increasing one (numbered
0 in Fig 1), while .the linear level at large values of k is
the highest in energy (numbered 5). So, the energy of the
second level at —oo (numbered 1) is the energy of the
first level at + oo (numbered 0), the energy of the third
level at —oo (numbered 2) is the energy of the second lev-
el at + oo (numbered 1), and so on. To summarize,

E;+i(—oo ) =E;(+~ ) (42)

Using these results we obtain the following connection
between the spectrum of the nonlocal KB Hamiltonian,

curve (from theorem 1), as well as the asymptotic behav-
ior: one linear component and N —1 constant com-
ponents. In the medium-energy range, we find avoided
crossings between different levels, which are due to the
third term of Eq. (38), as well as to the difference between
u "8 and u ~~.

To analyze this graph, let us introduce a negative ener-
gy A, and a positive energy A, +. The first theorem im-
poses that

E,(A, ) &E,(0) &E, (A, ) &E,(0) &E,(A, ) & . . (44)

These results are true for any A. [Eq. (43) if A, is positive,
Eq. (44) if k is negative], thus they also hold for the
"true" KB energy, i.e., X=E . The structure of Eqs.
(43) and (44) is quite simple: we get successively one
eigenenergy of the local Hamiltonian and one eigenener-
gy of the KB Hamiltonian. The difference between Eqs.
(43) and (44) lies only in the way in which the series be-
gins: the ground state of the local Hamiltonian if k is
positive, or the ground state of the KB Hamiltonian if k
is negative. This difference will be important for the
correction procedure in Sec. VI.

The corresponding analysis of a parametrized Hamil-
tonian in an infinite dimensio-n space, but with a short-
range KB operator hV is given in the Appendix. It
shows that below the continuum, the conclusions of the
finite-dimension space analysis are still valid [Eqs.
(41)—(44)]. Up to the continuum, we can rely on the
classification of the KB Hamiltonian eigenenergies with
respect to the local Hamiltonian eigenenergies, Eqs. (43)
and (44). As a corollary of this classification, we have the
following criterion' for the existence of a bound state un-
der the reference atomic level (a ghost state), for any an-
gular momentum I.

(i) Ei )0. There is a ghost level under the atomic
reference level if, and only if, the atomic reference eigen-
value is higher in energy than the first excited level of the
local Hamiltonian.

(ii) Ei &0. There is a ghost level under the atomic
reference level if, and only if, the atomic reference eigen-
value is higher in energy than the ground-state of the 1o-
cal Hamiltonian.

Indeed, in the first case, due to the classification ex-
plained below, Eq. (43), we are sure that the KB Hamil-
tonian will also give a level between the ground state and
the first excited state of the local Hamiltonian. This level
will be below the atomic reference level (note that the ei-
genvalues of the local Hamiltonian are given in Fig. 1 on
the A, =O axis). Q. E.D.
For the second case the proof is analogous.

Table II gives some examples of the application of this
criterion. Again, we have taken ihe potentials from the
BHS table, using the d potential as local, for the eight ele-
ments in Table I. From the application of the criterion,
we are sure of the existence of a ghost in the case of
selenium p angular momentum and also in the case of
germanium s angular momentum [case (ii) of our cri-
terion]. In the other cases, we have no ghost under the
atomic reference level. The first ghost (in selenium) was
identified in Ref. 12, at —80 eV. We also checked that a
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Eo(X)= & uo(~) IB"'(~)
I uo(~) &,

E (A, )=& o(~)IA '-I o(~)&

+ & u, (X)~u "a&X&u "a~uo(z) ),

(45)

(46)

where ~uo(A, )) is the ground-state wave function of the

TABLE II. Local Hamiltonian ground-state and first

excited-state eigenvalues, atomic reference eigenvalues, and

signs of KB energy for the pseudopotentials of eight elements.

Pseudopotentials are taken from the BHS table (Ref. 14), with

the d potential used as a local potential.

Eo
(eV)

—35.2
—3.0

(eV)

—1.1
0.0

EPs

(eV)

—13.6
—5.4

sign
EKB

0 s —70.0
—4.2

—1.4
0.0

—23.8
—9.2

self-consistent calculation, performed using a plane-wave
basis set, considering the atom in a very large box, pro-
duced this same ghost level. In the self-consistent pro-
cedure, this ghost level was of course not occupied. The
large positive KB energy observed in As does not produce
a ghost level, but generates instabilities when used in
Car-Parrinello' simulations. For gallium, a ghost exists,
but is found above the atomic reference level. It is easily
identified in logarithmic derivative plots. As we will see
in Sec. VI, it induces a modification of the conduction
bands in GaAs, but the valence bands and their density
are only weakly affected.

Could we get an indication of the energy of the ger-
manium ghost without resorting to the calculation in a
large box, or to the radial Schrodinger equation solution' ?

It is easy to get a lower bound for the ground state of the
parametrized Hamiltonian. Indeed, this ground state is
equal to the following expectation value:

pararnetrized Hamiltonian. This ground-state energy is
certainly higher in energy than the sum of the lowest pos-
sible value of each term of Eq. (46), which give the fol-
lowing estimates for A, =E

(EKB))E (0)+EKB

if the KB energy is negative, and

(47)

Eo(E ) )Eo(0) (48)

Eo(0)+E (49)

obtained using Theorem I applied to the ground-state
curve starting at zero KB energy.

From this, we get the following estimation of the ger-
rnanium ghost energy: between —90.5 and —202.9 eV.
From the radial Schrodinger equation resolution, we can
get the numerical value of —114 eV.

We may also mention that this type of Hamiltonian
defined in Eq. (36) and analyzed above has been recently
studied in a different context. In particular, their soliton-
like behavior has received some interest (see, for example,
Ref. 23).

if the KB energy is positive.
We can also get an upper bound for the ground state of

the parametrized Hamiltonian using the fact that the
slope of the ground-state curve is lower than +1 [from
Eq. (39)]. Its asymptotic behavior is given by Eq. (39),
which has a slope exactly equal to +1 (see the dash-
dotted curve of slope +1 in Fig. 1). Thus this linear
function of A, is always greater than the ground-state en-
ergy curve (the ground-state energy curve is the lowest
solid curve of Fig. 1). When A, =E is large and nega-
tive, E should closely approximate the energy of the
ghost state E (E ) as seen in Fig. 1.

If the A, =E is negative, the ground state of the local
Hamiltonian provides another upper bound (due to
Theorem 1). If the KB energy is positive, the energy of
the first excited state of the local Harniltonian provides
one upper bound, Eq. (43). In this case, another upper
bound is also provided by the following quantity:

A1 s —35.8
—10.5

—2.6
—0.2

—7.8
—2.8 VI. APPLICATIONS

Si

As

s —55.4
—17.9

—8.9
—2.2

—12.9
—3.4

—17.2
—5.0

—22.0
—6.73

—4.0
—0.3

—0.5
0.0

—0.7
0.0

—0.8
0.0

—1.0
0.0

—10.9
—4.2

—9.1
—2.7

—11.9
—4.0

—14.7
—5.3

—17.4
—6.65

A. Logarithmic derivatives and ghost states

From the analysis performed in Secs. IV and V, it fol-
lows that an artificially large, negative KB energy is like-
ly to generate a ghost level well below the reference atom-
ic eigenlevel. This is why KB pseudopotentials some-
times fail for s- and p-bonded elements (when the d pseu-
dopotential is chosen as the local potential). In this case,
we will propose a very systematic way to avoid ghost
states as well as erroneous logarithmic derivatives. If the
KB energy is not artificially large negative, the idea
developed in this section will still be useful, while less
efficient.

The construction procedure described by Hamann,
Schluter, and Chiang has its practical extensive realiza-
tion in the BHS table. ' In order to avoid the mentioned
problems with fully separable potentials it is sometimes
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necessary to use other starting semilocal potentials. Still
following the technique of Hamann, Schluter, and Chiang
for generating the pseudopotentials, at least two kinds of
parameters could be chosen different from the ones
adopted by Bachelet, Hamann, and Schliiter the pa-
rameters defining the cutoff radii r, for each angular
momentum [see Eq. (5) of Ref. 12], and the exponent
defining the shape of the pseudo-wave-functions [Eq.
(2.12) of Ref. 14]. While the latter parameter is found to
have little effect, varying the cutoff radii greatly changes
the KB characteristics. Therefore we take the following
approach: without significantly modifying the local
Hamiltonian and the KB wave function [Eq. (36)], we try
to make the denominator of the KB energy successively
vanish and become positive. In the case of an artificially
large KB energy, a slight modification of the cutoff radius
will usually change the sign of the small denominator,
while leaving the other parts of the parametrized Hamil-
tonian unchanged. By this transformation, the KB ener-

gy becomes first infinitely negative, then infinitely posi-
tive, then decreases quite fast to a reasonable positive
value.

The effect of such a modification can be understood by
reference to Fig. 1. Indeed, the spectrum of the
parametrized Hamiltonian, while slightly modified due to
the change in H"' and u, will keep the general behav-
ior represented in this figure. From the KB energy pass-
ing through infinity, from negative to positive, we see
that the lower-lying level is sent to a large positive ener-
gy. Thus we succeed in removing an existing ghost level.
The change of the KB energy from negative to positive
corresponds also to the change of the criterion to be ap-
plied for the recognition of the existence of a ghost level.
The deviation of the logarithmic derivative from the all-
electron one is usually associated with such a ghost level.
Thus removal of the ghost level simultaneously corrects
the logarithmic derivative. An example of our procedure
can be found in Ref. 12, where the BHS pseudopotential
for selenium has been analyzed and modified.

Bylander and Kleinman recently suggested three rules
that should also allow one to correct KB pseudopoten-
tials. From our treatment (Secs. IV and V), we can ana-
lyze their proposal.

Their first rule [the b, V&(r) should be made as small
and as short ranged as possible] corresponds to avoiding
intrinsically large KB energies.

Their second rule [when the semilocal potentials V&(r)
are significantly dissimilar —so that AV&(r) cannot be
small —the positive b, V&(r) should be made small], could
work in the case of intrinsically large KB energies, as a
criterion to choose the local potential. However, in the
case of s- and p-bonded elements, the only problems we
found arose from artificially large E . As a conse-
quence, we find that this rule is in general not a good con-
cept for creating pseudopotentials for these elements. We
have seen that our correction procedure increases the
positive part of 6V. By contrast, in the case of transition
metals, the large KB energy of these elements is intrinsic,
thus dificult to modify. The d potential is too deep, corn-
pared to the s or p potentials. Therefore a change of the
local potential seems to be the best solution.

Their third rule (the ratio (u~b, V~u)/(u~~b, V~~u)
should be as close to unity as possible and in no case less
than 0.5) uses a notion similar to our KB cosine construc-
tion [see Eq. (33)]. Nevertheless, we have shown that
negative KB cosines are often adequate, and that small
absolute values for KB cosines (below 0.15) are dangerous
only if they induce large KB energies, due to Eq. (35).
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FIG. 2. GaAs band structure. Solid curve: result using the
semilocal pseudopotential from the BHS table (Ref. 14). Dash-
dotted curve: result using the separable pseudopotential based
on the BHS table (Ref. 14). Dashed curve: result using the se-
parable pseudopotential based on our table (Ref. 13). The I =2
potential has been used as a local potential.

B. A list of separable pseudopotentials

The procedure described above has been used to con-
struct fully separable potentials for 30 elements in the
Periodic Table. We have compiled all the results, numer-
ical as well as graphical, in Ref. 13 and now describe
briefly the content of this report.

For each of the elements treated, we have provided (1)
an analytical fit of the s, p, and d pseudopotentials, in the
same form as in the BHS table; (2) an alternative to (1):
the tabulated numerical values of pseudopotentials and



ANALYSIS OF SEPARABLE POTENTIALS 8511

10
I

a

~ l
)

-10

I

I

I

I

I I I I I I I

LLj 0

C5

—10

)I

II

I]
I
II

Il

I

I

I

I

I'

)I

I I' I I I I I I

10

LJJ
0

-10

Energy (harfree)
.5 1.0

FIG. 3. Logarithmic derivatives for the s (top), p (middle),
and d (bottom) states of the Ga atom. Solid curve: results using
the semilocal pseudopotential from BHS table (Ref. 14). Dash-
dotted curve: results using the separable pseudopotential based
on BHS table (Ref. 14). Dashed curve: results using the separ-
able pseudopotential based on our table (Ref. 13). The 1 =2 po-
tential has been used as local potential.

blaue functions, in order to be able to generate directly the
KB form [Eq. (11)]; (3) the graphical presentation of the
pseudopotential; and (4) plots of logarithmic derivatives,
and comparison with the corresponding all-electron and
semilocal results.

As an example we discuss now briefiy the gallium-
arsenide band structure. We have done a density-
functional-theory calculation with the Ceperley-Alder
exchange-correlation potential as parametrized by Per-
dew and Zunger, in the framework of the momentum-
space formalism. The cutoff for the kinetic energy of
plane waves was fixed at 7.5 hartree, and the number of
special points for the integration in the irreducible Bril-
louin zone was equal to 2. From the BHS table, ' using
the semilocal form with the d potential as local, we get
the band structure represented by solid curves in Fig. 2.
Using the corresponding separable pseudopotential [Eq.
(11)], we obtain the dash-dotted curves of Fig. 2. While
the valence bands look good, we find strong modifications
of the gap (decrease from 1.2 to 0.4 eV), as well as of the
conduction bands, due to an atomic ghost state (here

slightly above the reference atomic state) which strongly
hybridizes in the region of 0.3—8.0 eV above the top of
the valence band. These strong modifications can be re-
lated to the large deviation of the galllium separable
pseudopotential (BHS based) s logarithmic derivative
curve with respect to the semilocal s logarithmic deriva-
tive curve, as shown in Fig. 3. If we now use our pseudo-
potentials of Ref. 13, we find the band structure
represented by dashed lines in Fig. 2, without any con-
duction ghost band, and a reasonable overall agreement
with semilocal BHS result. The difference of about 0.2
eV at the gap can be traced to a slight difference between
s logarithmic curves as shown in Fig. 3.

C. Generalizations

As mentioned in the Introduction, Vanderbilt and
Blochl' have proposed very interesting generalizations of
the KB construction. The concepts developed in the
present paper can be used to analyze these proposals. Al-
though one of their aims is to avoid the spurious behavior
found for fully separable pseudopotentials, it is worth
mentioning that for these potentials the corollary of the
Wronskian theorem still does not hold, and that the tools
presented here are useful in understanding the properties
of these potentials. In particular, the logarithmic deriva-
tive construction Eqs. (18)—(22) generalizes easily.

VII. CONCLUSION

In the present paper, we present an analysis of fully se-
parable pseudopotentials. At first, we define the notion
and indicate the problems that could arise when using
fully separable potentials in quantum-mechanical calcula-
tions. In particular, we discuss the possible existence of
extra bound levels (ghost levels) under the reference
atomic eigenenergy which are allowed for fully separable
pseudopotentials, but not for usual semilocal energy-
independent pseudopotentials. An algorithm for loga-
rithmic derivative construction, which had already been
applied in Ref. 12, is also described. Logarithmic deriva-
tives provide useful information on KB pseudopotentials,
but should be complemented by a spectral analysis that
also makes apparent the mathematical structure of KB
pseudopotentials. With this spectral analysis the KB
Hamiltonian can be written in a parametrized form. Us-
ing this form, we demonstrate two important theorems
that lead to a deeper understanding of the KB Hamiltoni-
an properties. The use of these tools enables one to
correct the KB pseudopotentials generated using the
HSC scheme. We use them to suppress the ghost level of
selenium and to generate a table of separable pseudopo-
tentials with application to the GaAs band structure. Fi-
nally, we discuss brieQy some generalizations of KB pseu-
dopotentials.
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APPENDIX

8"'(A, )=Pa"'P+iu ')X(- (AS)

The last term vanishes in the case of large A, . The first
term is independent of X. The second one has a linear
dependence, given by

In this appendix, we analyze the parametrized Hamil-
tonian

g =g+ ( u
~
0 ~oc

~
u &8 )

The definition of
~
u ) is

(A9)

(g) =y + ~u
+ )g(u +B~ (A 1)

~u ) = ~u )+—P~ "c~u ) (A 10)
As a first step, we consider the Hamiltonian H (A, ) in a
finite dime-nsional space of dimension K (mathematically,
the Hamiltonian is equivalent to a matrix). We assume
that H "' is Hermitian (no other information on H "' is
assumed in this first part of this appendix), that A, is real,
and that u is normalized. We will prove the two
theorems mentioned in Sec. V.

By construction, H (A, ) is Hermitian. It has exactly
X orthonormal eigenvectors u;(A, ), which form a com-
plete set of vectors. The corresponding X real eigenval-
ues are written E;(A, ). The label i runs from 0 to X —1,
and is ordered with respect to increasing eigenvalues. It
is important to note that the set of eigenvectors as well as
their eigenenergies will differ for each value of A, .

Theorem l. Each eigenenergy curve E;(A, ) is an in-
creasing function of k.

Proof:

The projector P is equal to

P —1 —
~u )(u~ ~, (A 1 1)

(A12)

and, in the asymptotic limit, the first term of Eq. (AS)
acts in an (X —1)-dimensional space orthogonal to the
one-dimensional space in which the second term acts.

Proof. The parametrized Hamiltonian is given by Eq.
(Al). When A, is large (either positive or negative), we
can consider the first term as a perturbation to the second
term. This is certainly appropriate, if we deal with a
finite vector space. We obtain directly one eigenvalue
and one eigenfunction:

(A2)

Because u;(A, ) are normalized and the parametrized
Hamiltonian is Hermitian we obtain

~u(A)) =~u )+ PH"' u )+—0 . (A13)

(A3)

dE;(A, )
=(u, (k)~u "~)(u "B~u, (A) &,

dE;(A, )
=~(u;(A)~u )~ )0.

(A4)

(A5)

(A6)

and

dE;(A, )

dA,
(A7)

Theorem 2. The asymptotic behavior of the
parametrized Hamiltonian (Al) is described by the fol-
lowing equation:

Q.E.D.
We also have the following subsidiary results: the

quantity in Eq. (A5) is the square of a cosine because
u, (A, ) and u are normalized. Thus it is lower than 1,
which provides an upper bound for the slope of each
eigenenergy curve. Because the set of eigenfunctions
u, (A, ) is a complete set we also obtain

We now express the Hamiltonian, in terms of the quanti-
ties defined by Eqs. (A9) and (A10), that comes from Eqs.
(A12) and (A13) truncated after order 1 and I/A, , respec-
tively. This gives Eq. (AS). Q.E.D.

We now consider the infinite dimensio-n case, investi-
gating the form encountered in practice: the pseudopo-
tential is the sum of a separable nonlocal part, which is
short ranged, and a local part, which can be short or long
ranged, depending on the charge state of the system and
on the treatment of exchange and correlation. The
asymptotic value of the potential at infinite distance is
taken as zero.

From Sec. III, one may see that the logarithmic deriva-
tive found at r, is a single-valued function of the energy,
always decreasing, except at poles (this property is im-
plied by the norm-conserving condition). This behavior
is found for any value of the KB energy. The important
fact is that this behavior is qualitatively identical to the
behavior of the logarithmic derivative found when a local
potential is used. This means that the ranges of energy in
which the spectrum is either discrete or continuous are
not determined by the short-range sum of local and non-
local pseudopotentials, but by the local potential that is
found outside the cutoff radius. The continuum edge is
thus independent of the short-ranged nonlocal potential
and appears when the energy is larger than zero. Below
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this energy, we find a discrete spectrum.
We now consider the two theorems demonstrated pre-

viously. It is immediate that Theorem 1 is valid in the
discrete spectrum, while in the continuum spectrum, the
consideration of one particular level is meaningless. The
conclusions of the second theorem are also valid in the
discrete spectrum: there is one asymptotically linear lev-
el, while all the other levels are asymptotically constant.

The results of the infinite-dimensional space analysis are
simple: the physical picture of the finite-dimensional
analysis is preserved in the discrete spectrum range of en-
ergies.

Of course, in the solid-state applications, one intro-
duces periodic conditions and finite basis sets. This re-
stores a finite-dimensional space, for which the analysis
has already been done.
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