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Exact expressions for the dc mobility of a small polaron hopping on a one-dimensional disordered lat-
tice are derived. Several features are observed: (i) linear response is recovered in the limit of vanishing

applied fields, in spite of the presence of random biases, (ii) the nondecaying part of the polaron memory
function does not contribute to the dc mobility for a diagonally disordered system, and (iii) for a Gauss-
ian distribution of site energies, the mobility vanishes below a transition temperature To. It is shown
that at a temperature T near the transition point, the mobility scales as p-(T —To)'

I. INTRODUCTION

If electron-phonon interactions in a solid are strong
enough to induce polaron formation, the resultant charge
transport properties will be greatly affected by static dis-
order arising from lattice defects and impurities. This be-
havior is expected because polaron formation substantial-
ly reduces the electronic bandwidth. Consequently, the
tendency of static disorder to localize electronic states
may be enhanced. Nevertheless, after several decades of
work on polaron-based theoretical explanations for low-
mobility solids, ' ' there have been few attempts to ex-
plicitly determine the role of static disorder on polaron
transport. '" ' In most applications, polaron transport
is suitably described by the hopping of a single polaron
on a lattice of regularly spaced sites. Observables are cal-
culated from the solution to a master equation for the
evolution of the site probabilities. Such studies have
proved useful in analyzing experimental data on exciton
mobility in molecular crystals.

However, there are numerous experimental systems,
such as conducting polymers, in which strong electron-
phonon coupling coexists with static disorder. In such a
case, the predominant effect of the static disorder is to in-
duce spatially random fluctuations in the hopping rates
between adjacent lattice sites. In the most general case,
however, the hopping rates will possess no special sym-
metry. The rate to hop between site m and site m+1,
R +&, will not necessarily equal the backward rate
R + &

. The resultant master equation will correspond
to the so-called random bias problem. While much
theoretical effort has been expended to calculate the
transport properties of the master equation in special
cases such as the symmetric bond-disordered (R +,
=R +, ) or site-disordered (R, =R +, ) mas-
ter equations, ' ' few have investigated the random bias
problem. Recently, progress has been made in the devel-
opment of expansion methods in order to solve the ran-

dom bias problem. Nevertheless, as with the bond-
disordered and site-disordered master equations, exact
expressions for the diffusion coefficient are only known in
one dimension. ' In the present application we explicitly
include strong phonon interactions in the random bias
problem. Our analysis of the transport properties is
based on the exact method of Derrida. ' From our
analysis, we are able to show that there is a temperature-
dependent transition beyond a critical value of the static
site-diagonal disorder. In the vicinity of the transition,
the mobility scales as (T —To)'~. These results are
significant in light of recent experiments by Devreux and
Lecavelier, who have observed anomalous diffusion in
the conducting polymer poly(pyrrole perchlorate) as a
function of temperature. They attribute their observa-
tions to a crossover from two-dimensional (2D) dynamics
as the temperature is lowered; interchain hopping pro-
cesses diminish as the temperature decreases. Conse-
quently, at sufFiciently low temperatures, the conductivity
is carried almost exclusively along single strands of the
polymer. The vanishing of the mobility that we show ex-
ists in the one-dimensional disordered polaron problem as
a function of temperature suggests that a two-
dimensional treatment of this problem could be directly
applicable to the vanishing of the mobility along a certain
axis of the crystal as in the case of the Devreux-
Lecavelier experiment.

This paper is organized as follows. We review the
basic site-disordered electron-phonon Hamiltonian in
Sec. II and calculate the mobility in Sec. III. The pola-
ron memory function is analyzed in Sec. IV, and the tem-
perature dependence of the mobility is obtained in Sec. V.

II. POI.ARON HAMILTONIAN

The polaron Hamiltonian describes a single electron
moving on a periodic lattice. The electron is linearly cou-
pled to the lattice vibrations, such that
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H=ge a a ++V +a a ++V +, a +a

+ ggqco e'~ (bt +b )ata +geo (b b +—') .

oscillator with frequency co . In terms of the operators
and B, the Hamiltonian of expression (2.1) is

q, m

(2.1)

H =HO+V,

Ho= g(E E~—)A 2 + geo~(BtB +—,'),

=a exp 'g gee" (B
q
—Bq) (2.2)

The operator 8 ~ creates phonons of a displaced harmonic

The operator a creates an electron at lattice site m with
energy e . The nearest-neighbor off-diagonal matrix ele-
ment V +, causes the electron to move from site to
site. The operator b~ creates a phonon with wave num-
ber q and energy A~q. The electron-phonon coupling
constant g determines how strongly an electron at site m
is coupled to the displacement of a vibrational mode with
frequency co . We adopt units in which the constant fi

has been set equal to 1. If the time for the electron to
move from one site to a neighboring site is long com-
pared with to the time for vibrational relaxation, then
electron transport may be envisioned as sequence of hops,
each to be rapidly followed by a vibrational distortion of
the local environment. The transport of the polaron is
the motion of the electron and this self-induced lattice
distortion. In the limit of vanishing ofF-diagonal matrix
elements V +„the polaron is created by the operator

, which is defined as

V=+ V

Xexp gg~e'~ (1—e'~)(B
~
—B ) At 2 +,

q

+ V +, exp —gg e'I (1—e' )i(B B)—

XA +id (2.3)

where E, the polaron binding energy, is equal to
» (2.3) we have deliberately separated the

diagonal (Ho) and off'-diagonal (V) parts of the Hamil-
tonian for later reference. For most theories of transport
via small polaron hopping, calculations of the mobility
are effectively determined by the nearest-neighbor hop-
ping rate R + &

in the site basis. That is,

R +i= lim dt'8' +. )
t' (2.4)

taboo 0

The integration in (2.4) is over the memory function
W +,(r), where

2
(E„—e )

Z 2
Wm, m+i(r)=2V, +i exp —& '"p X ~gq~ ""

2

COq
cath P 2

X exp 4 g ~g~ ~

sin csch p cos(co~ t) cos[(E +, —e )rj,z z
(2.5)

P is I lkT, and a is the lattice constant. Expression (2.5)
is the result of a second-order time-dependent perturba-
tion in V. The mobility may be determined from the
solution to the master equation with nearest-neighbor
hopping rates as given by (2.4):

P = —(R +, +R, )P

+R + )I' + (+A jI' (2.6)

@=Pea R =Pea f dt W(t)
0

(2.7)

In utilizing expression (2.7) we are faced with a well-
known dilemma. For the Hamiltonian (2.1) with linear

where I' is the probability of finding the polaron on site
m. Because we are interested in dc quantities entirely, we
use the Pauli master equation as opposed to the general-
ized master equation. From (2.6) one may calculate the
steady-state drift velocity vd of an initially localized parti-
cle in the presence of a dc electric field E. The mobility is
then determined from the ratio vd/E in the limit that E
tends to zero. If the system is ordered, the hopping rate
is independent of the site label; W +,(t)= W(t) and
R m m + )

=8, and the 1rloblllty 1s

electron-phonon interactions, the memory function W(t)
does not decay to zero at long times. Consequently,
W(co )WO, the integration in (2.7) diverges, and the dc
mobility is infinite. At this level of perturbation, the
divergence may be associated with an unscattered contri-
bution to transport from the polaron band. Certainly it
must be eliminated from (2.7) if a theory of polaron hop-
ping is to be of any use. However, results vary consider-
ably, depending upon the precise method in which the el-
imination is carried out. Several methods for dealing
with this problem are more easily described if we intro-
duce a modified memory function W'(t), which is defined
as the difference between W(t) and W( ~ ). By definition
then, W'(r) decays to zero at long times. The memory
function (2.5) can be written as the sum of two parts, a
decaying part and a constant part,

W(t) = W'(r)+ W( ~ ) . (2.8)

In many theories of small-polaron hopping, W( 0O ) is dis-
carded because the polaron band contribution to the mo-
bility is smaller than the hopping contribution at temper-
atures of interest. ' ' If the density of phonon states is
three dimensional, the remaining integration of W (c)
and the calculated mobility are finite. A different treat-
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ment is proposed in a theory by Silbey and Munn. One
contribution to the mobility is calculated from a pertur-
bation in a site basis, which is carried out in a quantity
that is the difFerence between V and its thermal average
(V). This procedure e(Fectively extracts W(ao ) from
(2.7). A second contribution to the mobility is calculated
from a perturbation in momentum space, and these two
contributions are added together. In contrast, in a theory
of Kenkre, 8'(oo ) is retained in the perturbation in V
from a site basis. A finite mobility is obtained only by ac-
counting for the memory-broadening effects of other pro-
cesses. For example, it is possible that an effective
broadening of the memory function is achieved in any
system in which there is site-diagonal disorder. The
analysis presented here will be based on the theory of
Kenkre, where the perturbation is entirely from a site
basis and W( ~ ) is explicitly retained. Our primary pur-
pose is to determine, in the context of this theory,
specifically how diagonal disorder inAuences the dc mo-
bility.

III. CALCULATION OF THE de MOBILITY
In order to obtain the dc mobility in one-dimension, we

first calculate the steady-state drift velocity of a particle
I

Rm m + 1~m +Rm +1 m&m +1 (3.1)

At steady state, the current between any two sites is a
constant j =j. The steady-state drift velocity of an ini-
tially localized particle Ud is

d
Ud= lim +am P (t)=aNj

t~m
(3.2)

where X is the number of sites in the ring. Combining
(3.2) with (3.1), we obtain an equation that can be succes-
sively iterated around the ring

m+1 m d 1
m m+1

Rm, m +1 Na Rm, m +1
(3.3)

in order to obtain an expression for I' in terms of Ud and
the hopping rates. Making use of the fact that

P = 1, we find that

in an applied electric field. Following Derrida, ' we con-
sider a ring of N sites. We define the probability current
j between sites m and m + 1 as

Rm+1 m Ud 1 R21 2, 1 3 2 2, 1R3,2 RN, N —1

1
R +1 a R, 2 R12R23 R12R23R34 R12R23R34 RN 1N

(3.4)

where the angular brackets denote a configurational aver-
age. We do not mean to single out specific sites by the
subscripts on R, 2, R2 3, and R3 4 etc. in the averages in
(3.4), but rather to indicate that the average is over R
where n is greater than m by 1. For example,

field is to alter the site-energy difference between nearest
neighbors by the amount 5, where A=eEa. Also, for
convenience we write the hopping rate as a product of
Boltzmann factors and a function 6, which depends on
the absolute value of the difference in site-energies:

12 23 m=1 m m+1
(3.5)

(Em+i ~m )
R +, = exp —P exp —p—

2

At this point it is important to specifically include a dc
electric field E. We assume that the only effect of the

I

where

XG + (E +,—c, b), —(3.6)

G +,(E +, —E —b, )=2V exp —4g ~g ~
sin coth P2 2

X dt exp 4g ~g ~
sin csch p cos(co t) cos[(E +i —e b, )t] . (3.7)—

0 2 2

After substituting (3.7) into (3.4), we see that the product on the left-hand side of (3.4) vanishes for an infinite system:

1'
N

lm
m+1, m

m=1 Rm, m+1

(e.+i —s. )
G +, exp —P—exp —P

(e +, —E )
G +, exp P—exp P

7 2 2

=[exp( —pb, )] =0 . (3.8)
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If we assume that there is no correlation between the site
energies, the N terms on the right-hand side of (3.4) may
be written as follows:

P(s2 —
E&)

2
vz =a exp

2

P(E2 —E, )

2

Gi, z

the expression for the drift velocity is

Gi, 2

P(82+ E3)

2

G2

exp
2

(3.9)

exp

+ ( exp( —
pE& ) )

/3(E2+ E, )

2

X exp

exp

( R, ~R2, R) ~ )

X exp

ph
2 2

exp — exp( —pb, ),

(3.10)

p(E, +e4)
2

G3,4

X
exp(PE ) —1

(3.12)

exp

vq =apb. (exp( —pe, ) )

/3(c.2+ e, )

2

Gi, z

In the limit of small 6, only the second term on the
right-hand side of (3.12) is important. If we expand
exp(pb, ) —1 to linear order in b, , we find that the drift ve-
locity in a 1-0 system for small electric fields is propor-
tional to the field strength

X exp — exp( —2Pb, ),
2

(3.11)

etc. Because these terms are identical except for the fac-
tors ( exp( —Ps

&
/2) ) and powers of exp( —Pb, ), the

right-hand side of (3.4) is simply the sum of a geometric
series. In the limit of an infinite number of lattice sites,

I

(3.13)

The linearity of the drift velocity with the electric field
stands in stark contrast to Derrida's prediction of a ve-
locity cutoff at low fields, a discrepancy which will be dis-
cussed further in Sec. V. Dividing both sides of (3.13) by
E, and taking the limit as E approaches zero, we obtain
an expression for the zero-field dc mobility,

/t, =ea p clci p E, i exp ci

/3(E2+ E, )

2
exp

C] 882p C1 p F2
oo oo 12 E2 el

(3.14)

where we have written the lattice averages as integrals
over the density of site energies p(E).

IV. THE NONDECAYING PART
OF THE POLARON MEMORY FUNCTION

X exp( —1
&

) [ A exp( I 2) exp( a t ) + 1]—
X cos[(s2 —E, )t], (4.1)

where 2, I,, I 2, and a are functions of temperature. In-

The symmetric function G, 2 is sufficiently complex
that the evaluation of (3.14) for arbitrary coupling and
temperature is not straightforward. Many of the essen-
tial features, however, are easily explored in a high-
temperature and/or high-coupling limit. In this limit,
the decaying part of the memory function may be ap-
proximated by a Gaussian. The nearest-neighbor
memory function is of the form

(E2 —e, )
W, 2(t)=2V exp —P

tegrating (4.1), we obtain

G(Q)=V exp( —I, ) A exp(12)
v'Yr

X exp — +2~5(Q)
4o.

(4.2)

where Q=c2 —c, The decaying and nondecaying parts
of (4.1) give rise to the Gaussian exp( —0 /4a ) and the
delta function 6(Q) in (4.2), respectively. In calculating
the mobility from (3.14), however, we must integrate over
the reciprocal of (4.2), [6 (0 ) ] '. We note that
[6 ( fl ) ]

' is proportional to an inverted Gaussian
exp(fl /4a ), except for an abrupt deviation from this
form in the shape of a downward-pointing spike at Q, =O.
This is shown in Fig. 1. The spike is the reciprocal of a 6
function I/5(A), and thus has an area of zero. It does
not contribute to the integration in (3.14) for any well-
behaved density of energies p(E). We see therefore that
for any amount of site-energetic disorder in a one-
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0--
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cause energy cannot be conserved through an exchange
of phonons. A fraction of the bonds in the lattice will be
effectively broken, which results in a vanishing of the dc
mobility for a one-dimensional system. Thus the ob-
served mobility transition is similar to one-dimensional
percolation. We shall see below that because a decreases
with decreasing temperature, there exists a temperature
below which the dc mobility in a 1D lattice will be frozen
out.

V. TEMPERATURE DEPENDENCE OF THE MOBILITY

FIG. 1. Plot of [G(A) t
' as a function of 0 for the case that

G (Q) is given by the form of expression (4.2). The contribution
from 5(O) is approximated in the figure by a narrow Gaussian.
6(A) plays the role of a downward-pointing spike at 0=0 but
does not contribute to the integration of [G(A)] ' in (3.14).
The units are arbitrary.

dimensional chain, the nondecaying part of the memory
function, W'( ~ ), makes no contribution to the mobility.
This result is true, independent of our choice of a Gauss-
ian form for (2.5). In order to further evaluate (3.14), we
take p(s) to be a Gaussian distribution with variance cr .
After performing the integrations in (3.14) with (4.2) and
a Gaussian density of site energies, we find that the mo-
bility is

In the case of electron-phonon coupling to a single
optical-phonon branch, the functions A, I &, I 2, and o. in
(4.1) have been determined elsewhere. ' Therefore we
will simply list the results and the assumptions on which
the calculations are based. The optical-phonon frequency
co is centered at a frequency mp with a bandwidth 6,
which is narrow compared with k T. For a
narrow phonon band, it is reasonable to assume
a frequency-independent electron-phonon coupling con-
stant g. The Gaussian approximation (4.1) applies
when 2g csch(13coo/2) ))1. If the conditions
2g csch(Peon/2)5 «coo, cr /coo «1, and P5 « 1 are also
met, then the hopping rates will be dominated by process-
es in which the phonon number is conserved, and all oth-
er multiphonon transitions may be neglected. In such a
case, a =g csch(Phoo/2)05, where the factor 0 is a di-
mensionless number of order unity which arises from the
integration of the function sin (q a/2) over the density of
phonon states. We take 0=1 in what follows. In addi-
tion,

1/2
z ~e a 13V A3/a —o. exp( —

—,'P o )
CX2

p= Xexp(I z
—I, ), a) o.

0, e(o. ,

(4.3)

COp

4vrg csch P
2

COp COpI,=2g coth P, I =2g csch 13

The disorder specifically enters expression (4.3) through
cr in two places: under the radical, +a —o and in an
exponential factor exp( —

—,'P o. ). The exponential factor
suppresses the mobility at low temperatures, and arises
simply from detailed balance. The Boltzmann factor in
(2.5) reduces hopping rates from low energy to high ener-

gy, and enhances hopping rates in the opposite direction.
Due to the sequential nature of transport in a one-
dimensional chain, however, the smaller hopping rates
dominate the mobility. Consequently, the mobility de-
creases as temperature is lowered because the smaller
rates are reduced still further. The radical 3/a —o.

gives rise to a transition to zero mobility. If the disorder
is increased so that o. approaches a, the mobility will
vanish as 3/a —cr tends to zero. This can be under-
stood from the requirement of energy conservation. The
width of the Gaussian function exp( —II /4a ) is a mea-
sure of the availability of the phonon absorptions and
emissions that can make up for the differences in site en-
ergies Q. If the half-width &2o of the distribution of site
energy differences is larger than the width of the Gauss-
ian &2a, some of the hopping rates will be suppressed be-

The difference

I z
—I,= —2g tanh P

1/2

Q)p

g csch P 5 —o.
p2

p=e a P
26 COp

g csch P
2

X exp( —
—,'P cr )exp —2g tanh

p

The usual Arrehnius temperature dependence of the pola-
ron mobility arises from the factor

/3' p
exp —2g tanh

4

Substituting these expressions into (4.3) yields the mobili-
ty
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The significant new feature in (5.1) is, however, the emer-
gence of a threshold temperature for the transition to
zero mobility. Even when 2g csch(phoo/2) ))1, the
quantity 2g csch(Peso/2)5 may be greater than or less
than 0. , depending on the width of the optical-phonon
band. Expanding

1/2
COp

g csch P 5 —cr
2

0.0150-

0.0125-

0.0100-

0.0075-

in a Taylor series about zero, we find near the transition
point that

(5.2)

0.0050-

0.0025-

for T ) T&, where the transition temperature T& is given
by

0.0000
0

COp

' 4 1/2
(5.3)

2k ln

1+ 1+
2g5

2

&2g 5

Although the mobility should still exhibit Arrhenius be-
havior at high temperatures, it will be predominantly
determined by (5.2) as the temperature approaches T, .
An example of this behavior is shown in Fig. 2, where we
have plotted the mobility as a function of inverse temper-
ature when 6=0.2cop for the two cases: a=0 and cop.

We see that when the disorder is large, the mobility
quickly drops to zero around T =~p/2k. We remind the
reader, however, that the behavior at the transition point
has been calculated under the assumption that the site-
energy distribution is a Gaussian. If p(E) falls off faster
than a Gaussian, the transition to zero mobility will nev-
er occur. By the same argument, if p(E) falls off more
slowly than a Gaussian, the mobility will always be zero.
Furthermore, only terms in which the total phonon num-
ber is conserved have been retained in deriving (5.1). By
discarding terms in which the phonon number changes,
we have effectively forbidden multiphonon transitions
which allow energy conservation for a still larger amount
of disorder. Hence the mobility will be substantially re-
duced at temperatures below T&,' however, it will not be

FIG. 2. Graph of the normalized mobility pro/ea v'mV
a function of the inverse temperature coo/kT. The optical-
phonon density of states has been taken to be a Gaussian for
simplicity, with a standard deviation 5=0.2coo. The coupling
constant is g =1. The curves (a) and (b) were obtained from
the numerical integration of (3.14) for small and large disorder,
cr=0 and coo, respectively. We see in the case of (b) that the
mobility becomes considerably smaller below a temperature of
about kT =coo/2.

identically zero because a certain amount of residual hop-
ping will still be allowed via higher multiphonon ex-
changes. We now show, however, that a true transition
to zero mobility does occur, but at a lower temperature
Tp ( Tt, .

As we have seen above, the characterization of the
transition to zero mobility is determined by the overlap
of the tails of the Fourier transform of the polaron
memory function and the distribution of site-energy
differences. In order to determine the behavior at the
transition point, it is therefore necessary that we know
only the very large Q dependence of G(A). But this in
turn depends on only the short-time behavior of the de-
caying part of the memory, $V'(t). At short times, W'(t)
is a Gaussian,

q.a COq

2
tanh PW'(t)=2V~exp —p—exp —4g ~g~~ sin

q

2 Ct)q
X exp — 2 g ~g ~

sin csch P
q

co t .cos(Ot) . (5.4)

Equation (5.4) is obtained from (2.5) by replacing
cos(coqt) by 1 co t /2, the first tw—o terms of an expan-
sion about t =0. The integral of (5.4) gives rise to a
Gaussian function G(Q), provided that the phonon den-

sity of states and the coupling constant are sufficiently
well behaved that the sum over q exists. We see therefore
that the tail of the function G (Q) is always a Gaussian of
the form exp( —0 /4a ), where a is given by
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a =2+ ~gq~ sin csch P co

q

(5.5)

The transition occurs when the tail of G (0) falls off fas-
ter than the tail of the distribution of site-energy
di6'erences. The behavior near the mobility transition is
therefore

(T T )1/2 (5.6)

where Tp is determined from the integral equation

2g ~g, ~'sin'
q

CO

CSCh COq =02 2

0
(5.7)

For the case of coupling to a narrow optical-phonon
band, To is given by Eq. (5.3), but with the substitution of
cop for 6:

g QD
r

COAT COSO
sin

may even be applicable if the coupling to optical vibra-
tions is sufficiently strong. As we have observed above,
however, when the width of the disorder is small, the
transition temperature will be low. At low enough tem-
peratures with respect to co o/k, the terms in (5.6) corre-
sponding to optical-phonon coupling will be exponential-
ly suppressed by the factor csch(Pcoo/2), and the transi-
tion temperature will be determined primarily by the size
of the acoustic-phonon coupling. To calculate the transi-
tion temperature Tp for acoustic-phonon coupling, we

use the deformation potential form for the coupling con-
stant and the phonon density of states in the Debye ap-
proximation. Expression (5.7) becomes

TO
COp

4 1/2
(5.8)

CO
X csch co sin( 8)=o

2
(5.9)

2k ln

1+ 1+
+2g coo

2

+2gcoo

In contrast to (5.3), which applies only in a specific pa-
rameter regime, expression (5.8) is exact for all values of
g, coo, and o.. In Fig. 3, expression (5.8) for To is plotted
as a function of o/&2gcoo. We observe that for small
disorder, To approaches zero as (in~cr/&2gcoo~ ) ', where
as for large disorder, To is proportional to (o /V2gcoo) .
This is one of the principal results of this paper.

In a system with electron-phonon coupling to both
optical- and acoustic-phonon branches, the temperature
dependence of the mobility near the transition tempera-
ture is still determined from Eq. (5.6). Expression (5.8)

where cu is the phonon frequency, QD is the Debye fre-

quency, and here P is 1/kTO. The coupling constant

~g~ ~
in (5.7) has been replaced by g QD/co in (5.9) in the

deformation potential approximation so that the polaron
binding energy is simply E =g AD. The factor
sin (q a/2) in (5.7) has been replaced by

CO% COSH
sin

D

in (5.9). At temperatures much below the Debye temper-
ature, the hyperbolic function csch(/3'/2) in the in-
tegrand of (5.9) falls off exponentially at small frequencies
so that the upper limit on the frequency integration may
be extended to infinity and the factor

COAT COSO
sin

20D

0.5-

0. 4-

may be replaced by its argument. The integration over
the azimuthal angle 0 supplies a factor of —,'. If we trans-
form the frequency integration to a dimensionless form,
(5.9) becomes

0. 3-

0.2-

2 2 2
g AD7T

2(f30D ) 0
dx x csch —=o.

2
(5.10)

0. 1-

0.2 0.4 0. 6 0. 8

Numerically integrating (5.10) gives a factor of 15X10 .
Inverting (S.10), we find an expression for the transition
temperature:

J2g C00

1/3

Tp =0.15
+D 0

gQD
(5.11)

FIG. 3. Transition temperature To as a function of the width
o. of the disorder, from expression (5.8). For small disorder, To

approaches zero logarithrnically with o.. For large disorder, To
is proportional to cr .

We observe that for acoustic-phonon coupling, the transi-
tion temperature scales as the cube root of o. for small
enough disorder.
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VI. DISCUSSION

The primary result of Sec. III is Eq. (3.14), an expres-
sion for the zero-field dc mobility on a one-dimensional
disordered chain with random hopping rates. In addition
to their dependence on the absolute value of the site-
energy differences, the hopping rates are nonsymrnetrical-
ly biased in a random fashion due to the Boltzmann fac-
tor. Although there exist several methods for exactly cal-
culating the expectation values of dc quantities, only the
method of Derrida, ' which we followed here, is applic-
able in the presence of random biases. However, as we
have already pointed out, our result for the steady-state
drift velocity is markedly distinct from the result of Der-
rida. ' It is shown by Derrida that the drift velocity
drops to zero below a particular value of the applied dc
electric field, and thus the zero-field dc mobility always
vanishes. In contrast, we find here that as the electric
field approaches zero, the drift velocity is linearly propor-
tional to the dc field. The difference in these results, we
believe, lies in the choice of the independent random vari-
able. In Derrida's calculation, the difference in energy
between adjacent sites is the random variable, which is
taken to be independent from one pair of sites to the next.
This assumption, though surely made for convenience, is
not supported by the underlying microscopics in the po-
laron model. The difference in site energies between sites
1 and 2 is certainly correlated with the difference in site
energies between sites 2 and 3, for the two pairs are con-
nected through the common energy of site 2. For this
reason, we choose to retain the individual site energies as
independent random variables. Because the hopping
rates depend only on the site-energy differences, it ap-
pears that the correlation should produce a minor eff'ect.
We point out, however, that if the site-energy differences
are treated as independent random variables, there may
exist in an infinite lattice arbitrarily large clusters of posi-
tive site-energy differences across which a particle must
hop "upward" in energy many times in succession. If the
correlations between site-energy differences are correctly
accounted for, on the other hand, the total energy
difference of successive upward hops across a large clus-
ter is limited by the width of the site-energy distribution.
This may be the key distinction which accounts for the
velocity cutoff seen by Derrida, ' but not seen here.

In Sec. IV we have used Eq. (3.14) together with a
Gaussian memory function and a Gaussian distribution
of site energies to illustrate two features of this analysis.
The first is that for large enough disorder the mobility
will vanish. As we have discussed, the vanishing of the
mobility with large disorder can be understood from en-
ergy conservation arguments and "percolation" in one-
dimension. The second feature is that only the decaying
part of the memory function contributes to the mobility
for nonvanishing disorder, a result which is not entirely
unexpected for a one-dimensional system. After all, in a
one-dimensional lattice with disordered site energies the
eigenstates are localized, and so hopping transport can
only occur with phonon assistance. Because the
phonon-assisted and phonon-unassisted processes have a
one-to-one correspondence with the decaying and nonde-

XG, ~(E~ —E, ) . (6.1)

If we substitute (4.2) in (4.1) and use again a Gaussian dis-
tribution of site energies, we find that

2 2

p=e a P&nV exp( —I &) exp

X —+ exp(1 2)
1

Q' ~2+ ~2
(6.2)

An important difFerence between (3.14) and (6.2) is that in
(6.2) the mobility is the sum of two terms, the first of
which arises from JY( ~ ) and the second arises from the
integration of W'(t), whereas we have already shown that
(3.14) depends only on II"(t). In addition, the transition
to zero mobility for large disorder is not predicted by
(6.2). In order to predict proper one-dimensional per-
colation, one would therefore tend to favor (3.14), but at
the price of losing any effects which should be associated
with 8'( ao ). Nevertheless, expression (6.2) may be quite
appropriate for small disorder in three-dimensions. As
we have discussed above, one would expect some contri-
bution from 8 ( ~ ) when the states are not fully local-
ized. We note, for example, that Eq. (6.2) has been suc-
cessfully utilized in explaining the observed temperature

caying parts of the memory function, respectively, it is
not surprising that transport should depend on only the
decaying part of the memory function. By these argu-
rnents, one expects that the nondecaying part of the
memory function should contribute to transport only
amongst the delocalized states in three-dimensions. For
completeness we should point out that the above inter-
pretation of our one-dimensional result is not without its
counter examples. For instance, if the site energies are
arranged in a regular periodic fashion, the eigenstates of
the noninteracting system are clearly delocalized, and by
the above arguments one would expect that the nonde-
caying part of the memory function should contribute.
However, if the perturbation is made from the same site
basis, the nondecaying part of the memory function again
has no effect on the mobility. In another counter exam-
ple, if instead of diagonal disorder, off-diagonal disorder
is introduced via random interaction matrix elements, the
eigenstates are again completely localized in one-
dimension. In this case, however, the nondecaying part
of the memory function causes the mobility to diverge.

Except for the second-order perturbation in V, which
is made in obtaining a closed form for the memory func-
tion, (3.14) represents an exact result for the zero-field dc
mobility in one-dimension. However, an expression for
the zero-field mobility may also be obtained from the
Kubo theory of linear response. If a second-order pertur-
bation in V is made in order to evaluate the Kubo
response function, one obtains a different expression for
the mobility,

p=e a P J dE] J dE2p(E])p(E2) exp( —PE])

(E,2
—E, )

X exp —P
2
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dependence of the mobilities of photoinjected charges in
naphthalene.

The most dramatic effect of disorder on transport that
emerges from this analysis is the mobility transition,
characterized by a temperature To below which the mo-
bility vanishes. At a temperature T just above To, the
mobility scales as the square root of the difference
T —To. As we have already remarked, the transition be-
havior depends crucially on the fact that we have chosen
the site energies from a Gaussian density of states. Com-
plete transitions to zero mobility will not occur for any
density with non-Gaussian tails. We should, neverthe-
less, observe large changes in the temperature depen-
dence of the Arrhenius prefactors as the width of the
memory function passes below the width of the density of
states.

On a final note, we remark that the results presented
here apply only to transport in one dimension. While it is
clearly of broader interest to examine the temperature
dependence of the percolation transition in higher dimen-
sions, we have focused on only the one-dimensional case

for the following reasons. Only in one-dimension have
the effects of disorder on certain dc quantities been deter-
mined exactly, albeit starting with approximate memory
functions. Any conclusions in higher dimensions, on the
other hand, are necessarily affected by further approxi-
mations in the form of effective-medium or mean-field
solutions of the master equation. Furthermore, as we
have seen, it is a requirement of detailed balance that
hopping rates in an energetically disordered solid should
be randomly biased and correlated. However, we know
of no approximation schemes for random walks with
correlated random biases in dimensions higher than 1.
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