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Hole dynamics in a strongly correlated two-dimensional spin background
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In this paper we present results of finite-lattice studies of the t-J and the t-t -J model for 18 (20) sites
with up to 4 (2) holes. A modified Lanczos algorithm allowed for the classification of the ground state
according to total spin S. In the one-hole sector we find evidence for the existence of hole pockets. We
calculate the effective quasiparticle band and show qualitative differences between the t-J and t-t -J mod-

el for J 0.2. As U increases we notice a substantial band narrowing, which is maximal at the Nagaoka
transition, accompanied by S-level crossings rendering a quasiparticle description difficult. In the high-

doping regime we present hole binding energies for up to six holes for the t-J model. Evidence for phase
separation is only found for J & t. We also studied the magnetic structure of the ground state on the 18-
site lattice in the limit J=0. We present a complete ground-state classification for all numbers of holes

Nz and find S=S,„at quarter filling in addition to the Nagaoka case.

I. INTRODUCTION

Superconductivity in the high-T, materials and the
considerable activity in trying to explain this
phenomenon focuses renewed interest on the physics of
strongly correlated fermion systems. Most of the high-T,
superconductors are perovskite-type layer oxides and it
now seems generally accepted that their relevant elec-
tronic properties are determined by strong correlations
between the induced charge carriers (holes or electrons)
and the antiferromagnetic spin background realized in
the undoped Cu02 planes of the insulating parent com-
pounds, such as LazCu04 or Nd2Cu04. The clear separa-
tion of spin and charge degrees of freedom (-2 eV; cf.
Ref. 2) as well as the size of the ordered magnetic mo-
ment in the undoped case lead to a local description of
the Cu + spins in terms of an isotropic Heisenberg mod-
el. Upon doping, the Cu + spins do not form a separated
quantum liquid, but are an essential part of the then su-
perconducting quantum liquid as emphasized by Rice, '

among others, for the case of dominating Cu3d 02p
2 2 xJP

hybridization. It is an open question whether this strong-
ly correlated quantum liquid can be described in the nor-
mal state in terms of a conventional Landau Fermi-liquid
theory.

Microscopic models for high-T, superconductivity
should therefore incorporate the hopping of charge-
carrier holes (t) and antiferromagnetic exchange (J) be-
tween spins of neighboring Cu sites as the relevant de-
grees of freedom. From the outset of the theoretical de-
velopment Anderson proposed the two-dimensional
Hubbard model with large on-site Coulomb interaction U
and close to half-filling as a starting point for a theoreti-
cal description, at least for the low-lying excitations in
the normal phase. The Hubbard model, and even more
the t-J model ' (derived for the limit U))t) have since
been studied intensively. Because of the failure of usual
perturbation-theory methods in the strong-coupling re-
gime, sophisticated mean-field theories, for example,

slave-boson or slave-fermion methods and numerical
techniques like exact diagonalizations ' and quantum
Monte Carlo simulations, ' ' were used for a systematic
study of these systems.

In this paper we present an exhaustive examination of
the ground-state properties of the Hubbard model in the
strong-coupling limit for finite clusters of up to 20 sites
with various numbers of holes. In Sec. II we brieAy de-
scribe the model Hamiltonian and the numerical methods
for diagonalizing it on finite lattices. In Sec. IIIA we
focus on the ground state of a single mobile vacancy in an
antiferromagnetic background. We determine the energy
dispersion E ( K, S) for total spin S for both the r -J and
t-t'-J models as a function of the Coulomb interaction.
Here we also discuss the possible existence of a pocketlike
Fermi surface, the position of the momentum of the
hole, ' ' and the validity of the quasiparticle picture. In
Sec. III B we calculate in addition the ground-state ener-
gies in the high-doping regime and comment on hole
pairing and the possibility of hole clustering or phase sep-
aration. ' Apart from being relevant to the theory of
high-T, superconductivity, the Hubbard-like models also
provide insight into other fascinating problems like mag-
netic phenomena ' and transport or metal insulator
transitions. ' The stability of the ferromagnetic state
in the U= ~ Hubbard model especially has been studied
intensively and controversially. ' In Sec. III C we will
discuss the question by exactly diagonalizing an 18-site
cluster with an arbitrary number of holes. Finally, in
Sec. IV we summarize our results.

II. MODEL AND METHOLOGY

A. Strong-coupling Hamiltonian

The starting point of our work is the two-dimensional
one-band Hubbard model defined by the Hamiltonian
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H= —t g (c; c +Hc )+. —gn; n;
&ij &, o i, a

Here the operators c; (c; ) create (destroy) a spin o. elec-
tron in a Wannier state at sitei and n; =c,. c; . The first
term represents the kinetic energy of electrons on a
square lattice, where the transfer amplitudes t are re-
stricted to nearest-neighbor (ij } hopping processes. In
the strong-coupling limit of large Coulomb interaction
(U» t} it appears to be sensible to describe the low-
energy excitations of the Hubbard model within the sub-
space of minimal number of doubly occupied sites. Using
the particle-hole symmetry and restricting ourselves to
the case of electron density n ~ 1, one can derive the
strong-coupling Harniltonian using a canonical transfor-
mation ' ' up to order t /U:

ping and exchange; for a further discussion of this point
see Ref. 41. Irrespective of the fact that the t-J or better
the t-t'-J model describes the behaviors of the Emery
and the one-band Hubbard model only for t/U &&1, the
t-J model can be studied as a model of its own right in
the whole parameter regime of t and J even in the limit
J»t.

Unfortunately there are very few exact analytical re-
sults for the infinite two-dimensional Hubbard or t-J sys-
tem. While it is generally accepted that the ground state
on a square lattice with one electron per site shows anti-
ferromagnetic order, the situation upon doping is much
less clear except in the Nagaoka limit. ' To obtain
more insight into these systems a number of numerical
studies has been performed, ' ' ' where most of the
exact diagonalizations are done for the "simpler" t-J
model with 16 sites.

Hsc =HI +H2+H3 (2) B. Numerical technique

H, = t g—(c; c~ +H.c.),
&ij &, o

(3)

4tH~= g SS—
(ij &

t'
~3 X ~ ( cicr j nj —cr—cko

&ijk &, o

+c; ~c) ~cJ~ck~)+H. c. ]

(4)

(5)

with S;=—,g &c; cr @;p, n; =n; +n;, and n; =c; c; .
The operators c; =c; (1 n; ) are —chosen to con-

strain the configurations to those without double occu-
pancy, thereby reducing the dimension of the Hilbert
space from 4 to 3, where X is the number of sites.
Note that the first term is now connected to the motion
of (1 n)N hole—s in the lower Hubbard band, hence its
energy tends to zero if n —+1. H, and H2 constitute the
t -J model with the antiferromagnetic Heisenberg ex-
change interaction J =4t /U, which is generated
through a virtua1 double occupancy during a two-site
hopping process. H3 describes virtual three-site hop-
ping processes where (ij ) and (jk ) are nearest neigh-
bors. This contribution is of the order of t/U smaller
than the leading hopping term, but it should be em-
phasized that the first term of H3 just describes sublattice
hopping of a hole and therefore leaves, e.g. , the Neel spin
background unchanged. The full Harniltonian Hsc
defines the t-t'-J model ' with t'=t /U, which should
not be confused with models where t' denotes a direct in-
trasublattice transfer. ' '

Obviously, with respect to its applicability to high-
temperature superconductivity the Cu3d 02p2 2 &,y
model proposed by Emery should be a more realistic
starting point. Due to the Zhang-Rice argument, how-
ever, it is assumed that the low-energy spectrum of this
model can in the relevant parameter regime be mapped
quite accurately onto an effective one-band model of hop-

We consider tilted &18XV18 and &20X &20 clusters
with periodic boundary conditions which cover the whole
square lattice. The case of antiperiodic and mixed
boundary conditions was recently examined by Riera
with respect to two-hole binding energies on smaller clus-
ters and the results are qualitatively insensitive to the
boundary conditions used.

Previous numerical investigations on the 4X4 cluster
gave rise to controversial interpretations due to the high
symmetry of this cluster, which is larger than the point
group C4„of the square lattice, causing an accidental de-
generacy of the ground state. " ' This is very unfor-
tunate if one wants to answer the question regarding the
position of the hole pockets, because the only considered
candidates' ' for this position are (+m/2, +rr/2), and
(+~,0), and (0, +m}, which are energetically degenerate
on the 4X4 lattice. The &18X &18 and the &20X V 20
lattices do not possess this additional symmetry; the al-
lowed K vectors are depicted in Fig. 1 for both lattice
sizes. Besides using translational invariance to reduce the
dimension of the Hilbert space we can exploit the point
group symmetries contained in the little group of K. Fi-
nally, the Hamiltonian Hsc is spin rotational invariant,
so we can as usual work in the subspace of fixed total S'.
The maximum dimensions of the unsymmetrized (sym-
metrized) Hilbert space we considered were 9237800
(461 890) [N=20, Nz =2, any K, S'=0] and 17 153 136
(953 088) [N = 18, N& =6, K= (0,0), S'=0] (only transla-
tions). Note that most of the nonvanishing matrix ele-
ments of H~& arise from the H3 term; for example, for
N=20, N&=2, S'=0, H3 produces 9677904 of the
21 516 834 nonzero matrix elements.

In order to calculate the eigenvalue spectrum we used
a Lanczos method which is different from the one pro-
posed by Dagotto and Moreo. In their method the
Hamiltonian is projected onto Krylow subspaces of di-
mension m parametrized by a starting vector go much
smaller than the dimension of the Hilbert space. One
then diagonalizes the resulting tridiagonal matrix T
the Lanczos matrix —and uses the back-transformed
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eigenvector corresponding to the lowest eigenvalue of T
as a starting vector I((IO for the next subspace generation.
Iterating this procedure the starting vector will converge
to the ground-state eigenvector and the lowest eigenvalue
of T converges to the ground-state energy. In our
Lanczos method we follow more closely the algorithm
described by Cullum and Willoughby. Starting with
any vector that is not an eigenvector, we generate the
Lanczos matrices T . Increasing m we check for the
convergence of an eigenvalue of T in a specified range.
In this way we can avoid spurious eigenvalues for fixed
Lanczos dimension m, which disappear as one varies m.
Sturm sequencing is used to effectively calculate the
desired eigenvalue of T and allows for using results of
tridiagonalization for smaller values of nz. Since this
method directly iterates for the eigenvalue it is generally

faster than a method that iterates for an eigenvector.
Sturm sequencing also allows to generate more eigenval-
ues than just the ground state, which is necessary if one
wants to classify eigenvalues according to S. Our numer-
ical procedure was checked, by reproducing the lowest
eigenvalue for the pure t-J model obtained in Refs. 13
and 16 (N=16, 18; NI, =1,2); whereas for the case
%=18, X& =1 we found lower eigenvalues than those
stated by Elser et al. ' at several K points.

III. RESULTS OF THE FINITE-LATTICE STUDY

A. Single-hole properties

Here we shall discuss the results for the one-hole sec-
tor. The momentum K, total spin S, and the symmetry
classification of the ground state are given in Table I for
both the t-J and the t-t'-J model as a function of U on
the 18- and 20-site lattices (here and in the following all
energies are measured in units of t) As m. entioned above
the ground state is nondegenerate and as the Coulomb
energy increases its momentum is shifted from a value
near the perfect nested Fermi surface of the half-filled
Hubbard model to (0,0) [(n., n.)] for N/2 odd [even] near
the Nagaoka transition. At this value of U the ground
state becomes fully ferromagnetically polarized (S =S,„
for U ~ U, ). The nonmonotonic behavior of the momen-
tum of the Nagaoka state is caused by the finiteness of
the system in connection with periodic boundary condi-
tions; the same change of momentum can be seen in the
(Nh =0) Heisenberg ground state. As illustrated in Fig. 2
this behavior is smeared out for larger lattice sizes. The
difference of ground-state energies E [K= (0,0) ]

E[K =(n, n—) ] tends —as it should —to zero in the limit
N~ oo (alternating in sign).

To address the question whether there are hole pockets
in the Fermi surface of the infinite system (if such a Fer-
mi surface exists) we discuss the energy dispersion
E(K,S) of the vacancy band. Our calculations were al-
ways done in a subspace of fixed total S', which only im-
poses a lower bound on the total spin S. Since, depending
on K, S-level crossings occur even at relative small values
of U (U =10), we have to determine those excited states
of a lower S' sector which are not contained in the higher
S' sectors to obtain a band dispersion with definite S.
For N=18 (20) we have six (seven) inequivalent wave
vectors K, (cf. Fig. 1) in the Brillouin zone. We can ex-
tend these six (seven) energies E(K;,S; Nh =1)
throughout the whole Brillouin zone by the following en-

ergy dispersion:

I-TT/2 0

Kx

I

TT/2 E(K,S)= g a& coslK„cosmic
1, m =0

(1+m) ~3

(6)

FIG. 1. Brillouin zone of the (a) 18-site and (b) 20-site lattice
with periodic boundary conditions. Solid circles represent the
K vectors unrelated by symmetry; the dashed square defines the
pseudo Fermi surface at half filling.

We want to emphasize that such a band classification due
to S was carried out for the first time in Ref. 47 for
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TABLE I. The classification of the one-hole ground state on a 18- and 20-site lattice due to momen-
tum K, total spin S, and irreducible representation (IR) of the point group G(K) involved, at various
interaction strengths U.

IR G(K)

1

2
A' U+21. 5 U ~27.7

3'3
(0,0)

(0,0)

1

2

1

2

17
2

A1

A1

C4,

C4,

21.6~ U ~ 77.3

77.4~ U~ 84.6

U + U, =84.7

27.8 ~ U + 85.7

85.8~ U~91.5

U~ U, =91.6

20 K 3&
5' 5

1

2 C1 U~72. 6 U ~78.7

2& K

5 '5
{0,0)

1

2

1

2

19
2

C1

C4

C4

72.7~ U + 74.5

74.6~ U ~96.6
U+ U, =96.7

78.8~ U+83. 8

83.9~ U ~ 103.4

U~ U, =103.5

N=18. Figures 3(a) and 3(b) show as a comparison the
results for N=20 for both the t-J and t-t'-J models for
U=10. First we notice that, for not too small exchange
interactions J/t &0.2, the minima of the lowest S=—,

'

band are well separated from bands belonging to higher
spin sectors, while around K=(0,0), (rr, ~) higher spin
sectors become lower in energy. So for this parameter
range we conclude from our finite-size data that a usual
spin- —, quasiparticle description may be adequate. In-
creasing the Coulomb interaction strength (U&40) the
states with larger spin become comparable in energy, a
situation which suggests the formation of ferromagnetic
polarons. ' Defining as Elser et al. ' a coherent band-
width

is created in the Heisenberg ground state
I go ) and the

exact eigenstates of the one-hole subspace (see Refs.
52—54). While for J=0 the spectrum is completely in-
coherent, for finite J it shows a well-separated quasiparti-
cle peak of width —J below a broad incoherent spectrum.
The energy dispersion, which can be derived from this
dominant peak, ' can be related directly to our
S =

—,
' band, thereby yielding additional evidence for the

validity of the suggested quasiparticle description in this
parameter regime.

0.8-

bE =supI E(K,S)]—inftE(K, S)],

we observe that AE becomes very small at U = U,
(bE =0.027 for N=20) and tends to zero in the thermo-
dynamic limit. As pointed out many times, ' ' due to
coupling of spin and hole dynamics the characteristic en-
ergy for the hole motion is J and not t in the limit t )J.

In this work no attempt is made to discuss the hole
spectral function

0.6-

0.&—

LLJ

0 ~ 2-]

C)

0.0

-0 ~ 2-

-0 ~ 0—I

-0.6

Nagaoka

He(, sender g

10 12 14
N

16 18 22

calculating the overlap between the state where one hole

FIG. 2. The energy difference ( —1)~~2 [E(p,p) —E(~,~)] js
given for increasing lattice size N, where E(K)=min+ E(K,S).
The open circles show the Nagaoka limit: Nz =1, U = ~; the
solid squares the Heisenberg limit: NI, =0 at U= 10.
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—10

(o,o) (rr, O)

—10

Poilblanc and Dagotto suggested that the hole mo-
menta of minimal energy might depend on the inclusion
of terms like H3 in Eq. (2). Indeed, our numerical results
for the full Hamiltonian Hsc lead to a minimum of
E(K,—,'), which is located on the corners of the pseudo-
Fermi surface, whereas the pure t-J model gives the
minima at (+n. /2, +n. /2). This is impressively demon-
strated through the contour plots in Figs. 4—7 which

show the energy dispersion [Eq. (6)] in the S=—,
' sector

for both models and various U values extended over the
whole Brillouin zone. Notice that the 18- and 20-site
clusters lead to qualitatively the same results. In contrast
to the noninteracting case (where doped holes distribute
themselves uniformly along the Fermi surface indicated
through the dashed line in Fig. 1), the holes in the in-
teracting case will upon doping accumulate near the
minima of the band dispersion [Eq. (6)] (indicated by
large dots in Figs. 4—7), and form a pocketlike Fermi sur-
face. These hole pockets are most pronounced for U=4
and weaken with increasing U. At the same time the po-
sition of the minima moves away from the magnetic
Brillouin-zone boundary, while the whole band structure
flattens out. The difference in position of the pockets of
the t-J and t-t'-J models disappears for U greater than
about 20 when the influence of the H3 term ( —1/U) is
weakened. Since the t-t'-J model is a better approxima-
tion to the Hubbard model, it is interesting to speculate
whether the Hubbard model also forms hole pockets
around (+m, O), (0, +sr). In order to answer this question
one would have to study the Hubbard model on at least a
18-site lattice because of the accidental degeneracy of the
16-site lattice mentioned above. Quantum Monte Carlo
calculations' do not find evidence for hole pockets in the
Hubbard model, but these simulations cannot be per-
formed at those low temperatures, which are necessary to
resolve the small energy differences (-0.1t for U=10,
N = 18) along the pseudo-Fermi surface.

As pointed out by Schrieffer, Wen, and Zhang' the
formation of a pocketlike Fermi surface is important to
give a nodeless pairing gap over the whole Fermi surface
(as most experiments indicate), although its formal sym-
metry can be of p- or d-wave type. Another interesting
difference between the t -J and the t-t'-J models appears
if one calculates the components of the effective-mass ten-
sor parallel and perpendicular to K;„at K;„. Apart
from the well-known increase in effective band mass with
increasing U (cf. Ref. 57), the effective mass tensor for
U + 20 is rather isotropic for the t-t'-J model and strong-
ly anisotropic for the t Jmodel (see Ta-ble II).

(rrrr).
FIG. 3. Band structure for a single hole on the 20-site lattice.

The symbols denote different total spins [S: —' (C'); —' ( ); —' (o);
and —, (V)] at the allowed K values. The interpolation is done
with Eq. (6) for the (a) t-J and (b) t-t'-Jmodels at U=10.

B. Pairing and phase separation

In Table III we present the values for the ground-state
energy with respect to the Heisenberg energy
E(N~ ) =E(N~ ) E(0) and the—complete symmetry
classification of the ground state for up to four (two)
holes for both the t Jand r t-' Jmodel on the 1-8--(20-)
site lattice for U=10. It is known from a series of Lane-
zos studies" ' for smaller lattices that the ground state
for two holes is found to be a spin singlet (S =0) indepen-
dent of U. For our larger systems, however, the K degen-
eracy of the ground state is lifted. The K dependence of
the two-hole ground state is shown in Fig. 8 for the sing-
let (S =0) and the triplet (S =1) cases. The S =0 state
exhibits at K=(0,0) a well-defined minimum and, as in
the case of one hole, its total energy is reduced due to the
inclusion of the H3 term.
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E~ =E (2)+E (0)—2E (1),
E~ =E(3)+E(0)—E (2)—E (1),
E~ =E(4)+E(0)—2E(2),

E~ =E (6)+E (0)—E (4) E(2—),

(9)

Of special interest is the question whether there is hole
binding or clusterjng. To comment on this problem we
have computed the binding energies of various numbers
of holes defined by

where we chose those decompositions that maximize E~"
and therefore give the highest probability for the specific
"dissociation channel. " The various binding energies for
the pure t-J model for the 16- and 18-site lattice are
presented in Figs. 9(a) and 9(b) as a function of J. As
mentioned previously' ' there exists a parameter range
(10~ U ~ 40) within which E~ is negative but E~ "

(Xh )2) are positive. This gives evidence for hole pairing
but not for hole clustering. It should be stressed that the
binding energy for two holes for the 18- and 20-site clus-
ters in this parameter regime is more negative than the

(b)

—TT/2—

I-TT/2
I

0

Kx

TT/2
I

0

Kx

(c)

TT/2—

I

—TT/2 0

Kx

I

TT/2 —TT/2 0

Kx

TT/2

FICJ. 4. Contourplots of the "quasihole" energy dispersion E(K, 2) in the Brillouin zone of the square lattice. The lines of con-
stant energy are derived from the t -J model on the &18X &18 lattice at various Coulomb repulsions (a) U =4, (b) 10, (c) 20, and (d)
40. The crosses mark the maximum of E(K,—) at the corners of the Brillouin zone, ~hereas the closed circles denote the minimum
(cf. Fig. 3). The energy difference between neighboring solid lines is 0.1t.
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E =(N, N—)e(0)+Net(x), with respect to the portions
(N, N—) and N of the antiferromagnetic and the hole-rich
phase. The energy per site of the hole-rich phase ez(x)
depends only on the concentration x =N&/N of holes.
Phase separation then exists for concentrations x (x
provided the function e (x)= [eh(x) —e(0) j/x exhibits a
minimum at x =x . Here the free energy becomes a
concave function of x. The function e (x) was comput-
ed from a finite-size calculation with 16 sites by Emery,
Kivelson, and Lin. The crucial step in such a calcula-
tion is that the energy of a finite cluster with X& holes is
interpreted as the energy of the hole-rich phase with hole
concentration x = 1 n. T—he function e (x) is shown in
Fig. 10 for the t-J model for various values of the ex-
change coupling. Obviously we must distinguish between

two regimes of the exchange coupling. In the strong-
coupling regime J ((t the minimum of e (x) is shifted to
lower concentrations raising the system size from
10,16,18 to 20 sites (cf. Refs. 26 and 47) for U=10,20.
This is due to the fact that the rninimurn is always con-
nected to the two-hole ground state (provided E~ (0, i.e.,
U~ 50). Our finite-size results do not allow for the
identification of x by Emery, Kivelson, and Lin as a
critical concentration for the occurrence of phase separa-
tion in this parameter range. For larger values of J we
find difFerent behavior. Here the minimum is more pro-
nounced and is shifted towards x =1 for J))t, which
means towards the fully phase-separated state where the
hole-rich phase contains no electrons. The possibility of
hole clustering in this parameter regime is also visible in

TT/2— TT/2—

—TT/2—

-TT/2 0

Kx

TT/2
—TT/2

Kx

TT /2

I
/

/
/
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/ /
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I
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I-Tr/2
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FIT+. 6. Contourplots of the band dispersion E (K, —') as in Fig. 4, but now constructed from the results for the t -J model on 20-site
lattice.
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Fig. 9. If one calculates the inverse isothermal cornpres-
sibility per site

E (N, +2)+E (N, —2) —2E (N, )

4%

we notice that ~ ' becomes negative for x (x, render-
ing the system unstable [in finite-size systems it is favor-
able to compare quantities with even (odd) numbers of

holes separately; see Fig. 10]. We would like to state two
additional remarks on the question of phase separation.
First, the minimum of e (x) is destroyed quite rapidly by
the inclusion of even a moderate interatomic Coulomb
repulsion as shown in Ref. 26, thereby restoring the
homogeneity of the system. Second, calculations of the
thermodynamic quantities of finite systems have shown
that particle number Auctuations in a grand canonical
treatment also destroy phase separation, for not too
large J/t.
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FIG. 7. Band structure of the t -t'-J model on a 20-site lattice from Eq. (6) with the same parameters as in Fig. 6.
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TABLE II. Components of the effective-mass tensor at the
minimum of the band dispersion E(K, 2) (for the &18X&18
lattice) located at K;„. (m*/m)~~ and (m*/m)& denote the
values parallel and perpendicular to K;„,respectively.

Kmin

77 7T0.94 2'2

m* m*
s

m
)f

m

(0.69; 3.54)

10 0.89 2'2 (1.30; 15.67)

20

40

7r 7T0.82 2'2

7T 7T0.75 2'2

(2.81; 31.55)

{7.01; 20.46)

/
/

\

4
10

(m, O)

(m, O)

(2.72; 1.60)
(9.87; 5.55)

(o.o) (n, o)

20

40

(m, O)

m'
0.77 2'2

(22.82; 19.72)

(6.02; 24.29)

FIG. 8. K-dependence of the ground state energy of two
holes in the S=0 (0) and S= 1 ( ) spin sector. The solid
(dashed) lines are calculated for the t-J (t-t'-J) model on a
&18X&18 lattice at U =10.

C. The liznit U= 00

In this section we give a complete description of exact
results for the ground state of the Hubbard model on the
I8-site lattice in the infinite-U limit. The probability for
the appearance of ferromagnetic states is largest for
U= ~, since for finite U there is always an effective anti-

ferromagnetic exchange interaction. In the infinite-U
limit the Hubbard-Hamiltonian reduces to H&. At half-
filling, due to the two possible spin orientations per site,
there exists a large 2 -fold ground-state degeneracy. In
the one-hole case one has the exact result of Nagaoka
stating that the ground state on a bipartite lattice has

TABLE III. Energy E, spin, momentum, and symmetry group of the ground state for up to four
(two) holes on a &18X&18 (&20X&20) lattice at U =10.

!R G(K)

2m, O
3

'

(0,0)

2 IT 0
3

'

(0,0)

1

2

1

2

Ai

A'

C,

C4„

C4,

—1.415 274

—3.266 077

—4.713 952

—6.372 600

—1.938 938

—4.360 609

—6. 167 221

—8.094 627

3n
5' 5

(0,0)

1

2
—1.440 691

—3.273 336

—1.930 823

—4.288 678
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maximal total spin. For any finite number of holes in the
infinite lattice —that means x =0—it is argued that the
ground state is degenerate with the ferromagnet S =S,„
and the ground-state energy is given yb
E(Nz, N= ~, U= oo)= 4N—&t. No further rigorous re-
sults are available, so it seems a fascinating task to deter-
mine the spin structure which minimizes the kinetic ener-

gy of holes. In the limit of small electron densities n

there should be a paramagnetic ground state following
the old Kanamori argument. ' In the opposite limit
x «1 investigations of the stability of the saturated fer-
romagnetic state with respect to single spin Hips using
variational wave functions show its instability at hole
density x =0.49 (cf. Ref. 33). A diagonalization study on
the 16-site lattice by Riera and Young leads to a highly14

nonmonotonic behavior of total spin S as the number of
holes increases.

Our results for the 18-site cluster are reported in Table
IV. Again one observes nonmonotonic behavior of S as a
function of hole density which renders an extrapolation
to the thermodynamic limit dificult. Near quarter-
filling, however, there is a region with large S. The state
with nine holes exhibits as the Nagaoka state maximal
total spin; the nine electrons can therefore be described as
spinless fermions which occupy the nine allowed K
values within the magnetic Brillouin zone [cf. Fig. 1(a)].
Spin multiplets are obviously connected to "less sym-
metric" irreducible representations of the point group

W. C
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N~FIG. 9. Binding energies E~" for Nq =2 (CI), 3 (&), 4 (+),
and 6 (0 ) holes added to the half-filled band are depicted for the
t-J model vs exchange energy J in (a) and (b) for the 4X4 and
+18X+18 lattices, respectively.

FIG. 10. The function e(x) (see text) is shown as a function
of hole concentrations x for different exchange energies J. The
(tilted) squares belong to the lattice with (18) 16 sites, where
open symbols correspond to even numbers of holes Xq.
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TABLE IV. Energy and symmetry classification of the
ground state, as a function of hole number, for the U = Oo mod-
el on the &18X &18 lattice with periodic boundary conditions.

where the total spin remains almost the same as that of
the satured ferromagnet.

NI, IR 6 (K)

(0,0)

(0,0)

17
2

—4.000000
—6.613 382

3'3
(0,0)

2m'3'
A,

A ll

—8.885 234

—11.174 222

—13.082 963

(0,0) B}

C4„ —14.507 345

—15.400 480

12

(0,0)

(0,0)

3'3
(0,0)

A2

A II

B,

C4, —16.196909
—16.000 000

—15.594 873

—14.898 537

—14.227 499

13

14

15

16

17

'3'3
(0,0)

3'3
(0,0)

(0,0)

A,

A,

C4,

C4,

—12.627 526

—11.040 411

—9.312 771

—7.621 233
—4.000 000

G(K). Let us stress that Barbieri, Riera, and Young '

have recently pointed out that the instability of the
Nagaoka state for small numbers of holes NI, is an ar-
tifact of the small cluster size. They showed that the fer-
romagnetic state is in general locally stable with respect
to single-spin Aips for N& « in%. Our results do obvious-

ly not prove the existence of a ferromagnet for finite hole
densities. %'e believe, however, that they show at low
doping level x &O. S a tendency of the system to form a
ground state which is not a singlet. The same is argued
by Zhou and Gong from a different point of view. They
showed that ferromagnetic correlations affect the motion
of more than one hole through forming Aux phases,

rv. cuxeI.UsIuxS

In this paper we have reported results on finite clusters
with varying numbers of holes. A modified Lanczos algo-
rithm a11owed us to classify ground states according to
their total spin S and therefore to investigate the efFective
band structure.

In the one-hole sector we found the quasiparticle pic-
ture to be appropriate for not too large va1ues of U. A
comparison of the t-J and t-t'-J models showed qualita-
tive differences in this parameter range: the position of
the hole pockets is shifted from (+m. /2, +rr/2) for the t J-
model to (+rr, 0), (0, +sr) in the t-t ' Jmod-el. This
difFerence is relevant for the nature of the superconduct-
ing order parameter, ' which is a two-component com-
plex quantity for (+rr/2, +n. /2) and more conventional
for (+m, O), (0, +m). A further difference between the t J-
and t-t'-J models is shown in the anisotropy of the
efFective mass tensor (m */m )K & . The mass tensor is

min

rather anisotropic for the t-J model and nearly isotropic
for the t-t'-J model in the U range where the hole pock-
ets are at different positions.

We also investigated the question of hole clustering in
the t-J model. Only for large values of J did we find evi-
dence for possible phase separation. For U )& t and/or a
moderate long-range Coulomb interaction V;. &0, phase
separation is destroyed rapidly. Further results on the
thermodynamics of finite clusters indicate that phase
separation can be destroyed by particle fiuctuations.

In the limit U= ~ we examined the spin structure of
the ground state of the 18-site cluster and found, as did
Riera and Young, ' an oscillatory behavior of the ground
state S with Nz. This we could connect to the point
group symmetry of the ground-state wave function. At
quarter-filling the ground state is ferromagnetic with

Smax '
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