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Self-consistently determined properties of solids without band-structure calculations
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We propose an approach to the calculation of the cohesive and the structural properties of solids.
This approach is based on the second theorem of Hohenberg and Kohn and allows one to obtain directly
the charge density and the total energy without determining, at the same time, the band structure of the
system. The method is easy to implement, is self-consistent, and suggests a meaning for concepts such as

2 ¢

“atoms in solids,

crystalline field,” and “charge transfer,” which are not, in general, well defined in the

context of ab initio calculations. The results of applications to some alkali halide crystals are compared
with the corresponding results obtained by several authors using traditional techniques for band-

structure calculations.

The density-functional theory (DFT) is based on the
two Hohenberg-Kohn (HK) theorems.! The first of these
theorems states the existence of a one-to-one correspon-
dence between the ground-state charge density of an N-
electron system and the external potential acting on it. A
major consequence of this is that the total energy of the
system is a universal functional of the ground-state
charge density:

Elp]=Flpl+ [VIplpd®r . (1)

The second HK theorem states that the exact charge
density of the system can be found by replacing V[p] in
Eq. (1) with the external potential V,,(r) and then look-
ing for the absolute minimum of the resulting functional

E,[pl:
E,[p]=Flp]+ [ Veu(r)p(r)d’r
=T[p]+ V. lpl+ [ Veu(rlp(r)d®r . @)

In Eq. (2), the functional F[p] has been separated into
two terms: the kinetic energy of the electrons, T;[p], and
their interaction energy, V,.[p].

The usual method for determining the ground-state
charge density p is due to Kohn and Sham? and is the fol-
lowing. One assumes the existence of a noninteracting
electron system having the same ground-state charge
density as the interacting system. Indicating with T;[p]
the kinetic energy of the noninteracting system® and with
J[p] the electrostatic energy of the electrons, Eq. (2) be-
comes

E[p]=Tulpl+[pl+Eylpl+ [ Veu(rlpn)d’r ,  (3)

where E, [p] is the exchange-correlation functional
defined by

Exc[p]:Tl[p]—Tm[p]-’_Vee[p]_‘,[p] . 4)

The N-electron charge densities which make Eq. (3) sta-
tionary are then the solutions of the equation

STni 8J SE Xxc

—_—t =+t —+ =pu. 5

Since Eq. (5) is identical to the equation that would be ob-
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tained for a noninteracting system in an external effective
potential given by

8 , SE
Veﬁ-(r)=Vext(r)+TS; Sp“
and since for this latter system one knows that the
ground-state charge density can be obtained by solving
the Schrodinger equation

, (6)

[— V24D g (1) =¢;¢(r) , ™
and then summing the square of the N lowest orbitals
N
p(r)=T |¢:(r)?, (8)

i=1

one has a practical tool to perform electronic structure
calculations.

The wave functions which enter in Eq. (7) are wave
functions for the overall system. Thus, in the solid-state
case, the solution of Eq. (7) gives rise to a usual band-
structure problem and the following steps depend strictly
on the method one wishes to use for solving it. In partic-
ular, one chooses a basis set to expand the wave func-
tions. Since it is not possible to use complete basis sets,
this is equivalent, in practice, to restricting the wave
functions to have a given expression. The first basic idea
of the method proposed in this paper is to do a similar
approximation, but some steps before, namely in Eq. (3).

Let us consider a nonmagnetic crystal and indicate
with R, the lattice points. We will use 7; to indicate
some point within a unitary cell (the positions of the
atoms of the basis of the crystal and, in some cases, some
other point). We associate to each point R, +7; an
atomiclike charge density

pj(l'~'Rk—'Tj)=22nij|¢ij(r"‘Rk_Tj)lz ’ (9)

where the coefficients n;; are fermionic occupation num-
bers, and the wave functions y;; are normalized and are
supposed to satisfy the usual boundary conditions for
atomic orbitals. Accordingly, we will speak, in the fol-
lowing, of “atoms” even if a positive nucleus does not
necessarily correspond to each site. We write the total
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charge density of the crystal as

Ptot(r)zzpj(l'_Rk_Tj)=2pjk . (10)
bk bk

We will look for the minimum of E,[p] limiting the
search to charge densities of the form given in Egs. (9)
and (10). In an equivalent way, it is also possible to con-
sider E, as a functional of v,; and to perform a general
variation of E, by independently varying the ;.

Let us associate now to each atom a kinetic energy
defined by

Ta[¢ij]=22nij<¢ij|_%VZWJU) . an

)

E3royy]
ik

where we have made explicit the fact that also E, [p] will be approximate.
E;PP™*[¢;;], under the normalization condition for the ¢;;, and for a fixed choice of »;

tionarity condltlon

1

2 T lp’] ] + Tapprox p] 2 TapprOX[ka ]

& Tapprox

gy, f 8 O pren
=5 T op 8p 8p i

This is a Schrodinger equation for each atom in the crys-
tal. However, because of the translational symmetry, it is
only necessary to solve for the atoms in one unitary cell,
for example, the cell corresponding to R, =0. Further-
more, the expression of the potential entering in Eq. (14)
can be written in a form which is more practical for the
calculations and, at the same time, more appealing from a
physical standpoint. Considering the electrostatic part of
the potential

&J Z;

ZRLCAR ) . E—
=t 8p jzk Ir—Rk—le

T;)
fp.l J d3' , (15)
lr— r|

and introducing the ionic charges [ of the atoms, we can
write

I

Vot 2L —
ext 8p 2Ir R, — ;]
Z.—1I;

+ —_—

2 | =R, =7,

p;(r'—Ry—7;) .,
+f—~|r_r| d’ |- (16)

The first term on the right-hand side of this equation is a
point-ion contribution and it can be summed by standard
techniques. The second term is a short-range term.
Hence, it is not necessary to perform the sum on all the
lattice vectors of the crystal: Only a few orders of neigh-
bors give a non-negligible contribution to the potential in
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Using this definition, the kinetic energy of Eq. (3) can be
separated in an intra-atomic and an interatomic contribu-
tion by writing the identity

Tulpl=3 T, [¥;]1+ |Tulpl = ZT.[¥;]1 - (12)
Jk Jrk

The second key point of the method is to treat the intra-

atomic kinetic energy exactly and to use some kind of ap-

proximation for the interatomic kinetic energy. To be

more explicit, let us suppose to have an approximate ex-

pression T?PP™*[p] of the functional T,;[p]. Then, we
will write
]+J[p]+E“PPf°*[p1+ J Vex(rp(r)d’r (13)

If we now perform a variation of

;j» we obtain the following sta-

ytpij(r_Rk_Tj)=8ij¢ij(r_Rkﬂ‘rj) . (14)

the points where the electronic density of a given atom is
not too small. This latter fact is also true for the
exchange-correlation and for the kinetic contributions to
the potential. Thus, in explicitly calculating the potential
to be used in Eq. (14) for a given atom, one has to per-
form a sum on all the lattice vectors of the crystal just for
the point-ion contribution.

Finally, it is possible to separate the potential acting on
each atom in an intra-atomic term and a crystalline po-
tential V... To do this it is sufficient to use the identity

8E,, OE, , 8E, OE,
b  Spip Bp  Bpp

(17)

and to separate, in the Coulombic potential [Eq. (16)], the
internal contributions from those coming from the other
atoms.

Thus, the problem of determining the charge density of
a crystal has been reduced to the calculation of the
charge densities of single atoms in a crystalline potential
Of course, V,, has to be self-consistently determined in
the calculation.

In order to complete the description of the method, we
only need to discuss how to determine the occupation
numbers n;;. From the discussion above, the *“correct”
n;; are those which minimize the total energy given in Eq.
(13). These n;; can be found by filling up the levels of the
atoms in the unitary cell following the Fermi statistics.
The proof of this follows immediately from the fact that
the eigenvalues ¢;; of Eq. (14) are proportional to the par-
tial derivative of the total energy of the system with
respect to n;;. The explicit form of this proportionality
can be estabhshed in the same way as it was done by
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Janak* to prove the analogous result for the Kohn-Sham
eigenvalues. We repeat here his proof because, in our
case, the g; are not the eigenvalues of the overall system.
Thus our Eq. (23) is not an obvious consequence of the
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Furthermore, for the remaining terms on the right-hand
side of Eq. (13), we have

Janak work. —_— lp: 2|¢ |2
Consider the total energy E;**"*[n;;,1;;] given in Eq. nj jzk e 2‘[ vk
(13) and indicate the sum of the functionals of p con-
tained in it with G[p]. The partial derivative of G[p]
with respect to n; is given by [we will indicate + 2 2”1',' | d)”k‘z
¥ (t—R,—7;) with ¢, T*P* with T, and EZPPrx 5 a
with E]
0G _ 8G
o = [210l+ Samyy g\ 19
anu 8
(18) and
J
20y | = AV 0 ) =24t | — 192 4, ) + o (it | i + 20
on.. > N 1/’i'j'k 7 ¢i'j'k > ¢ijk 7 l/’ijk > nyj on.. 27 ¢'i’j'k c.c. (20)
ij ik k ij'k ij
[
Summing up the second terms on the right-hand side of 3 (3 173
Egs. (18) and (20) and substracting the corresponding EPProX=— = | = f p*3(r)d3r (25)
term of Eq. (19), we obtain 4|

2 2nl’j’€l’j’a f|¢t'j'k| *d3r=0 ’ (21)

ijk

where we have used Eq. (14) and where the equality to
zero follows from the normalization condition for the or-
bitals. Thus the result is

:f; =§ f G+‘% 2|¢ijk|2d3r
+2{ e | =1V 9 ] =§2£U , (22
which is equivalent to writing
€= ; Al, aanE , (23)

where N, is the total number of unitary cells in the crys-
tal, and the factor 1 derives from the fact that we are in
the non-spin-polarized case.

Before discussing the first results obtained by the
method described above, two further points need to be
considered. First, one has to choose an approximate ex-
pression for the exchange-correlation and for the inter-
atomic kinetic energy. Following a successful tradition in
DFT, it seems natural to test, at first, the local-density
approximation for both contributions. Thus, we have
used the two classical expressions

Tapprox='%(377'2)2/3fp5/3(1')d31‘ (24)

and

for the kinetic and for the exchange energy, respectively,
while, for the correlation, we have taken the expression
derived by Perdew and Zunger® from the Ceperley-Alder®
Monte Carlo calculations for the homogeneous gas.

Second, in order to simplify the calculations, we have
further restricted the class of the possible total charge
density of the crystal. In fact, we have only considered
superpositions of spherically symmetric atomic charge
density p;. Since p; is determined by solving a
Schrodinger equation containing the crystal field, this re-
striction implies that some kind of spherical average of
the latter has to be performed. There are two nonequiva-
lent ways of getting a spherical potential. In the first one,
the full nonspherical potential is calculated and then the
spherical average of it is performed; in the second one,
the charge density from which the potential is derived is
spherically averaged. In our opinion, there is no particu-
lar reason to prefer one of these two methods to the oth-
er. The latter is more commonly used and is certainly
easier to implement. For these two reasons we have
chosen this ‘‘averaged-density approximation” for our
calculations.

From the standpoint of applications, one expects the
method we have described to give the best results for sys-
tems with localized valence electrons: ionic, covalent, and
molecular systems. In a first attempt of verifying the ca-
pability of our method to predict the physical properties
of crystals, we have performed a few calculations for
alkali-halide solids. We report here the results for the
prototype of these solids, the NaCl, for which the com-
parison with several different band-structure calculations
is possible. In particular, this system has been studied by
Williams, Kiibler, and Gelatt’ (WKG), by the
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TABLE 1. Lattice parameter a, bulk modulus B, and cohesive energy E, of NaCl. Expt, experimen-
tal data (Refs. 11-13); WKG, augmented-spherical-wave calculations (Ref. 7); AMS and FC, first-
principle pseudopotentials (Refs. 8 and 9); JF, full-potential linearized augmented-plane-wave results

(Ref. 10).

Expt WKG AMS FC JF Present
a (A) 5.60 5.40 5.28 5.52 5.64 5.75
B (GPa) 26.6 32.0 24.0 312 30.4 23.2
E, (eV) 6.39 6.57 6.61 6.32

augmented-spherical-wave (ASW) method, by Andreoni,
Maschke, and Schliiter® (AMS) and by Froyen and
Cohen’ (FC), using first-principles pseudopotentials, and
by Jansen and Freeman'® (JF), by the full-potential
linearized-augmented-plane-wave method.

The results obtained by these authors for the lattice pa-
rameter, the bulk modulus, and the cohesive energy are
reported in Table I, together with our own results and the
corresponding experimental data. Note that we have tak-
en into account the short-range contributions to the po-
tential till the fourth order of neighbors. Beyond this or-
der, the ions have been considered as point charges.
Without overemphasizing the comparison between the
various methods, we only wish to remark that our results
are as accurate as those obtained by band-structure calcu-
lations. Incidentally, we have found the charge transfer
from sodium to chlorine to be exactly one electron.

The other question we have addressed is the relative
stability of the NaCl phase (B 1) with respect to the CsCl
phase (B2) for the NaCl crystal. It is well known that to
find the correct crystallographic phase is not an easy
problem for ab initio calculations. For example, the
ASW method gives the B2 phase more stable than the B1
(Ref. 14) phase. On the contrary, we find the correct
crystallographic phase. Furthermore, the difference be-
tween the minima of the total energy curves as function
of the lattice parameter corresponding to the two phases
is 9 mHartree, which agrees with the value of about 10
mHartree, estimated from Fig. 1 of the FC paper. We
have also evaluated the pressure required to induce the
phase transition B1—B2. We have found 11 GPa,

TABLE II. Structure factors at 295 K for KCl. Expt, experi-
mental data (Ref. 16); ASW, augmented-spherical-wave calcula-
tions (Ref. 18).

hkl Expt ASW Present
111 1.33 1.33 1.34
220 22.05 21.89 21.99
222 18.55 18.60 18.64
400 15.80 16.25 16.25
422 12.87 13.02 13.00
442 9.92 9.97 9.97
600 9.65 9.97 9.97
444 7.80 7.93 7.93
800 5.90 5.97 5.98
1000 3.22 3.25 3.25

which is smaller than the experimental value!® (30 GPa)
by a factor about 3.

Finally, we have studied the effects of the crystalline
field on the electronic charge density by calculating the
structure factors for KCl. We have decided to examine
KCl rather than NaCl for two reasons. First, for NaCl
accurate experimental data are not available, while for
KCl there are the recent y-ray measurements by
Schmidt, Colella, and Yoder-Short.'® Second, KCl is an
“isoelectronic” salt and this implies that the lower-order
odd reflections have small intensities and are strongly
affected by the crystal field.!”

In Table II we compare our calculated structure fac-
tors with those obtained by Bobel, Cortona, and Fumi'®
using the ASW method and with the experimental re-
sults. The thermal effects have been taken into account
by using the Debye-Waller factors reported by Reid and
Smith.'” It can be seen that the three sets of values agree
very well: The discrepancies between theoretical and ex-
perimental results are contained within a few percent,
while ASW and the method of the present paper agree
within 1%.

In conclusion, the results reported above seem to indi-
cate that the method of the present paper can be used to
determine with a good degree of accuracy the cohesive
and the structural properties of solids (at least in the case
of ionic crystals). This is still more remarkable consider-
ing the relative simplicity of the method with respect to
the band-structure calculations.

From a technical standpoint, one has only to take care
in choosing the mesh to perform the integration of Eq.
(14): In correspondence to the various orders of neigh-
bors there are strong variations of the potential which
must be accurately taken into account.

Several improvements of the calculations presented
here can be considered: Nonspherical effects can be in-
cluded and nonlocal functionals for the interatomic kinet-
ic and for the exchange-correlation energies can be used.
In particular, the self-interaction correction, which in
solid-state calculations generally requires very complicat-
ed techniques,?®?! can be implemented quite directly.
We believe that this is a non-negligible advantage of our
method.

Finally, in spite of the fact that we have discussed the
case of solids, the theory of this paper can also be applied
without modifications to molecules. Of course, for the
latter (as well as for very anisotropic solids), taking into
account the nonspherical effects can be crucial in order to
obtain accurate results.
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A method to avoid the solution of the Kohn and Sham
equation and to get directly to the charge density of the
system has also been proposed by Yang®? in a recently
published paper. The basic idea of partitioning the

overall system in localized subsystems is also used in the
Yang work, but the way of obtaining the charge density
of the system is different. A careful comparison between
the two methods can be quite useful.
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