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Dispersion relations and sum rules in nonlinear optics
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We prove that dispersion relations similar to the Kramers-Kronig equations of linear optics can be ob-
tained for the nonlinear-response function to all orders in the electric field. When energy dissipation is
involved the dispersion relations obtained here concern the case in which nonlinearity on a probe beam
is produced by external radiaton beams of any given frequency. Using the superconvergence theorem,
we find a set of nonlinear sum rules. Some of them imply that the already known sum rules of linear
optics —in particular, the Thomas-Reiche-Kuhn and the Alatarelli-Dexter-Nussenzweig-Smith sum

rule —are true to all orders because all the nonlinear contributions vanish. Others do not have a linear
counterpart and are specific to nonlinear optics. Implications of these results and possibilities of anoma-
lous emission effects are dicussed.

I. INTRODUCTION

The Kramers-Kronig dispersion relations between the
real and the imaginary parts of the linear-response func-
tions have a fundamental importance in many aspects of
physics, in elementary particle physics and scattering
theory' as well as in optics, where they had been original-
ly introduced.

In the study of the optical properties of solids the
dispersion relations are of particular value because they
allow a determination of the optical absorption at any
frequency from the measurements of the reQectivity only
on the entire spectrum. Another important application
is due to the fact that a large number of sum rules can be
obtained from the dispersion relations, the most impor-
tant being the Thomas-Reiche-Kuhn (TRK) sum rule for
the absorption coescient and the Altarelli-Dexter-
Nussenzweig-Smith (ADNS) sum rule for the refractive
index. ' These important applications have been
confined to linear optics, though some general results on
dispersion relations of the nonlinear optical response
functions have been obtained by Kogan, Caspers,
Price, ' and Ridener and Good. "' A set of some rules
has also been derived by Peiponen for the nonlinear
dielectric function in the model of the anharmonic oscil-
lator. '

In this paper we address the problem of finding ap-
propriate dispersion relations and sum rules applicable to
nonlinear optics, where several photons are involved. We
prove that general dispersion relations can be obtained
for the nonlinear optical response functions to all orders
in the electric fields by choosing an appropriate integra-

tion line in the n-dimensional frequency space. We con-
centrate in particular on the problem of the optical
response of a medium in the presence of external intense
radiation beams and prove that from the dispersion rela-
tions important sum rules can be obtained for the non-
linear optical functions. We extend to nonlinear optics,
not only the well-known TRK sum rule, but also the
ADNS sum rule fo [n(co) —1]dco=O. We also intro-
duce sum rules for the nonlinear contribution to the opti-
cal constants considering their product by the square and
the cube of the frequency. All the above sum rules are
derived from the general properties of the short-time be-
havior of the Green's function and do not depend on any
specific model.

The paper is organized as follows. In Sec. II we
present the general properties of the response functions
and their connection with optical processes, using only
the causality principle. In Sec. III we show how disper-
sion relations can be derived for the nonlinear response
functions and for the related optical constants to all or-
ders. In Sec. IV we derive a set of sum rules. A discus-
sion of their implications is given in Sec. V.

II. GENERAL PROPERTIES
OF THE RESPONSE FUNCTION

We consider the general response of a system to exter-
nal electric fields under the condition that the polariza-
tion P(t) at time t depends on the fields E(t') only at
preceding times t' ~ t (causality condition). We can write
to all orders in the electric fields:

P(t)= f dt, G"'(t, )E(t t, )+f dt, f d—t, G"'(t„t,)E(t t, )E(t t, )+ . . ——

+ f dt, f dt„G'"'(t„. . . , t„)E(t t, ) . E(t —t„)+ . —
0 0
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with G'"'(t), . . . , t„) real symmetric functions that verify
the causality condition

We Fourier transform the response function and the elec-
tric fields and obtain for the frequency component of the
response function to all orders

p(n)(~)

1 f dco) ' f dco„g (co), . . . , co„)
(2m)"

XE (co, ) E (co„)

X 5(co—(co, + +co„)),

where E(co) is the Fourier transform of E(t) and the
nth-order susceptibility is

(n)
~con)

XG'"'(t»t„. . . , t„) .

(4)

The symmetry in the times implies the symmetry of
g'"'(co„co2, . . . , co„) for the interchange of the frequen-
cies. The reality of 6(t„.. . , t„) furthermore implies

(n)( (~)*
g ( co), co2, . . . , co„) g (co],co2 . . . , co )

The above-defined susceptibility g'"'(co), co&, . . . ) con-
tains all the optical properties of the medium to all or-
ders, in the presence of a number of radiation beams.
When the external beams have definite frequencies
E(co, ), . . . , E(co„), we obtain in the nth-order polariza-
tion a contribution from all the possible sums of n terms,
where in each term the frequency can have positive or
negative sign, and a given frequency can be repeated up
to n times.

We will concentrate our attention on the case that two
radiation beams of frequency co, and co2 act on the sam-
ple. We obtain the usual first-order response function at
the two frequencies co& and co&. We also obtain a second-
order response function at the frequencies 2'&, 2co2, 0,
co, +co&, ~co2

—co, ~. They correspond to the phenomena of
harmonic generation, optical rectification (nonlinear stat-

I

ic polarization), and sum and difference frequency gen-
eration, respectively. In second order no energy dissipa-
tion is possible because the energy dissipation is the time
average

III. NONLINEAR DISPERSION RELATIONS

A dispersion relation involves the integration of the
susceptibility in the frequency space lR". In the case of
the nonlinear susceptibility g(")(co), . . . , co„), which is
defined in IR, the domain of integration is chosen to be,
for simplicity, a straight line of R . We describe a gen-
eral line of R" in the parametric form

cok(s)=vks+wk with k =1,2, . . . , n . (7)

where s is a real parameter which varies from —00 to
+ oo and vk are the components of a vector that identifies
the direction of the line. Substituting expression (7) into
the definition (4) of g'"', we obtain

which vanishes when the two contributions dP/dt and
E(t) have different frequencies

The third-order response function contains eight con-
tributions whose frequencies are co&, co2, 3'&, 3co2,

~2co)+co2~, and ~2cozkco, ~. The contributions of frequen-
cies co, and co& contain a dissipative term proportional to
the imaginary part of P (co) which gives a contribution to
(6) because dP/dt is in phase with the field E (t). The dis-
sipation is ten proportional to the imaginary part of
g' '(co„co,, —co, ) or g' '(co„co&,—co&) for the first beam,
and g' '(co2, co2, —co2) or g' '(co2, co, , —co, ) for the second
beam.

A similar analysis can be carried out for the higher-
order terms to obtain higher-order harmonic generation
terms and dissipative higher-order contributions.

Our goal is to derive dispersion relations between the
real and the imaginary part of the response functions
similar to the Kramers-Kronig relations of linear optics.
In the cases when a dissipative term is present such
dispersion relations will connect the dissipative and the
dispersive contribution to the polarization to all orders.
This is expected to be very useful in nonlinear optics as it
is in the linear case and will be shown to generate non-
linear sum rules.

g'"'(s) =g'"'(co)(s), co&(s), . . . , co„(s))

~ ~ ~
l (V) t) +V2t2+ ' ' +V t )S (~)c i(w&t&+w&t&+ . +w„t„)

dt& at2 - dt e 6 "(t„t2, . . . , t„e
0 0 0

We can easily show from the above expression that the
time-dependent Fourier transform of g(")(s),g(")(r) van-
ishes for negative values of ~ because of the causality con-
dition (2), provided we impose the condition

Uk ~0 for k =1,2, . . . , n .

Then we can invoke Titchmarsh's theorem' ' to prove
that the function g'"'(s) is holomorphic in the upper
half-plane of the complex space s +i q and that it van-
ishes at infinity in all directions of the half-plane. Conse-
quently the following Kramers-Kronig dispersion rela-
tions hold:
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(„) 1,Im[g'"'(s')]Re[g'"'(s)]=—P f ds'
s s

(„) 1,Re[g'"'(s')]Im[g'"'(s)]= ——P f ds'
7T s s

(10)

2', „Re[g' '(co'„co', )]
Im[g' '(a)„co,)]=— P f den'(

2 27T 0

(13)

For the sum and difference frequency generation we can
fix co2 and vary co, (U, =1, U2=0, w, =0, w2=w2), and
obtain a dispersion relation by performing the integral on
~& which mixes real and imaginary parts of the difference
and sum frequency generation susceptibility, as given by
Caspers. The above expressions are, however, of limited
use in optics because they connect phase and amplitude
of the response function, and only the amplitude is gen-
erally considered.

In higher order, however, the real and imaginary part
of the function P(")(co) at the frequencies co, and A@2 can
give dispersive and dissipative effects, respectively. In
particular, the expression of P'")(co, ) that contains dissi-
pation is given by a sum of contributions proportional to

(2p+2q+1)( ~ ) (14)

where p =0, 1, . . . give the number of pairs co&,
—

co&, q
the number of pairs co2, —~2, and 2p+2q+1=n. The
expression for P(")(co2) can be obtained by interchanging
co) and co2 in (14). Dispersive-dissipative effects can thus
be observed, with two monochromatic beams, in the
two-dimensional subset of R" given by (14), and disper-
sion relations of type (10) and (11) can be derived for any
line of type (7) included in this subset and satisfying con-
dition (9). Since we consider the beam of frequency co, as
a probe in the presence of a second beam co2, such lines
exist for any co2 to all orders only in correspondence to
the parameters

where P denotes the principal part of the integral, and
the integral extends from —~ to + (x). These relations
were previously found by Caspers for the second-order
susceptibility, and by Ridener and Good' for the nth-
order susceptibility, but only for the case of Uk =1. Ex-
pressions (10) and (11) extend the previous results to all
orders and to all possible integration paths.

The general form of the dispersion relations here ob-
tained allows us to derive integral equations connecting
the real and the imaginary parts of the susceptibility to
all orders for the cases of interest. This is done by choos-
ing an appropriate integration line through the choice of
the parameters Uk and wk in (7). Considering two beams,
for instance, we obtain in second order the same results
first obtained by Kogan.

For the second-harmonic generation we must consider
g' )(co),co() and consequently we must choose v( =1,
u2=1 and w) =0, w2=0 in Eq. (7), and use Eqs. (10) and
(11) to obtain

cg'(Im[g' '(co'„co', )]
Re[g' '(co„co))]=—Pf de', , (l2)

7T 0 Q) i Q) )

U& =(1,0,0, . . . ) and wk =(O, co2, —c02, . . . ) . (15)

co', Im[g( q+"(co„co2,—co2, . . . )]
P ddt

'lT 0
1

CO( CO)
&2 2

(16)

Im[g' "(co),co2, —
A@2, . . . )]

2'( Re[g +'
(co(, co2, —A@2, . . . )]

P de)
7T 0

(17)

where we have limited the domain of integration to posi-
tive frequencies by means of the symmetry properties of
g'"), expressed by Eqs. (4) and (5).

The dispersion relations (16) and (17) are the main re-
sult of our analysis and have an important physical
significance. They extend to the nonlinear case the usual
Kramers-Kronig relations when the nonlinearity in the
dielectric function is produced by an additional external
beam. Dissipative and dispersive components are then
connected to all orders.

The third-order dissipative contribution will include
two-photon absorption, stimulated Raman effect, and
corrections to the nonlinear absorption due to two-step
processes at intermediate-state resonance frequencies.
The related dispersive term gives the correction to the
real part of the dielectric function due to the external
beam.

The dispersion relations (10) and (11), and those which
can be obtained from them [such as (12) and (13) or (16)
and (17)], allow the derivation of dispersion relations
among all optical constants. The case of the dielectric
function is obvious because of its connection with the sus-
ceptibility. A nonlinear contribution to the complex
dielectric function

Z (co„cl)2,E2)—e( (co„c02$E2)+lE2 (ci)(yco2, E2)

is immediately obtained for the radiation probe beam of
frequency co, in the presence of an external beam co2. In
those cases where dissipation is present we obtain

"(co,,co2, E2)

=4qr g a„g(")(co„co2,—A@2, . . . )E2
n odd) 1

with n =2q+ 1 in expression (14), and

(19)

a (n —1)!

n —1 n —1

2
'

2

(20)

It can be observed that the nonlinear dielectric function
depends on the intensity of the external light beam as

We can therefore conclude that the only Kramers-Kronig
dispersion relations involving dispersive-dissipative
effects are obtained for the odd response functions and
are the following:

Re[g' q+"(co„co2,—A@2, . . . )]
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well as on its frequency. The linear limit is also expres-
sion (19) with n = 1 and addition of 1.

The case of the conductivity o. is also obvious since it is
related to the dielectric function by

Z(co„co2,E2)
o ( co „co2,E2 ) = —1co1

4~
(21)

The conductivity is therefore holomorphic in the upper
half-plane of the complex space if the dielectric function
is holomorphic. In the case of the complex refractive in-
dex, the holomorphic properties in the complex plane do
not follow from those of the susceptibility because of the
branching points introduced by the squared root. We
can, however, follow the same procedure as Nussen-
zweig, ' and prove that real and imaginary parts of the
refractive index n =n +i ~ are related by dispersion rela-
tions also in the nonlinear case, when the nonlinearity is
due to the presence of an external light beam. In that
case the refractive index depends on the intensity and on
the frequency co2 of the external beam and can be written

n(co„co2,E2)=no(co, )+n "(co„co2,E2)

IT0+ n, E2+ n2Ez + (22)

2' i n(co'„co2, E2)
K(co„co2,E2)= — P dco',

7T
(24)

where n and ~ denote the real and imaginary parts, re-
spectively.

where E2 is the electric field of the external beam of fre-
quency cu2. The theorem of Nussenzweig' shows that n
is a holomorphic function of co, (in the upper half com-
plex plane), and we show in the Appendix that its asymp-
totic behavior is determined by the linear term n0. Con-
sequently we obtain for the refractive index the following
dispersion relations to all orders:

2 &1K(&1&&2~E2 )
n (co„co2,E2)—1=—P dco',

2 2, (23)

co, E2 (co1,co2, E2)dco1 —0 y

NL

0

f e') (co1,co2, E2)dco1=0 .
0

(26)

(27)

The first is the extension to nonlinear optics of the f-sum
rule (TRK). Both sum rules (26) and (27) have been pre-
viously obtained by Peiponen' for the case of the anhar-
monic oscillator. Our analysis shows that they are valid
in general, and proves that the basic sum rules of linear
optics are valid to all orders since the nonlinear contribu-
tion vanishes.

The validity to all orders of the absorption coefficient
sum rule and of the ADNS sum rule can also be proved
in a similar way considering that n has the same
asymptotic behavior as 8, as shown in the Appendix.
We obtain the nonlinear sum rules

In the second category we find a large number of sum
rules by studying the asymptotic behavior of

(co„co2,E2). Once the asymptotic behavior is estab-
lished, we can verify if the superconvergence theorem is
applicable to the appropriate dispersion relations and by
comparison obtain relevant sum rules as was done by Al-
tarelli and co-workers ' for the linear case. From rela-
tions (16) and (17), and similar expressions of related
holomorphic functions, we obtain the values of integrals
of the type

f co1g
" (co1,co2, —co2, . . . )dco1g (n)

with all values of q, from 0 to that which gives the
correct asymptotic behavior. Similarly, for the refractive
index we use the superconvergence theorem and relations
(23) and (24) to obtain the asymptotic behavior and we
then compare it with the asymptotic behavior of the re-
fractive index when this is known.

We show in the Appendix that the asymptotic behavior
of e "is of the type m . Then we immediately obtain,
by the superconvergence theorem, the following sum
rules for the real and imaginary parts of the nonlinear
dielectric function to all orders:

IV. NQNLINEAR SUM RULES co1K (co1,co2, E2 )dco1=0,
0

(28)

NL
2 ~ &2 (co1,co2, E2)

e, "(O,co,E )=- dcoi
7T 0 CO)

(25)

This may be a relevant effect in semiconductors since it
modifies the screening of all electrostatic charges.

We can now show that a number of sum rules are con-
tained in the above dispersion relations, as in the case of
linear optics. Some of them are immediately evident.
Others are obtained by making use of the superconver-
gence theorem to obtain the asymptotic behavior from
the dispersion relations, and then comparing it with the
asymptotic behavior of the optical functions when this is
known to the desired order. '

In the first category is the static dielectric function sum
rule, which is immediately obtained by setting co&=0 in
Eq. (16) and using (19). We obtain a nonlinear correction
to the static dielectric function due to the nonlinear opti-
cal transitions,

~1 &2,E2 da)] =0 . (29)
0

The first sum rule (28) shows that the absorption
coefficient sum rule of linear optics is valid to all orders
since the nonlinear contribution vanishes. The second
(29) analogously shows that the ADNS sum rule

f o (n —1)dco=O is also valid to all orders.
New sum rules can also be obtained for all the prod-

ucts of the nonlinear optical functions by co& and co&, al-
ways making use of the superconvergence theorem. We
consider the function cog (co„co2,E2), which is holo-
morphic and goes to infinity as co&, as shown in the ap-
pendix. The dispersion relation leads to the asymptotic
behavior

c (~2&E2 ) 2 1
co1E2(co1,co2&E2 )dco1

CO 77 Q) 0

which gives the following sum rules:
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co]e] (co],co2&E2)dco] =0,2 NL

0

co]e2 (co],co2, E2)dco] ——c(co2, E2) .3 NL

0 2

A similar analysis on the refractive index gives

con]"(co„co2,E2 )dco, =0,
0

co]K (co]~co2, E2 )dco] =—c (coq, E2 ) ~f 3 NL

0

(30)

(31)

(32)

(33)

In the sum rules (31) and (33), the quantity c depends on
the nonlinear properties of the medium and on the exter-
nal beams. Its value can be computed for each individual
case as shown in the Appendix.

Similar sum rules can be obtained in the same way
from the dispersion relations (10) and (11) also in those
cases, such as n=2, when no dissipation is present. As
an example we report the sum rule for second-harmonic
generation:

over a very large frequency domain as the probe beam
and laser radiation as the external beam.

The nonlinear anomalous emission processes have a
resonant behavior at the steplike resonant processes, so
that they may compensate the linear absorption under
appropriate conditions. This can be tested in atomic
physics experiments on a three-level system. Results like
those first obtained by Alzetta et al. ' can then find an
explanation in the sum-rule conditions, which of course
are automatically present in calculations with the
density-matrix formalism.

Analogous results were obtained experimentally by
Frohlich et al. in an investigation of the dynamical
Stark eQ'ect in semiconductors. The nonlinear contribu-
tion was explained by making use of the density-matrix
calculation of the nonlinear susceptibility in the three-
level system approximation, and its integral was shown
to vanish. We have now proved that this is a particular
case of the general sum rules obeyed by any physical sys-
tem.

f Re[g' '(co„co, )]dco, =0,
0

(34)

ACKNOWLEDGMENTS

f co,Im[g' '(co], co, )]dco, =0 . (35)

The results reported above do not exhaust the possibili-
ties for sum rules. Many others can be obtained by vari-
ous mathematical manipulations, as described in Ref. 4
for the linear case, or by considering other types of
response functions, such as o or (I/e). Using the
prescriptions we have given, and the appropriate disper-
sion relations, sum rules can be derived for all problems
of specific interest.

V. DISCUSSION AND PRELIMINARY APPLICATIONS

The results we have obtained are of general physical in-
terest and can also be used to explain specific experimen-
tal phenomena in nonlinear optics.

First of all, nonlinear dissipative processes like two-
photon absorption and stimulated Raman processes pro-
duce modification of the dispersive properties, which can
be computed from Eqs. (16) and (17). This leads, for in-
stance, to an anomalous dispersion near the resonance
condition for excitation from the ground-state energy E0
to the energy state E; [when co]+co2=(E; Eo)/fi or-

~ co, —co2~
= (E; Eo)/]]1], similar to th—at of linear optics.

The nonlinear sum rules that we have obtained contain
interesting information. For instance, the sum rule (26)
implies that the nonlinear Z2 (co„co2,E2) must have neg-
ative contributions corresponding to emission in such a
way as to compensate the dissipation due to two-photon
and Raman transition processes. The sum rule (28) iin-
plies that the nonlinear positive absorption coefficient
must be compensated by nonlinear amplification process-
es.

The verification of all the derived sum rules may be of
interest. Predictions on higher-frequency nonlinear pro-
cesses may be obtained by computing the relevant in-
tegrals up to a given value of the frequency. They may be
experimentally verified by using synchrotron radiation

The authors wish to thank L. A. Radicati di Brozolo,
M. Altarelli, and E. Arimondo for useful discussions.
They are also indebted to D. Frohlich for an important
suggestion. Support from the Consiglio Nazionale delle
Ricerche (CNR) through the Gruppo Nazionale Strut-
tura della Materia (GNSM) is gratefully acknowledged.

APPENDIX

g( )=f, ,dy,
y —x

(Al)

and f (y) dies off at large y faster than (y lny) ', then for
large x the following expansion holds:

g(x)= f f(y)dy+o(x ) . (A2)

where o (x ) denotes terms dying off faster than x
If the above superconvergence property holds, then it

can be applied to the dispersion relations involving the
optical functions with an appropriate choice of the func-
tion f (y). If in addition the asymptotic behavior of such
expressions can be independently obtained, then by com-
paring the two results, a large number of sum rules can
be obtained, as summarized in the review paper by Bas-
sani and Altarelli for the linear optical functions. '

We now derive the asymptotic behavior of the dielec-
tric function and prove that the superconvergence prop-
erty can be applied also to the nonlinear dispersion equa-
tions, so that sum rules can be obtained.

The mathematical tool for obtaining sum rules from
the dispersion relations is the so-called superconvergence
property, which states that if a function g(x) is defined
by
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We make use of the properties of the time-dependent
Green's functions with a procedure similar to the one
adopted by Altarelli and Smith for the linear-response
function.

The time-dependent dielectric function is

Z( r, to&, E2 ) = 1 + g 4rra „Ez
n odd

X 6ft2 ' ' 'QtnG 7,
0

Xe 2'2 2'3 + Z'4

Z=Z'(r)+Z ""(r,~„E,)
1+ g 2a E2 fg (~1 ~2 ~2' )e d~l

n odd

(A3)

(A4)

To obtain the asymptotic behavior as a function of co,
we consider the expression of the inverse Fourier trans-
form

where we separate the linear and the nonlinear contribu-
tion. The coefficients a„are given by expression (20).
This can be expressed in terms of the time-dependent
Green's function as

Z'(ai„ai~, E2)—1=f [e(r,co2E2) —l]e ' dr,
0

(A5)

and perform the above time integral by parts to obtain

Z(a)„coz&E2) —1=—[e(r, co2, E2)—1] [(agar)e(r, ~„E,)]
CO 1

[a'e(, „E,)xa ']
l COi

(A6)

where we have used the fact that the Green's function and all its derivatives vanish for ~—+ ~, as they represent the
response to an instantaneous (5-like) excitation after an infinite time [Eq. (1)].

By using expression (A4) and Kubo's formula for the time-dependent Green's function ' we can now show that the
first three terms on the right-hand side of Eq. (A6) vanish for the nonlinear part of the dielectric function. We observe
that the first contribution in (A6) vanishes because [e(r) —1] at zero time vanishes to all orders. The first time deriva-
tive, which contributes to the second term, can be expressed as follows:

with

(r, ai2, E&)= g 4~a„E," ' f dt2 dt„G'"'(r, t2, . . . , t„)e
av.

7l Odd 0 "a7- (A7)

(r t, . . . , t„)= g TrI e(t —r)e(t —t ) . e(t„—t„,)[p( —r), [p( —t ), . . . , p( —t),p]]p]
1

n (
—iiii')"

(A8)

where the sum is on all possible permutations of ~, t2, . . . , t„;0 is the step function; p is the dipole operator at zero
time; p(t) evolves with the unperturbed Hamiltonian Ho=p /2m + V(x); p is a density matrix operator such that

[p,HO]=0.
Let us consider the first time derivative and use the condition ~(t2, . . . , t„, since we are interested only in the limit

&~0. We obtain

lim G'"'(r, t„.. . , t„)=a
w—+0 O'T

1
lim Tr p( —r), g e(t, —t, ) e(t„—t„ i)[p( —t2»[ p( —t. ) Pl] 9, .

(A9)

Using the Heisenberg expression for the time derivative of p(r), Eq. (A9) beco mes

lim G "(r,t„.. . , t„)= +, Tr(n)
7.—+0 Bv n!( —iR)"+' [„,~, ], ye(t, —t, ) e(t„—t„,)[p( —t, ), [ p( —t„)p]] p . .

pt

(A 10)

Using the property

Tr[ A, B]C=Tr[C, A]B

and the fact that

(Al 1)
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[p,Ho]=+i%' p, (A12)

we obtain

(n)
—1 e A

lim G'"'(r, t2, . . . , t„)=— „+, Tr p 6(&3 —&2) . 6(&.—r. —i)[p( —t&) [ p( —
&. )p]] .

o Br n!( —iR)"+' (A13)

For the Green s function in first order the trace just gives the density p, so that we obtain

(A14)

and expression (A6) in the linear approximation gives the asymptotic behavior

COp

F(co,') =1-
CO 1

(A15)

from which all the linear sum rules are obtained. For all the higher-order Green s functions we obtain

(A16)

since the trace of a commutator vanishes.
We now consider the second time derivative, for which we use twice the Heisenberg expression for the time deriva-

tive of the dipole moment and obtain

1
+2 Tr [[p,Ho], Ho], +6(t2 t3) —6(t„t„,)[p( —t2), [—. . .p( t„),p]—] p

n!( —iA')" + (A17)

The above expression can be shown to vanish by noticing that the double commutator is a function of only p because
d p/dr =F(x). By applying the property (All) of the trace we observe that the commutator p with a function of p
vanishes.

The third time derivative is different from zero, and its value can be computed from the expression

1 e Tr [[P,Ho], Ho] g 6(t, t, ) . 6—(t„,—&„)[P(—r, ), [. . .P( —r„),P]] P(ig)" +~ m '
p.

(A18)

We introduce the potential V(x) in the expression

(A19)

and again use expression (A 1 1) for the trace of triple products to obtain

8 V
lim G "'(r, tz, . . . ,t„)=, Tr g 6(tz t3) . 6(t„& t„)[p(——&2), [. . .p—( —„)p]] . (A20)

o B~
" n!( —iR)" 'm Bx

The above expression is different from zero and is the Green s function to order n —1 associated with the operator
8 V/Bx instead of the operator dipole moment.

Substituting the time derivatives of G'"'(~, t2, . . . , t„) into (A6), we find the following asymptotic expression for the
nonlinear contribution:
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g N"(co, , co2, E2) = +o(co, )
CO I

4 2
1 oo oo l (602'~ 072 3+C02 4 CO~

dt2 . . dt„e
co, „,dd» n!( —itri)" 'm

X Tr g e(t2 —t3 ) 6(t„& t„)—
P'

X[@(—t2), [. . .p( —t„),p]] +o(co, ) .
a'v —4

Bx

(A21)

A similar expression holds for the index of refraction
because of the connection n =+a, except that in this
case the coefficient of the expansion is c/2, c being the
numerator in expression (A21). The last term o(co, )

means that the residual asymptotic contribution goes to
zero faster than M& ~ This is sufficient to prove all the
sum rules reported in the text when the sum vanishes.
The requirement that the optical functions go to zero at
the order co, requires the numerator in the expressions
of type (A2) to vanish.

The sum rules (31) and (33) require that the imaginary
part of e " goes to zero as co

&

—+ ~ faster than
co, log '(co, ). This has to be proven mathematically for
any physical system, but we can take this for granted
since it is a general property of the dissipation to decrease
faster than the dispersion for high frequency. Then, com-
parison of the asymptotic behavior (A21) with the expres-
sion co&ez (co&, co&) and co&tc "(co&,co&) gives the sum rules
(31) and (33).
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